桥梁三维隔震分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近断层地震动特性及其对工程结构影响是目前的研究热点之一。在高烈度区域或近断层区域竖向地震动比较显著,竖向地震动及其对工程结构影响逐渐受到学者关注。基于水平隔震的桥梁隔震技术对提高桥梁水平抗震性能提供了一种有效解决途径,但目前的水平隔震技术并不能有效解决竖向隔震问题,在高烈度区域及近断层区域对竖向地震比较敏感的工程结构实施竖向或三维隔震技术是未来的一个发展趋势,目前国内外对三维隔震装置和三维隔震技术的研究尚无实质性进展。本文针对近断层水平和竖向地震动特征和桥梁三维地震响应、三维隔震装置和隔震效果、分析设计方法等进行了理论和试验研究,主要研究内容如下:
     1、搜集整理了多次地震中包括大量近断层地震动记录的强震记录,提出一种考虑震级和断层距的峰值加速度衰减关系模型,并与其他已有衰减关系模型进行比较分析;探讨了断层距、场地条件、震级和断层破裂机制对竖向与水平向加速度反应谱比值的影响,最后采用最新公布的汶川地震强震记录对峰值加速度衰减特征和反应谱特征进行了统计分析,探讨了地震动空间分布特征对都江堰市建筑震害的影响。研究结果显示本文提出的衰减关系模型能较好地体现地震动衰减特征,断层距、反应谱周期、场地条件和断层机制对竖向与水平加速度反应谱比值有显著影响。
     2、首先分别对大跨度斜拉桥、刚构-连续梁桥和钢管混凝土拱桥进行了动力特性分析,然后采用几组特性不同的地震动记录进行几种桥型结构的动力反应时程分析,探讨了近断层三维地震动对几种桥型结构地震反应的影响。分析结果表明脉冲型近断层地震动对大跨度柔性桥梁结构具有显著影响。
     3、创新性地提出一种新型三维隔震装置——铅芯橡胶-碟簧(碟形弹簧)软钢耗能三维隔震装置,提出了该装置的构造设计方法和力学参数设计方法;分别对三维隔震装置各组成部件以及装置整体进行了力学性能试验,最后采用集中质量单墩模型数值模拟分析验证了该三维隔震装置的水平和竖向隔震效果。结果表明本文提出的三维隔震装置构造比较合理,传力路径明确,具有适宜的三维隔震刚度和阻尼性能,简化模型分析结果显示该装置具有良好的水平和竖向隔震效果。
     4、建立一座足尺三跨连续梁桥数值模拟有限元模型,根据该桥梁设计了本文提出的三维隔震装置水平和竖向力学性能参数,对三维隔震连续梁桥进行动力时程分析验证了三维隔震支座的水平和竖向隔震效果,并分别讨论了地震动激励特性、桥墩抗侧刚度、铅芯屈服强度、组合碟形弹簧刚度和菱形钢板阻尼器等参数对水平和竖向隔震效果的影响。分析结果显示了该三维隔震装置具有良好的水平和竖向隔震效果,菱形钢板阻尼器能够显著提高竖向隔震效果。
     5、根据一座三跨连续梁桥原型结构按照相似条件设计了一座1/25比例的三维隔震三跨连续梁桥和水平隔震单跨简支梁桥缩尺模型结构,设计了振动台试验地震动输入、试验工况和测量仪器布置,对试验用普通叠层橡胶支座和铅芯橡胶支座进行了剪切性能试验,设计了试验用水平隔震装置和三维隔震装置,最后对桥梁模型结构分别进行了水平向和竖向振动台试验。试验结果表明本文设计的三维隔震装置具有良好的水平和竖向隔震效果,而普通叠层橡胶支座没有竖向隔震效果,甚至会放大桥梁上部结构的竖向地震反应。
     6、以梁式桥结构为研究对象,总结和探讨了三维隔震装置和三维隔震桥梁的设计原则和设计方法,并以一座三跨连续梁桥为对象进行了三维隔震装置和三维隔震桥梁的概念设计和多自由度弹性反应谱分析设计。
Characteristics of near-fault earthquake different from far-filed seismic motions and its effects on engineering structures are present research focus. Vertical earthquake is prominent in high intensity and near-fault regions, so vertical seismic motions and its effects on engineering structures attract many scholars’attention. Bridge isolation based on horizontal isolation technology provides an effective approach to improve seismic performance of bridge, but present horizontal isolation technology is invalid for vertical isolation problem. Vertical or three-dimensional (3D) isolation technology will be a promising trend for the vertical vibration sensitive structures. But, substantial progress on development and implementation of 3D isolation technology was not achieved by now at home and abroad. Theory and experiment research are performed on characteristic of near-fault horizontal and vertical seismic motions, 3D seismic responses, 3D isolator and its isolation effect, analysis and design methodology of bridge engineering. the main research of this dissertation are as follows:
     1. Abundant earthquake records including quite a number of near-fault seismic records are collected; an attenuation model of peak ground acceleration considering magnitude and distance-to-fault is proposed and compared with other models. The influence of distance-to-fault, site condition, magnitude and fault rupture mechanism on vertical-to-horizontal spectral ratio are investigated. Seismic records in Wenchuan earthquake released recently are adopted to analyze the peak ground acceleration attenuation character and response spectrum, the influence of spatial distribution of seismic motions on building damage in Dujiangyan city is discussed. Anlysis results indicate that the proposed model can reflect the attenuation relation of seismic motions, vertical-to-horizontal spectral ratio is remarkably affected by distance-to-fault, spectral period, site condition and fault rupture mechanism.
     2. Dynamic characteristic analysis is carried out for large-span cable-stayed bridge, several group of strong earthquake records with different seismic property are adopted for dynamic time history analysis to investigate the influence of near-fault three-dimensional seismic motions on seismic responses of these bridges. Analysis results show that near-fault seismic motions will impose obvious effect on large-span flexible bridges.
     3. An invention of three-dimensional isolation bearing is proposed, design method of constructional design and mechanics parameters are also introduced. Mechanics property experiments are carried out on every main part and holistic device of the 3D isolator. Numerical simulation analysis of lumped mass-single pier model is applied to validate horizontal and vertical isolation effectiveness of the 3D isolation bearing. Experimental and analytical results indicate that the proposed 3D isolator possess reasonable structure and explicit force-transmission mechanism and appropriate 3D isolation stiffness and damping, simplified model analysis reveal that it has favorable horizontal and vertical isolation effectiveness.
     4. Finite element model of a full-scale three-span continuous girder bridge is established, horizontal and vertical mechanical property parameters of the proposed 3D isolation bearing are designed. horizontal and vertical isolation effectiveness for the continuous girder bridge are validated and the influence of seismic excitation property, lateral stiffness of pier, yield strength of lead-rubber bearing, stiffness of combined disc spring and rhombic steel plate damper on horizontal and vertical isolation effect. Analytical results reveal favorable horizontal and vertical isolation effectiveness and rhombic steel plate damper can evidently improve vertical isolation effectiveness.
     5. A 1/25 scale three-span continuous girder beam and single span girder bridge are designed according to the prototype bridge, seismic excitation input, experimental case and disposal of measurement instrument are designed, shear performance experiment is carried out for the natural laminated rubber bearing and proposed 3D isolator. Horizontal and vertical shaking table test are performed to validate the isolation effectiveness of the 3D isolation bearing. Experimental results show that the 3D isolator is effective for horizontal and vertical isolation, but the laminated rubber bearing is invalid for vertical isolation, even adverse effect on vertical seismic responses.
     6. Design principle and method of 3D isolation system and 3D isolated bridge are summarized and discussed for girder Bridges. Taking a three-span continuous girder bridge for an example, conceptual design and MDOF elastic response spectrum analysis and design are performed for the proposed 3D isolation bearing and 3D isolated bridge.
引文
[1] Zifa Wang. A preliminary report on the Great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2008,7(2):225-234.
    [2] Uniform Building Code: Structural Engineering Design Provisions(UBC)[C]. International Conference of Building Officials(ICBO), Whittier, CA, 1997.
    [3] Yunfeng Zhang, W. D. Iwan. Active Interaction control of tall buildings subjected to near-field ground motions[J]. Journal of Structural Engineering, 2002, 128(1):69-79.
    [4] G. P. Mavroeidis, A. S. Papageorgiou. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of American, 2003, 93(3):1099-1131.
    [5]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动, 2006, 26:1-10.
    [6] Jonathan D. Bray, Adrian Rodriguez-Marek. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(11):815-828.
    [7]邵广彪,冯启民.近断层地震动加速度峰值衰减规律的研究[J].地震工程与工程振动, 2004, 24(3):30-37.
    [8] J. P. Stewart. et al. Ground motion evaluation procedures for performance-based design[R]. EER-2001/09, University of California, Berkeley, Sept. 2001.
    [9]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报, 2006, 38(12): 2070-2072, 2076.
    [10] P.G. Somerville. Characterizing near fault ground motion for the design and evaluation of bridges[C]. Proceedings of the Third National Seismic Conference and Workshop on Bridges and Highways held in Portland. Oregon: April 28-May 1, 2002.
    [11] K. Aki. Seismic displacement near a fault[J]. Journal of Geophysical Research, 1968, 73: 5359~5376.
    [12] P. G. Somerville, R.W. Graves. Conditions that give rise to unusually large long period ground motions[C]. Proceedings of the seminar on seismic isolation, passeive energy dissipation and active vibration control, Applied technology Council, San Francisco, ATC17-1,1993, 1:83-94.
    [13] P. G. Somerville, N. F. Smith, R.W. Graves, N. A. Abrahamson. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 1997, 68(1):199-222.
    [14] G. P. Mavroeidis, A. S. Papageorgiou. Near-source strong ground motion: characteristics and design issues[C]. Proc. of the Seventh U. S. National Conf. on Earthquake Engineering (7NCEE), Boston, Massachusetts, 2002, 21-25.
    [15] T. Shabester Khosrow, Yamazaki Fumio. Near fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake[J]. Earthquake Engineering and Structural Dynamics. 2003, 32(14):2197-2219.
    [16] V. Phung, G. M. Atkinson, D. T. Lau. Characterization of directivity effects observed during 1999 Chi-Chi, Taiwan earthquake[C]. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver B C, Canada, No.2740, 2004.
    [17] Vladimir Graizer, Douglas Dreger. Seismological implications of the ground motion data from the 2003 San Simeon earthquake[C]. SMIP04 Seimina Proceedings. 25-40, 2004.
    [18] V. V. Bertero. Establishment of design earthquakes-Evaluation of present methods[C]. Proceedings of International Symposium on Earthquake Structural Engineering, St. Louis, 1976, Vol.1, 551-580.
    [19] Paul G. Somerville. Magnitude scaling of the near fault rupture directivity pulse[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1):201-212.
    [20] Jonathan D. Bray, Adrian Rodriguez-Marek. Characterization of forward- directivity ground motions in the near-fault region[J]. Soil Dynamics of Earthquake Engineering, 2004, 24(11):815-828.
    [21] Adrian Rodriguez-Marek and Jonathan D. Bray. Seismic site response for near-fault forward directivity ground motions[J]. Journal of Geotechnical and geoenvironmental Engineering. 2006, 132(12):1611-1620.
    [22] P. G. Somerville. Seismic hazard evaluation[C]. Proceedings of the 12th world conference on earthquake engineering, Auckland New Zealand, 30 January-4 February 2000, Paper No.2833, New Zealand society for earthquake engineering, Silverstream, Upper Hutt, NZ.
    [23]谢礼立,王海云.近场地震学中3个术语译名的商榷[J].地震工程与工程振动, 2005, 25(6):198-200.
    [24] N.A. Abrahamson, P. G. Somerville. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bull Seismological Society of America., 1996, 86(1B):S93-S99.
    [25]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动, 2006; 26:1~10.
    [26] N. A. Abrahamson, W. J. Silva. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seimological Research Letters, 1997, 68(1): 94-127.
    [27] Jose I. Baez, Eduardo Miranda. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January-4 February 2000, Paper No. 1561, New Zealand Society for Earthquake Engineering.
    [28] G. Q. Wang, X. Y. Zhou, P. Z. Zhang, H. Igel. Characteristics of amplitude and duration for near fault strong ground motion form 1999 Chi-Chi, Taiwan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(1):73-96.
    [29]喻言祥,高孟潭.台湾集集地震近场地震动的上盘效应[J].地震学报, 2001, 23(6):615-621.
    [30]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报, 2006, 38(12):2070-2072, 2076.
    [31]刘爱文,宋毅盛,李方杰,夏珊,宁洱6.4级地震庙山垭口附近的震害现象[J].震灾防御技术, 2007, 2(2):270-278.
    [32] Electric Power Research Institute (EPRI). Guidelines for determining design basis ground motions: method and guidelines for estimating earthquake ground motion in Eastern North America[R].Report EPRI TR-102293, 1993, Vol. 1, Palo Alto, California.
    [33] Y. Bozorgnia, M. Niazi, and K.W. Campbell, Characteristics of free-field vertical ground motion during the Northridge earthquake[J]. Earthquake Spectra, 1995, 11(4): 515-525.
    [34] W. J. Silva. Characteristics of vertical strong ground motions for applications to engineering design[C]. Proceedings of the FHWA/NCEER Workshop on the National Report of Seismic Ground Motion for New and Existing Highway Facilities, Technical Rept. NCEER-97-0010,1999.
    [35] Architectural Institute of Japan, Preliminary reconnaissance report of the 1995Hyogoken-Nambu earthquake[R]. English edition, April, 1995.
    [36] Khairy H. Abdelkareem and Atsuhiko Machida. Effect of vertical motion of earthquake on failure mode and ductility of RC bridge piers[C]. 12WCEE, 2000, Paper No.0463.
    [37] S. H. Ju, C. W. Liu and K. Z. Wu. 3D analysis of buildings under vertical component of earthquakes[J]. Journal of Structural Engineering, 2000, 126(10): 1196-1202.
    [38] Mehdi Zare, Hossein Hamzehloo, Strong ground-motion measurements during the 2003 Bam, Iran, earthquake[J]. Earthquake Spectra, 2005, 21(1):165-179.
    [39]温瑞智,周正华,李小军等.汶川Ms8.0地震的强余震流动观测[J].地震学报, 2009, 31(2):219-225.
    [40] N. A. Abrahamson, J. J. Litehiser. Attenuation of vertical peak accelerations[J]. Bulletin of the Seismological Society of America, 1989, 79(3):549-580.
    [41] M. Niazi, Y. Bozorgnia. Behavior of near-source peak vertical and horizontal ground motions over SMART-1 array, Taiwan[J]. Bulletin of the Seismological Society of America, 1991, 81(3):715-732.
    [42] R. V. Amirbekian, B. A. Bolt. Spectral Comparison of Vertical and Horizontal Seismic Strong Ground Motions in Alluvial Basins[J]. Earthquake Spectra, 1998,14(4):573-595.
    [43] N. N. Ambraseys, J. Douglas. Near-field horizontal and vertical earthquake ground motions[J]. Soul Dynamics and Earthuqake Engineering, 2003, 23(1):1-18.
    [44] Y. Bozorgnia, M. Niazi. Distance scaling of vertical and horizontal response spectra of the Loma Prieta earthquake[J]. Earthquake Engineering and Structural Dynamics, 1993, 22(8):695-707.
    [45] Y. Bozorgnia, K. W. Campbell. The vertical-to-horizontal response spectra ratio and tentative procedures for developing simplified V/H vertical design spectra[J]. Journal of Earthquake Engineering, 2004, 8(2):175-207.
    [46] Erol Kalkan and Gu¨lkan Polat. Empirical attenuation equations for vertical ground motion in Turkey[J]. Earthquake Spectra, 2004, 20(3):853~882.
    [47]周正华,周雍年,卢滔等.竖向地震动特征研究[J].地震工程与工程振动, 2003, 23(3):25-29.
    [48]耿淑伟,陶夏新,地震动加速度反应谱竖向分量与水平分量的比值[J].地震工程与工程振动, 2004, 24(5):33-38.
    [49]周锡元,徐平,王国权,闫维明. 1999年台湾集集地震近断层竖向与水平反应谱比值的研究[J].地震地质, 2006, 28(3):325-335.
    [50]贾俊峰,欧进萍.近断层竖向与水平向加速度反应谱比值特征[J].地震学报, 2010, 32 (1):41-50.
    [51] J. Papazoglou. Near-source vertical earthquake ground motion: An assessment of causes and effects[D]. MSc. Dissertation, Imperial College, August 1995.
    [52] M. A. Saadeghvaziri, D. A. Foutch. Inelastic response of R/C highway bridges under the combined effect of vertical and horizontal earthquake motions[R]. Structural Research Series No. 540, Dept. of Civil Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, Ill, 1988.
    [53] M. A. Saadeghvaziri, D. A. Foutch. Behavior of RC columns under nonproportionally varying axial loads[J]. Journal of Structural Engineering, 1990, 116(7):1835-1856.
    [54] M. A. Saadeghvaziri, D. A. Foutch. Dynamic behavior of R/C highway bridges under the combined effect of vertical and horizontal earthquake motions[J]. Earthquake Engineering and Structural Dynamics, 1991, 20(6):535-549.
    [55] J. Papazoglou, A. S. Elnashai. Analytical and field evidence of the damaging effect of vertical earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics. 1996, 25(10):1109-1137.
    [56] S. Gloyd. Design of ordinary bridges for vertical seismic acceleration[C]. Proceedings of FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, Technical Report No. NCEER-97-0010, National Center for Earthquake Engineering Research, State Univ. of New York at Buffalo, N.Y., 277-290, 1997.
    [57] H. Takemiya, K. Goda and S. Hriuchi. Transient response of structures and ground due to impulsive seismic loading[C]. Proceedings of the First Asia-Pacific Conference on Shock & Impact Loads on Structures, Singapore January, 445-452, 1996.
    [58] Nobutaka Ishikawa, Masuhuhiro Bepu, Satoshi Katsuku, Ayaho Miyamoto and Klaus Brandes. Structural response of RC pier under vertical earthquake shock[C]. 12WCEE, Paper No.0518, 2000.
    [59] Alireza Rahai. Effect of earthquake vertical motion on RC bridge piers[C]. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No.3192.
    [60] Rahai, M. Arezoumandi. Effect of vertical motion of earthquake on RC bridge pier[C]. The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China, Paper No.05-02-0104.
    [61] S. Elnashai, A. J. Papazoglou. Procedure and spectra for analysis of RC structures subjected to strong vertical earthquake loads[J]. Journal of Earthquake Engineering, 1997, 1(1):121-156.
    [62] S. Elnashai, B. Spencer, D. Kuchma, S. J. Kim, N. Burdette, C. Holub, J. Gonzales, N. Nakata, G. Q. Yang, Q. Gan. Analisis and distributed hybrid simulation of shear-sensitive RC bridges subjected to horizontal and vertical earthquake ground motion[C]. 37th US-Japan Workshop on Wind and Earthquake, Japan, May, 2005.
    [63] Sung Jig Kim, Curtis Holub, Amr S. Elnashai. Analytical and experimental investigations of the effect of vertical ground motion on RC bridge piers[C]. The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.
    [64] Sung Jig Kim, Curtis J. Holub, Amr S. Elnashai. Analytical assessment of the effect of vertical earthquake motion on RC bridge piers[J]. Journal of Structural Engineering, 2011, 137(2):252-260.
    [65] , C. P. Yu. Effect of vertical earthquake components on bridge responses[D]. PhD thesis, Univ. of Texas at Austin, Tex., 1996.
    [66] P. Yu, D. S. Broekhuizen, J. M. Roesset, J. E. Breen, and M. E. Kreger. Effect of vertical ground motion on bridge deck response[C]. Proceedings of Workshop on Earthquake Engineering Frontiers in Transportation Facilities, Technical Report No.NCEER-97-0005, National Center for Earthquake Engineering Research, State University of NewYork at Buffalo, New York, 249-263, 1997.
    [67] P. Yu, J. M. Ro?sset. Effect of Vertical Ground Motions on the Seismic Response of Bridges[C]. Proceedings of EASEC-6 Conference on Structural Engineering & Construction, Taipei, Taiwan R.O.C., Vol.1, pp 573~578, Jan. 14-16, 1998.
    [68] N. Hosseinzadeh. Vertical component effect of earthquake in seismic performance of reinforced concrete bridge piers[C]. The 14th World Conference on Earthquake Engineering, October 12~17, 2008, Beijing, China, Paper No.06-0050
    [69] Sashi Kunnath, Norm Abrahamson, Y.H. Chai, Zhiyu Zong, Zeynep Yilmaz. Effects of vertical ground motions on seismic response of highway bridges[C]. Proceedings of the Fifth National Seismic Conference on Bridges and Highways,MCEER-06-SP09, San Mateo, California, September 18-20, 2006.
    [70] Sashi K. Kunnath, Emrah Erduran, Y. H. Chai, Mark Yashinsky. Effect of near-fault vertical ground motions on seismic response of highway overcrossings[J]. Journal of Bridge Engineering, 2008, 13(3):282-290.
    [71] M. F. Liu, T. P. Chang, D. Y. Zeng. The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations[J]. Applied Mathematical Modelling, 2011, 35(1):398-411.
    [72] H. M. Metwally, T. Awad, Eng. N. Al-Chaar. Vibration control of bridges deck under vertical earthquake component[C]. Proceedings of the American Control Conference, Chicago, Illinois, June 2000, 3570-3574.
    [73] Martin R. Button, Colman J. Cronin and Ronald L. Mayes. Effect of vertical motions on seismic response of highway bridges[J]. Journal of Structural Engineering, 2002, 128(12):1551-1564.
    [74] Gilberto Mosqueda, Andrew S. Whittaker, Gregory L. Fenves. Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation[J]. Journal of Structural Engineering, 2004, 130(3):433-442.
    [75] Kazuyuki, Izuno Hiroshi Kawarabayashi, Toshihiko Naganuma, Tsutomu Nishioka. Seismic performance of sliding isolation bearing during vertical movement of bridge girders[J]. Structural Engineering and Earthquake Engineering, 2005, 22(2):107-120.
    [76] Gordon P. Warn and Andrew S. Whittaker. Vertical Earthquake Loads on Seismic Isolation Systems in Bridges[J]. Journal of Structural Engineering, 2008, 134(11): 1696-1704.
    [77]于泳波,刘健新,胡仁东.水平和竖向地震作用下梁桥的地震反应分析[J].西安理工大学学报, 2003, 19(2):148-151.
    [78]张显明,朱晞.近场竖向地震动的特征及其对桥梁震害的影响[J].结构工程增刊, 2005, 665-671,664.
    [79] Xinle Li, Huijuan Dou, Xi Zhu. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges[J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4):345-350.
    [80]刘春城,张哲,石磊,虚拟激励法在自锚式悬索桥竖向地震反应分析中的应用[J].东南大学学报(自然科学版), 2003, 33(4):522-525.
    [81]王常峰,陈兴冲.竖向地震动对桥梁结构地震反应的影响[J].振动与冲击, 2007, 26(6):31-36.
    [82]孙黄胜,施卫星.滑移摩擦型隔震结构考虑竖向地震作用影响的分析[J].工程抗震与加固改造, 2007, 29(4):29(4):48-52.
    [83]王常峰,陈兴冲,夏修身.竖向地震动对滑动摩擦隔震桥梁结构地震反应的影响[J].世界地震工程, 2008, 24(4):36-41.
    [84]彭勇均,朱东生,臧博.竖向地震作用对上承式拱桥的影响[J].重庆交通大学学报(自然科学版), 2009, 28(3):475-479.
    [85]楼梦麟,高珊.拱桥在竖向地震波输入下的行波共振现象[J].世界地震工程, 2009, 25(4):7-11.
    [86] S.K. Jain, S.K. Thakkar. Quasi-static testing of laminated rubber bearings[J]. Journal of the Institute of Engineers, India, Civil Engineering Division, 2003, 84:110-115.
    [87] W. H. Robinson. patents, NZ178949, US4117637[P], Japan 49609/77.
    [88] W. H. Robinson, A. G. Tucker. A lead-rubber shear damper[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1977, 10(3):151-153.
    [89]吴彬,庄军生,臧晓秋.铅芯橡胶支座的非线性动态分析力学参数试验研究[J].工程力学, 2004, 21(5):144-149.
    [90]原媛,李汝庚,石琼辉.铅芯橡胶支座的双线性模型研究[J].广州大学学报(自然科学版), 2005, 4(3):272-276.
    [91]金建敏,黄襄云,庄学真,沈朝勇.隔震设计中铅芯橡胶支座(LRB)屈服前刚度取值的研究[J].广州大学学报(自然科学版), 2006, 5(4):63-67.
    [92]杜修力,韩强,刘文光,赵建锋.方形多铅芯橡胶支座力学性能研究[J].地震工程与工程振动, 2006, 26(2):125-130.
    [93]江宜城,聂肃非,叶志雄,李黎.多铅芯橡胶隔震支座非线性力学性能试验研究及其显示有限元分析[J].工程力学, 2008, 25(7):11-17.
    [94]庄学真,沈朝勇,金建敏.桥梁高阻尼橡胶支座力学性能试验研究[J].地震工程与工程振动, 2006, 26(5):208-212.
    [95] Toshio Nishi. Recent advances on application of elastomeric isolators for bridges and buildings in Japan[C]. Symposium of International Rubber Conference,Bangkok, Thailand, 2004, 91-98.
    [96] B.C. Lin, I.G. Tadjbakhsh. Performance of earthquake isolation systems[J]. Journal of Engineering Mechanics, 1990, 116(2):446-461.
    [97]焦驰宇,胡世德,管仲国. FPS抗震支座分析模型的比较研究[J].振动与冲击, 2007, 34(10):113-118.
    [98] P. C. Rossis, M. C. Constantinou. Experimental and analytical studies ofstructures seismically isolated with an uplift-restraint isolation system[R]. Technical Report MCEER005-0001,Buffalo, NY, 2005.
    [99] S. Tsai, Tsu-Cheng Chiang, Bo-Jen Chen. Finite element formulations and theoretical study for variable curvature friction pendulum system[J]. Engineering Structures, 2003, 25(14):1719-1730.
    [100] S. Tsai, T. C. Chiang, B. J. Chen. Experimental evaluation piecewise exact solution for predicting seismic responses of spherical sliding type isolated structures[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(9):1027-1046.
    [101] S. Tsai, W. S. Chen, T. C. Chiang, B. J. Chen. Component and shaking Tabletests for full-scale multiple friction pendulum system[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(11):1653-1675.
    [102] Daniel M. Fenz, Michael C. Constantinou. Behavior of he double concave friction pendulum bearing[J]. Earthaquake Engineering and Structural Dynamics, 2006, 35(11):1403-1424.
    [103] Y. S. Kim, C. B. Yun. Seismic response characteristics of bridges using double concave friction pendulum bearings with tri-linear behavior[J]. Engineering Structures, 2007, 29(11):3082-3093.
    [104] M. Malekzadeh, T. Taghikhany. Adaptive behavior of double concave friction pendulum bearing and its advantages over friction pendulum systems[J]. Scientia Iranica March, Transaction A: Civil Engineering, 2010, 17(2):81-88.
    [105]邓雪松,龚健,周云.双凹摩擦摆隔震支座理论分析与数值模拟研究[J].广州大学学报(自然科学版), 2010, 9(4):71-77.
    [106]袁万城,曹新建,荣肇骏.拉索减震支座的开发与试验研究[J].哈尔滨工程大学学报, 2010, 31(12):1593-1600.
    [107] Y. L. Chen, W. H. Liao, C. L. Lee, Y. P. Wang. Seismic isolation of viaduct piers by means of a rocking mechanism[J]. Earthquake Engineering and Structural Dynamics, 2006,35(6):713-736.
    [108] Satish Nagarajaiah and Sanjay Narasimhan, and R. Iyer. Seismic response of sliding isolated bridges with MR damper[C]. Proceedings of the American Control Conference, Chicago, Illinois, June, 2000, 4437-4441.
    [109] Shih-Po. Chang, Nicos Makris, Andrew. S. Whittaker, Andrew.C.T. Thompson. Experimental and analytical studies on the performance of hybrid isolation systems[J]. Earthquake Engineering and Structural Dynamics, 2002,31(2):421-443.
    [110] T. Y. Lee and K. Kawashima, Effectiveness of supplementary dampers for isolated bridges under strong near-field ground motions[C]. 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada. August 1-6, 2004. Paper No.138.
    [111] Sanjay S. Sahasrabudhe and Satish Nagarajaiah. Semi-active control of sliding isolated bridges using MR dampers: an experimental and numerical study[J]. Earthquake Engineering and Structural Dynamics. 2005, 34(8):965-983.
    [112] Osman E. Ozbulut, Stefan Hurlebaus. Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-filed earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(3):273-291.
    [113] Osman E. Ozbulut, Stefan Hurlebaus. Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system[J]. Smart Materials and Structures, 2011, 20(1):1-12.
    [114] Panayiotis C. Roussis, M. C. Constantinou, M. Erdik, E. Durukal, M. Dicleli. Assessment of performance of seismic isolation system of Bolu viaduct[J]. Journal of Bridge Engineering, 2003, 8(4):182-190.
    [115] W. I. Liao, C. H. Loh, B. H. Lee. Comparison of dynamic response of isolated and non-isolated continuous girder bridges subjected to near-fault ground motion[J]. Engineering Structures, 2004, 26(14):2173-2183.
    [116] Michael J. Wesolowsky and John C. Wilson. Seismic isolation of cable-stayed bridges for near-field ground motions[J]. Earthquake Engineering and Structural Dynamics. 2003, 32(13):2107-2126.
    [117] R.S. Jangid. Optimum friction pendulum system for near-fault motions[J]. Engineering Structures. 2005, 27(3):349-359.
    [118] R. S. Jangid. 2007. Optimum lead-rubber isolation bearings for near-fault motions[J]. Engineering Structures. 29(10):2503-2513.
    [119] Murat Dicleli, Srikanth Buddaram. Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges[J]. Earthquake Engineering and Structural Dynamics. 2006, 35(2):233-250.
    [120] Murat Dicleli, Srikanth Buddaram. Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect[J]. Engineering Structures, 2007, 29(1):21-32.
    [121] Murat Dicleli. Supplemental elastic stiffness to reduce isolator displacement for seismic-isolated bridges in near-fault zones[J]. Engineering Structures, 2007, 29(5):763-775.
    [122]龚一琼.梁式桥的减隔震体系研究[D].同济大学硕士学位论文,上海, 2000.
    [123]江辉,朱晞.近断层强震速度脉冲特性及连续梁桥减隔震特性分析[J].中国安全科学学报. 2003, 13(12):57-62.
    [124]江辉,朱晞.脉冲型地震动模拟与隔震桥墩性能的能量分析[J].北京交通大学学报(自然科学版), 2004, 28(4):6-11.
    [125] Ian Aiken, n StephenMahi, Gregory Fenves, Amir Gilani. Filed testing and analysis of two viaducts in Walnut Creek, California[C]. Caltrans’Thrid Annual Seismic Research Workshop, Sacramento, California, June, 1994.
    [126] S. Gilani, S. A. Mahin, G. L. Fenves, I. D. Aiken, J. W. Chavez. Field testing of bridge design and retrofit concept Part 1 of 2: field testing and computer analysis of a four-span seismically isolated viaduct in walnut creek, California[R]. Report No.UCB/EERC-95/14, Earthquake Engineering Research Center, University of California at Berkeley, CA, December, 1995.
    [127] Daniel A. Wendichansky. Experimental investigation of the dynamic response of two bridges before and after retrofitting with elastmeric bearings[D]. PhD dissertation, Civil Engineering Department, University of New York at Buffalo, 1996.
    [128] K. C. Chang, M. H. Tsai, J. S. Hwang, S. S. Wei. Field Tests of A Seismically Isolated Prestressed Concrete Bridge[J]. Structural Engineering & Mechanics, An International Journal, 2003, 16(3):241-358.
    [129] Jerry Shen, Meng-Hao Tsai, Kuo-Chun Chang, George C. Lee. Performance of a seismically isolated bridge under near-fault earthquake ground motions[J]. Journal of Structural Engineering, 2004, 130(6):861-868.
    [130]方耀民.盘式支承于铅芯橡胶垫支承桥梁之现地试验与耐震评估—以狮子头溪河川桥为例[D].台湾:逢甲大学土木及水平工程研究所博士论文, 2006.
    [131] J. E. Padgett, R. DesRoches.Three-dimensional nonlinear seismic performance evaluation of retrofit measures for typical steel girder bridges[J]. Engineering Structure, 2008, 30(7), 1869-1878.
    [132] Anxin Guo, Zhongjun Li, Hui Li and Jinping Ou. Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampers[J]. Earthquake Engineering and Structural Dynamics, 2009,38(11):1307-1333.
    [133] Stergios A. Mitoulis, Ioannis Tegos. Restrain of a seismically isolated bridge by external stoppers[J]. Bulletin of Earthquake Engineering, 2010, 8(4):973-993
    [134] B.A. Olmos, J. M. Jara, J. M. Roesset. Effects of isolation on the seismic response of bridges designed for two different soil types[J]. Bulletin of Earthquake Engineering, 2010,9(2):641-656.
    [135] G. C. Lee, Y. Kitane, I. G. Buckle. Literature review of the observed performance of seismically isolated bridges[R]. Research Progress and Accomplishments: 2000-2001, MCEER, State University of New York, Buffalo. P.51-61, 2001.
    [136] Meng-Hao Tsai. Transverse earthquake response analysis of a seismically isolated regular bridge with partial restraint[J]. Engineering Structures, 2008, 30(2):393-403.
    [137] Keri L. Ryan, Wenying Hu. Effectiveness of partial isolation of bridges for improving column performance[C]. Structures 2009: Don’t Mess with Structural Engineers, 2009, 821-830.
    [138] Donatello Cardone, Mauro Dolce, Giuseppe Palermo. Evaluation of simplified methods for the design of bridges with seismic isolation systems[J]. Earthquake Spectra, 2009, 25(2):221-238.
    [139]范立础,王志强,桥梁减隔震设计[M].北京:人民交通出版社, 2001.
    [140] M. T. A. Chaudhary, M. Abe, Y. Fujino. Identification of soil-structure interaction effect in base-isolated bridges from earthquake records[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(8):713-725.
    [141] Japan Road Association, Design specifications for highway bridges, Part V Seismic design[S]. 1996.
    [142] K. Kawashima. Seismic Design and Retrofit of Bridges[C]. Key Note Presentation, 12th World Conference on Earthquake Engineering, Paper No. 1818 (CD-ROM), Auckland, New Zealand, 2000.
    [143]廖顺痒,吴在辉,金吉寅.桥梁橡胶支座[M].北京:人民交通出版社, 1988.
    [144] G. Buckle, M. C. Constantinou, M. Dicleli, H. Ghasemi. Seismic Isolation of Highway Bridges[R]. MCEER-06-SP07, State University of New York, Buffalo, 2006.
    [145] Timothy Wright, Reginald DesRoches, Jamie E. Padgett. Bridge seismic retrofitting practices in the Central and Southeastern United States[J]. Journal of Bridges Engineering, 2011, 16(1):82-92.
    [146] Martelli, M. Forni, G.-B. Arato. Progress on R&D and application of seismic vibrations control techniques for civil and industrial structures in the European Union[C]. In Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures-Proceedings of the 8th World Seminar Held at Yerevan, Armenia, on October 6-10, 2003, (Yerevan: American University of Armenia).
    [147] Martelli, M. Forni. Development and application of modern antiseismic techniques in Italy[R]. Technical Report A/04–02, (Bologna: ASSISi), 2004.
    [148] Bessason, E. Haflidason. Recorded and numerical strong motion response of a base-isolated bridge[J]. Earthquake Spectra, 2004, 20(2):309-332.
    [149] R. I. Skinner, W. H. Robinson, G. H. McVerry, An introduction to seismic isolation[M]. 1stEdn. John Wiley and Sons, New York, ISBN-13:978-0471934332, 1993.
    [150] Masahiko Higashino, Shin Okamoto. Response control and seismic isolation of buildings[M]. Taylor and Francis Press, 2006.
    [151] Q. T. Ma, M. H. Khan. Free vibration tests of a scale model of the South Rangitikei railway bridge[C]. 2008 NZSEE Conference, Paper No.62, 2008.
    [152] C. Chang, M. H. Tsai, J. S. Hwang, S.S. Wei. Field Tests of A Seismically Isolated Prestressed Concrete Bridge[J]. Structural Engineering & Mechanics, An International Journal,2003, 16(3):241-358.
    [153] Mauricio Sarrazin, Ofelia Moroni, Jose M. Roesset, Evaluation of dynamic response characteristics of seismically isolated bridges in Chile[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(4-5):425-448.
    [154] M. Sarrazin, M. O. Moroni, P. Soto, R. Boroschek. Applications on seismic isolation and energy dissipation in bridges in Chile and Venezuela[C]. 7th International Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, Assisi, Italy, October 2-5, 2001.
    [155] Magni Hreinn Jonsson, Bjarni Bessason, Einar Haflidason. Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6):447-455.
    [156] G. H. McVerry, W. J. Cousins, R. T. Hefford. Strong motion records from the 2 March 1987 Edgecumbe earthquake in New Zealand[C]. Ninth World Conference on Earthquake Engineering, August 2-9, Tokyo-Kyoto, Japan, 1988.
    [157] William H. Robinson, W. James Cousins. Accelerated liquid mass dampers as tools of structural vibration control lead dampers for base isolation[C].Proceedings of Ninth World Conference on Earthquake Engineering, August 2-9, 1988, Tokyo-Kyoto, Japan, Vol.VIII.
    [158] Takahiro Somaki et al. Development of 3-dimensional base isolation system for nuclear power plants[C]. Transactions of the 16th International Conference on Structural Mechanics in Reactor Technology (SMiRT16), Washington DC, August, 2001,Paper No. 1015.
    [159] Peter Nawrotzki. Earthquake protection for buildings and other structures[C]. International Forum-Earthquake Prognostics, Urbania, Berlin, March 22nd-24th, 2006.
    [160] S. Fujita, E. Kato, A. Kashiwazaki et al. Shake table tests on three-dimensional vibration isolation system comprising rubber bearing and coil spring[C]. Proceedings of 11th World Conference on Earthquake Engineering. 1996.
    [161] Yoo et al, Integrated horizontal and vertical seismic isolation bearing[P]. United States Patent, Patent Number:5881507, 1999.
    [162] Masaki Morishita, Kazuhiko Inoue and Takafumi Fujita. Development of three-dimensional seismic isolation systems for fast reactor application[J]. Journal of Japan Association for earthquake Engineering, 2004, 4(3)(Special Issue): 305-310.
    [163] Masaki Morishita, Seiji Kitamura, Satoshi Moro, Yoshio Kamishima and Takahiro Somaki. Study on 3-dimensional seismic isolation system for next generation nuclear power plant-vertical component isolation system with coned disk spring[C]. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No.620.
    [164] Kenji Takahashi et al. A development of three-dimensional seismic isolation for advanced reactor systems in Japan-part2[C]. 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT18), Beijing, China, August 7-12, 2005, SMiRT18-K10-2.
    [165] Asao Kato et al. A development program of three-dimensional seismic isolation for advanced reactor systems in Japan[C]. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT17) Prague, Czech Republic, August 17-22, 2003, Paper No. K09-1.
    [166]熊世树.三维基础隔震系统的理论与试验研究[D].武汉:华中科技大学, 2004.
    [167]张玉敏等,碟形弹簧竖向减震装置的研究[J].哈尔滨工业大学学报, 2005, 37(12): 1678-1680, 1697.
    [168]贾俊峰,欧进萍.连续板桥竖向隔震的弹性时程分析[J].西安建筑科技大学学报(自然科学版), 2006, 38(4):463-466.
    [169]孟庆利,林德全,张敏政.三维隔震系统振动台实验研究[J].地震工程与工程振动, 2007, 27(3):116-120.
    [170] Jie Ping Liu et al. A study on 3D isolation effect on high-rise building subjected to near-filed ground motions[J]. Advanced Materials Research, 2010, (150-151): 659-662.
    [171]赵亚敏等.碟形弹簧竖向隔震结构振动台实验及数值模拟研究[J].建筑结构学报, 2008, 29(6):99-106.
    [172]徐赵东,时本强,巫可益,曾晓.粘弹性多维隔减震结构竖向振动台试验与研究[J].中国科学E辑:技术科学, 2009, 39(10):1709-1715.
    [173] Uriu et al. Three-dimensional seismic isolation floor system using air spring and its installation into a nuclear facility[C]. Transactions of 12th SMiRT, K25/2: 363-368, 1993.
    [174] Nakamura, S. Ogiso, M. Suzuki, et al. Development of double metal bellows air pressure spring with lead rubber bearing type 3-dimensional seismic isolator[C]. ASME Pressure Vessels Piping Div Pub. PVP, 2002, 445(2):27-34.
    [175] Suzuki, et al. R&D of 3-D base isolation system (Part4 the fatigue test of base isolation equipment)[C]. Summaries of Technical papers of Annual Meeting Architectural Institute of Japan, 1997.
    [176] Seitaro Ogiso et al. Development of 3D seismic isolator using metallic bellows[C]. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT17) Prague, Czech Republic, August 17-22, 2003, Paper No. K09-3.
    [177] Junji Suhara, Tadashi Tamura, Kazuya Ohta, Yasuo Okada and Satoshi Moro. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Part 1[C]. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT17), Prague, Czech Republic, August, 17-22, 2003, Paper #K09-4.
    [178] Tetsuya Hagiwara, Yasuo Okada, Ryoichiro Matsumoto, Junji Suhara and Satoshi Moro. Study on three-dimensional seismic isolation system for next generation nuclear power plant: rolling seal type air spring[C]. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No.2422.
    [179] Junji Suhara, Ryoichiro Matsumoto, Shinsuke Oguri, Yasuo Okada, Kazuhiko Inoue, Kenji Takahashi. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Part 2[C]. 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT18), Beijing, China, August 7-12, 2005, SMiRT19-K10-3:3381-3391.
    [180] Kageyama et al. Development of three-dimensional base isolation system with cable reinforcing air spring[C]. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17) Prague, Czech Republic, August 17-22, 2003.
    [181] S. Kajii, N. Kunitake, N. Sawa, et al. Three dimensional seismic isolation system using hydraulic cylinder[C]. ASME Pressure Vessels Piping Div Publ PVP, 2002, 445(2): 35-42.
    [182] Kashiwazaki, T. Shimada, T. Fujiwaka and S. Midorikawa. Feasibility tests on a three-dimensional base isolation system incorporating hydraulic mechanism[C]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 2002, 445(2):11-18.
    [183] Takahiro Shimada, Tatsuya Fujiwaka, Satoshi Moro, Shinya Ikutama. Study on three-dimensional seismic isolation system for next-generation nuclear power plant: hydraulic three-dimensional base isolation system[C]. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No.788.
    [184] R. Seigenthaler. Earthquake-proof building supporting structure with shock absorbing damping elements[J]. Schweizerische Bauzeitung Nr.20, 1970.
    [185] K. Staudacher. Structural integrity in extreme earthquakes, the Swiss full base isolation system[C]. 8th World Conference in Earthquake Engineering, San Francisco, CA., 1984.
    [186] F. Tajirian, J. M. Kelly, I. D. Aiken, et al. Elastomeric bearings for three- dimensional seismic isolation[C]. Proceedings, 1990 ASME PVP Conference, ASME PVP-200:7-13, NASHVILLE, TENNESSEE, June, 1990.
    [187] Kenji Kanazawa, Kazuta Kirata and Akihiro Matsuda. Shaking Tabletest of three-dimensional base isolation system using laminated thick rubber bearings[C]. Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15), Seoul, Korea, August 15-20, 1999, PaperNo.K17/3.
    [188] Shuichi Yabana and Akihiro Matsuda. Mechanical properties of laminated rubber bearings for three-dimensional seismic isolation[C]. The 12th World Conference on Earthquake Engineering Jan. 30-Feb. 4, 2000, Auckland, New Zealand, Paper No.2452.
    [189]唐家祥,刘再华.建筑结构基础隔震[M].武汉:话中理工大学出版社, 1993.
    [190]魏陆顺,周福霖,任珉,刘文光,谭平,黄襄云,陆建秋.三维隔震(振)支座的工程应用与现场测试[J].地震工程与工程振动, 2007, 27(3):121-125.
    [191] E. Hudson. Reading and interpreting strong motion accelerograms[J]. Earthquake Engineering Research Institute, 1979, pp:112.
    [192] T. Wu. Prediction of strong ground motion and using small earthquakes[C]. Proceedings of 2nd International Microzonation Conference 2, San Francisco, 1978, 701-704.
    [193] K. Sadigh, C.-Y. Chang, J. A. Egan, F. Makdisi, R.R. Youngs. Attenuation relationships for shallow crustal earthquakes based on California strong motion data[J]. Seismological Research Letters, 1997, 68(1):180-189.
    [194] John Douglas. Ground motion estimation equations 1964-2003[R]. Imperial College of Science, Technology and Medicine, Department of Civil & Environmental Engineering, Research Report No.04-001-SM, 2004.
    [195] J. Douglas. A comprehensive worldwide summary of strong motion attenuation relationships for peak ground acceleration and spectral ordinates (1969-2000). Engineering Seismology and Earthquake Engineering (ESEE) Report 01-1[R]. Civil Engineering Department, Imperial College of Science, Technology and Medicine, London, 2001.
    [196]霍俊荣,胡聿贤.地震动峰值参数衰减规律的研究[J].地震工程与工程振动, 1992, 12(2):1-11.
    [197] N. Ambraseys, J. J. Bommer. The attenuation of ground accelerations in Europe[J]. Earthquake Engineering and Structural Dynamics 1991; 20(12): 1179-202.
    [198] M. Boore, W. B. Joyner, T. E. Fumal. Equations for estimation horizontal response spectra and peak acceleration from Wstern North American earthquakes: A summary of recent work[J]. Seismological Research Letters, 1997, 68(1):128-153.
    [199]王国权. 921台湾集集地震的近断层地面运动特征[D].中国地震局地质研究所, 2001.
    [200] W.B. Joyner, and D. M. Boore. Peak horizontal acceleration and velocity fromstrong motion records including records from 1979 Imperial Valley, Califronia, earthquake[J]. Bulletin Seismological Society America, 1981, 71(6):2011-2038.
    [201] Yoshimitsu Fukushima , Teiji Tanaka. A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan[J]. Bulletin of the Seismological Society of America, 1990, 80(4):757-783.
    [202] Wang, X. Tao. A new two-stage procedure for fitting attenuation relationship of strong ground motion[C]. Proceedings of the Sixth International Conference on Seismic Zonation, USA, 2000.
    [203] Petrovski and A. Marcellini. Prediction of seismic movement of a site: Statistical approach[C]. Proc. UN Sem. on Predict. of Earthquakes. Lisbon, Portugal, 14-18 November. 1988.
    [204] Mukat L. Sharma. Attenuation relationship for estimation of peak ground vertical acceleration using from strong motion arrays in India[C]. 12WCEE. 2000, Paper No.1964.
    [205] Praveen K. Malhotra. Response of buildings to near-field pulse-like ground motions[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(11): 1309~1326.
    [206] Chin - Hsiung Loh, Shiuan Wan, Wen-I. Liao. Effects of hysteretic model on seismic demands: consideration of near - fault ground motions[J]. The Structural Design of Tall Buildings, 2002, 11(3):155-169.
    [207]王东升,冯启民,翟桐.近断层地震作用下钢筋混凝土桥墩的抗震性能[J].地震工程与工程振动, 2003, 23(1):95-102.
    [208]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析[J].地震工程与工程振动, 2005, 25(2):119-124.
    [209] M. Boore, W. B. Joyner and T.E. Fumal. Estimation of response spectra and peak accelerations from western north American earthquake: an interim report[R]. Open-File Report 93-509, United States Geological Survey, Denver, U.S.A., 1993.
    [210]中国地震局震害防御司.汶川8.0级地震未校正加速度记录[M].北京:地震出版社, 2008.
    [211]中华人民共和国建筑部.建筑地震破坏等级划分标准[S]:建抗字第377号. 1990
    [212]国家质量技术监督局.地震现场工作第三部分-调查规范[S]. GB/T18208.3-2000. 2000,中国标准出版社.
    [213] PWRI. Dense instrument array observation of strong earthquake motion[J].Ministry of Construction, Tsukuba, Japan. 1986.
    [214] FACCIOLI. Seismic amplification in the presence of geological and topographic irregularities[C]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Mo., Vol. 11, 1991, 1779-1797.
    [215] CDMG. San Fernando, California earthquake of February 9, 1971 [M]. Edited by Gordon B. Oakeshott. California Division of Mines and Geology, Bulletin 196, 1975.
    [216] BRAMBATI, E. FACCIOLI, E. CARULLI, F. CULCHI, R. ONOFRI, R. STEFANINI, F. ULOIGRAI[M]. Studio de Microzonizzacione Sismica Dell'are do Tarento. Edito da Regione Autonoma Fruili-Venezia, Giulia. 1980.
    [217] M. CELEBI, T. HANKS. Unique site response conditions of two major earthquakes of 1985: Chile and Mexico[C]. Proceedings of International Symposium of Engineering Geology Problems in Seismic Areas, Vol. IV, Bari, Italy. 1986.
    [218] L. WENNERBERG, R. D. BORCHERDT, C. MEULLER, E. SEMBERA, R. WESTERLUND, S. HOUGH. Aftershock observations suggestive of large, linear site amplification at the Cedar Hill Nursery Accelerograph Station, Tarzana, California[R]. Program Abstracts, 89th Annual Meeting, Seismological Society of America, April 5-7, Pasadena, Calif. 1994.
    [219] R. JIBSON. Summary of research on the effects of topographic amplification of earthquake shaking on slope stability[R]. United States Geological Survey, Menlo Park, Calif., Open File Report No.87-268, 1987.
    [220] Akihiko Nishimura. Damage analysis and seismic design of railway structures for Hyogoken-Nanbu (Kobe) earthquake[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4(3):184-194.
    [221] K. C. Chang, D. W. Chang, M. H. Tsai, Y. C. Sung. Seismic performance of highway bridges[J]. Earthquake Engineering and Engineering Seismology, 2000, 2(1):55-77.
    [222] K. C. Chang, Y. L. Mo, C. C. Chen, L. C. Lai, C. C. Chou. Lessons learned from the damaged Chi-Lu cable-stayed bridge[J]. Journal of Bridge Engineering, 2004, 9(4):343-352.
    [223] Satish Nagarajaiah, Xiaohong Sun. Response of base-isolated USC hospital building in Northridge Earthquake[J]. Journal of Structural Engineering, 2000,126(10):1177-1186.
    [224]贾俊峰,欧进萍.近断层竖向地震动峰值特征[J].地震工程与工程振动, 2009, 29(1):44-49.
    [225] M. Morishita et al. The seismic protection of nuclear facilities: main requirements and benefits of using seismic isolation and progress of related R&D in Japan[C]. Proceedings of the 7th International Seminar on Seismic Isolation, Passive Engeryg Dissipation and Active Control of Vibrations of Structures, Assisi, Italy, 2001, Paper #04.
    [226]周福霖.工程结构减震控制[M].北京:地震出版社, 1997.
    [227]日本隔震构造协会.隔震结构入门[M].日本: OHM出版社, 1995.
    [228] C. Mazzotti Ceccoli, M. Savoia. Non-linear Seismic Analysis of Base-Isolation RC Frame Structures[J]. Earthquake Engineering and Structural Dynamics. 1998,28:633-653.
    [229] L. Fujita, et al. High Damping Rubber Bearings for Seismic Analysis of Base-Isolation of Buildings[C]. Trans, Japan Soc. Mech. Eng. 1990. C56:658-666.
    [230] D. M. Feng, T. Miyama, T. Tsugio, et al. A New Analytical Model for the Lead Rubber Bearing[C]. 12WCEE, New Zeland. 2000, Paper No.0203.
    [231] W.H. Robinson. Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes[J]. Earthquake Engineering and Structural Dynamics, 1982, 10(4):593-604.
    [232]张英会,刘辉航,王德成.弹簧手册[M].机械工业出版社, 2003.
    [233] M. Nakashima, et al. Energy dissipation behavior of shear panels made of low-yield steel[J]. International Journal of Earthquake Engineering and Structural Dynamics, 1994, 23(12):1299-1313.
    [234] M. Nakashima, et al. Strain-hardening behavior of shear panels made of low-yield point steel[J]. Journal of Structural Engineering, ASCE, 1995, 121(12), 1742-1749.
    [235] M. Nakashima, et al, Strain-hardening behavior of shear panels made of low-yield point steel, II: model[J]. Journal of Structural Engineering, 1995, 121(12): 1750-1757.
    [236] J. T. Chang, S. C. Wang. 1997. The Development of Ultra Low Yield Strength Plate Shell[R]. China Steel Technical Report, 11.
    [237]李冀龙,欧进萍. X形和三角形钢板阻尼器的阻尼力模型(II)—基于R-O本构关系[J].世界地震工程,2004, 20(2):129-133.
    [238] Ming-hsiang Shih, Wen-pei Sung, Cheer-germ Go. Investigation of newly developed added damping and stiffness device with low yield strength steel[J]. Journal of Zhejiang University (Science), 2004, 5(3):326-334.
    [239] K.C. Tsai, C.C. Chou. Plasticity models and seismic performance of steel plate energy dissipaters[J]. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 1996, 8(1):45-54.
    [240] Keh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong and Yung-Feng Su. Design of steel triangular plate energy absorbers for seismic-resistant construction[J]. Earthquake Spectra, 1993, 9(3):505-528.
    [241] Ray Clough, Joseph Penzien. Dynamics of structures (Third Edition)[M]. Berkeley:Computers & Structures, 2003:377-383.
    [242]宋殿义,蒋志刚,陈北雁.弹性支承梁自振频率分析[J].江苏建筑, 2005, 1:30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700