高层结构三维隔震与抗倾覆的数值模拟及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对于地震动水平分量的隔震研究已经比较成熟,并进入到实际应用阶段。但是由于地震动的多维特性,对于一些位于高烈度区和震中附近的重要建筑和基础设施,研究同时考虑地震竖向分量的三维隔震是非常必要和重要的。已有研究表明,在三维地震动作用下,结构反应比仅考虑一维地震动作用的结构反应大得多。对于高层结构,地震动竖向分量也往往会加剧结构的破坏程度。美国、日本、法国等国家的许多学者,都在不遗余力地进行这项研究,试图解决这一难题。我国学者在相关的理论和实践方面也作了一些研究,近两年提出了几种三维隔震的装置。竖向隔震的理论研究及其装置的研发将反过来推动竖向地震动的研究,进一步促进竖向隔震的实用化,为基础隔震拓宽适用范围。
     隔震结构的抗倾覆问题,尤其是三维隔震结构的抗倾覆问题一直以来都是国内外工程学术研究的一个盲点。当前的结构隔震形式,不管是二维隔震还是三维隔震都是不考虑结构的倾覆,尤其是随着隔震结构向中高层发展,结构的抗倾覆问题逐渐显现出其重要性。从理论上研究如何改造现有隔震支座使其具备抗倾覆能力,研究开发新型的具备抗倾覆能力的隔震支座,并通过实验的方法加以验证。本项研究丰富了建筑隔震的方法和内容,对于提高隔震结构的安全性和舒适度有重要的意义,对进一步推广隔震具有重大的促进作用。
     本文的研究工作主要包括以下几个部分:
     1.在阅读大量国内外文献的基础上,充分了解隔震体系的基本原理和隔震装置的主要类型及性能,掌握国内外专家学者关于高层结构三维隔震与抗倾覆的研究现状,提出本论文的主要研究内容;
     2.利用有限元分析软件对一个安装了三维隔震抗倾覆装置的振动台试验结构模型进行数值模拟;
     3.根据三维隔震技术的原理,考虑地震动的三维特性,研究各种不同的三维隔震形式,比较不同隔震形式的优劣,改造现有的隔震支座使其具备抗倾覆能力,开发了一种新型的具备抗倾覆能力的隔震支座;
     4.建立该新型三维隔震与抗倾覆装置的简化力学模型,采用简化的分析方法对一个算例进行数值模拟加以验证;
     5.阐述本文得出的主要成果并对该课题研究趋势作了展望。
Recently, isolation studies on the horizontal earthquake components of earthquakemotion have become mature, and entered an actual application stage. But beacause of the multi-dimensional properties of the earthquakemotion, as for some important buildings and infrastructures in high-intensity and the epicenter nearby areas, it is very necessary and important to consider three-dimensional base isolation with the vertical seismic component. The existed research shows that the structure reaction under three-dimensional vibration is much more intense than that of one-dimensional earthquake. For high-rise structure, the vertical components of earthquakemotion tend to exacerbate the damage of structure. Many scholars of other countries like America,Japan and France, are conducting the research, trying to solve this problem. Domestic scholars have also done a lot research on the relevant theoretical and practical study , and proposed several three-dimensional base isolation devices in the resent years. The theory study on vertical isolation and device development will push the vertical earthquake research in turn and furtherly promote vertical isolation in practical application, and broaden the application scope of base isolation.
     The resistive overturning problems of isolation structure, especially the three-dimensional base isolation structure has always been a blind spot of domestic and overseas engineering of academic study. The current structure isolation forms, either two-dimensional base isolation or three-dimensional base isolation do not consider the overthrow of the structure. Especially when isolation structure toward to senior development, the resistive overturning problem of structure gradually show its importance. Theoretically study how to transform the existing isolation bearing to possess resistive overturning ability, develope a new kind of isolation bearing with resistive overturning ability, and use experiment method to verify it. This study enriched the methods and contents of architectural isolation. It is of important significance for improving the safety and comfort of the seismic-isolation structure, and having Great stimulative effects on further promote isolation.
     The major studies are as follows:
     1. On the basis reading of literatures, fully understand the basic principle of base-isolation system and the main type and performance of the isolation device,grasp the situation about three-dimensional base isolation and resistive overturning research on high-rise structure, and put forward the main research contents of this paper;
     2. Using finite element analysis software to simulate shaking table test model installed on a 3D isolation resistive overturning device;
     3. According to the principle of three-dimensional base isolation technology, considering 3D characteristics of the earthquakemotion, studying the various 3D isolation form, comparing advantages and disadvantages of different isolation form, transform the existing isolation bearings to possess resistive overturning ability, developeing a new kind of isolation bearing with resistive overturning ability;
     4. Building simplified mechanical model of the new three-dimensional base isolation and resistive overturning device, using a simplified analysis method to simulate the example and verify it;
     5. Expounding the main achievements obtained in this paper and prospecting the research on this subject.
引文
[1]江宜城,唐家祥.多维地震动作用下基础隔震结构地震响应分析[J].工程抗震,2002, 6(2):1~6
    [2] Setareh M.Use of the doubly-tuned mass dampers for passive vibration control[J].Struct Engrg ASCE,1992,40(4):12~21
    [3]苏经宇,曾德明.我国建筑结构隔震技术的研究和进展[J].地震工程与工程振动,2001,21(4):94~100
    [4] Bozorgnia Y,Niazi M,Compbell K W.Characteristics of free-field vertical ground motion in the 1994 Northridge Earthquake[J].Earthquake Spectra,1995,11(4):515~525
    [5] Bozorgnia Y,Niazi M.Distance sealing of vertical and horizontal response spectra of the Loma Prieta Earthquake[J].Journal of Earthquake Engineering and Structural Dynamics,1993,22 (8):695~707
    [6]中国地震局震害防御司.汶川8.0级地震未校正加速度记录[M].北京:地震出版社, 2008
    [7] KAGEYAMA MITSURU,HINO YOSHIHIKO,MORO SATOSHI.Study on three-dimensional seismic isolation system for next generation nuclear power plant:independent cable reinforced rolling-seal air spring[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division (Publication) PVP.San Diego,California USA,2004:49~56
    [8] SUHARA JUNJI,OKADA YASUO TAMURA TADASHI.Development of three dimensional seismic isolation device with laminated rubber hearing and rolling seal type air spring[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division (Publication) PVP.Vancouver,Canada,2002:43~48
    [9]熊世树,陈金凤,梁波,苏经宇.三维基础隔震结构多维地震反应的非线性分析[J].华中科技大学学报(自然科学版),2004,32(12):81~84
    [10]熊世树,唐建设,梁波.装有3DB的三维隔震建筑的平扭-竖向地震反应分析[J].工程抗震与加固改造,2004, (05):17~22
    [11]魏陆顺,周福霖,任珉.三维隔震(振)支座的工程应用与现场测试[J].地震工程与工程振动,2007,27(03):121~125
    [12] Kitamura S, Morishita M, Moro S. Study on vertical component seismic isolation system with coned disk spring [C]// Pressure Vessels and PipingConference(PVP2004),ASME.USA:San Diego,California.2004,486(2):21~28
    [13] Kitamura S,Okamura S,Takahashi K.Experimental study on vertical component seismic isolation system with coned disk spring[C]//Pressure Vessels and Piping Conference(PVP-005),USA:Denver,Colorado.2005,8: 175~181
    [14] Seigenthaler R.Earthquake-proof Building Supporting Structure with Shock Absorbing Damping Elements,Schweizerische Bauzeitung, No.20:211~219
    [15] Staudacher K .Structural Integrity in Extreme Earthquakes .The Swiss Full Base Isolation System,8th World Conference In Earthquake Engineering, San Francisco,CA,pp123~126
    [16] Huffmann G K. Full Base Isolation for Earthquake Protection by Helical Springs and Viscodampers,Nuclear Engineering and Design,1985,Vo1, 84, No.3
    [17] Ohbayshi Corporation. Ohbayshi Base Isolation System and Base Isolated Buildings,Technical Report
    [18] Feuillade G and Richard P. Evolutions des Dispositifs Parasismique du Batiment Reacteur du Projet SPX2 Depuis 1980 et Consequences Sur les Chargement du Bloc Reacteur. ler Colloque National de Genie Parasismique, St-Remy-Les-Chevreuse,France
    [19] Fujita, T.; et al. A three-dimensional isolation floor for earthquake and ambient micro-vibration using multi-stage rubber bearings (1st report, tests for the performance of the floor by a large-scale experimental model), Transactions of the Japan Society of Mechanical Engineers, Part C, v 53, n496, Dec. 1987: 2521~2528
    [20] Wu T, Chang Y W, Seidensticker, R W. Benefits of Vertical and Horizontal Seismic Isolation for LMR (Liquid Metal Reactor) Nuclear Reactor Units. Performer:Argonne National Lab., IL. Sponsor: Department of Energy, Washington, DC. 1988.18p. Report: CONF一880661~6
    [21] Kashiwazaki, A.; Tanaka, M.; Tokuda, N.. Shaking test of seismic isolation floor system by using 3-dimensional isolator. Proceedings, Ninth World Conference on Earthquake Engineering, 1989: 845~850
    [22] F F Tajirlan, J M Kelly, I D Aiken, et al.Elastomeric Bearing of Three-Dimensional Seismic Isolation. Proceedings, 1990 ASME PVP Conference, ASME PVP-200,Nashville, Tennesse,1990
    [23] Kelly J M, Aiken I D and Tajirian F F. Mechanics of High Shape Factor Elastomeric Seismic Isolation Bearings, Report No. UCB/EERC-90/01 ,University of California,Berkeley, CA,1990
    [24] Fujita T, Nakajima K, Sugimoto H, et al, A 3-dimensional seismic isolation floor using a conversion mechanism of vibration direction for vertical isolation. TRANS.TAPAN SOC. MECH. ENG (SER. C),1990, vol. 56(526):1377~1380
    [25] Saadeghvaziri M and Foutch D A. Dynamic Behavior of R/C Highway Bridges Under the Combined Effect of Vertical and Horizontal Earthquake Motions. Earthquake Engineering and Structural Dynamics, 1991,20:535~549
    [26] Shingu Kiyoshi, Fukushima, Kinya.Seismic isolation and fuzzy vibration control of shell structure subjected to vertical seismic forces.Nippon Kikai Gakkai Ronbunshu,C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C [NIPPON KIKAI GAKKAI RONBUNSHU C HEN], 1994,Vo1. 60(577):2999~3005
    [27] Tokuda N, Kashiwazako A and Omata I. Three-Dimensional Base Isolation System for FBR Reactor Building .SMiRT 13, 1995, Div. K:513~518
    [28] T.Fujita; et al. Int.Behavior of Base-Isolated Buildings in the 1995 Great Hanshin Earthquake and Overview of Recent Activities on Seismic Isolation in Japan Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, Santiago, Chile, 1995
    [29] Fujita S , Kato E , Kashiwazaki A et al.Shake Table Tests on Three-Dimensional Vibration Isolation System Comprising Rubber Bearing and Coil Spring, Proceedings of 11th World Conference on Earthquake Engineering, 1996
    [30] K Kanazawa,A Matsuda and K Hirata.Three Dimensional Base Isolation System on Laminated Thick Rubber Bearings.CRIEPI Report,July 1997
    [31] K Hirata,S Yabana,K Kanazawa,et al.Effects of applying three-dimensional seismic isolation system on the seismic design of FBR,CRIEPI Report,July 1997
    [32] B. Yoo; et al. Applications and Development in Base Isolation and Passive Energy Dissipation for Civil and Industrial Structures in Korea. International Post-SMiRT Conference Seminar in Cheju, Korea, 1999
    [33]松田昭博,矢花修一.三维隔震叠层厚橡胶支座力学性能与中心孔和中间钢板的关系[C].日本建筑学会学术讲演梗概集.1999. B-2, pp.555.
    [34] Umeki K,Kajii Shinichiro,Kunitake Nobuhiro,et.al.Three dimensional seismic isolation system using hydraulic cylinder.American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP.2002,Vol.445(2):35~42
    [35] Kashiwazaki Akihiro,Fujiwaka Tatsuya,Shimada Takahiro,et al.Feasibility tests on a three-dimensional base isolation system incorporating hydraulic mechanism.American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP.2002,Vol.445(2):11~18
    [36] Lu L-Y,Chang W-N.Effect of vertical ground motion on structures with frictional seismic isolators.National Taiwan University,Proceedings of the First Structural Conference on Structural Stability and Dynamics(Taiwan),2000:623~628
    [37] S Yabana. Development of Thick Rubber Bearing for Three-Dimensional Seismic Isolation, Proc. of 12th World Conference on Earthquake Engineering. 2000:104~106
    [38] A Matsuda and S Yabana.Evaluation of Mechanical Properties of Laminated Rubber Bearings Using Finite Element Analysis . Seismic Engineering-2000,2000,PVP-Vol.402-1,ASME,pp.95~102
    [39] Morishita M.Development of seismic isolation system in vertical direction.Coupled response analysis of reactor building and common deck isolation system.Performer:Power Reactor and Nuclear Fuel Development Corp.,Tokyo(Japan).Apr 1997.135p.Report:PNC-TN-9410-97-032
    [40] Teramura A,Yoshihara J,Nakamura M,et al.Development of Base Isolation System for Earthquakes and Micro-vibrations Using Laminated Thick Rubber Bearings(Part 2)-Vertical Damper Device and Its Dynamic Characteristics
    [41] A Parvin and Z Ma.The Use of Helical Spring and Fluid Damper Isolation Systems for Bridge Structures Subjected to Vertical Ground Acceleration,Electronic Journal of Structural Engineering,2001,No.2:98~110
    [42] Kageyama Mitsuru, Iba Tsutomu, Somaki Takahiro, et al. Development of Cable Reinforced 3-dimensional Base Isolation Air Spring. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP. 2002 (2):19~25
    [43] Bujar Myslimaj, Mitsumasa Midorikawa et al. Seismic Behavior of a Newly Developed Base Isolation System for Houses. Journal of Asian Architecture and Building Engineering. 2002 (2):17~24
    [44] Kitamura S,Morishita M.Design method of vertical component isolation system,American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP.2002,Vol.445(2):55~60
    [45] Suhara Junji,Okada Yasuo,Tamura Tadashi,et al.Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring.American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication)PVP.2002,Vol.445(2):43~48
    [46]熊世树.三维基础隔震系统的理论与试验研究[D].华中科技大学博士学位论立.2004.
    [47]孟庆利,林德全,张敏政.三维隔震系统振动台实验研究[J].地震工程与工程振动. 2007(3):116~120
    [48]魏陆顺,周福霖等.三维隔震新技术保障地铁平台上部安全[J].建设科技. 2007(9):38~39
    [49]石琼辉.三维隔震(振)橡胶支座的设计与应用[D].广州大学硕士学位论文.2005.
    [50]孟庆利.基底隔震混合控制和三维隔震系统研究[D].中国地震局工程力学研究所博士学位论文.2005.
    [51]徐忠华.应用三维隔震支座的网壳结构地震响应分析[D].辽宁工程技术大学硕士学位论文.2006.
    [52]杨彦飞.三维隔震桥梁结构的地震反应分析研究[D].广州大学硕士学位论文.2007.
    [53]崔利富.立式储罐三维基础隔震体系动响应分析研究.[D].大庆石油学院硕士学位论文.2008.
    [54]赵亚敏.苏经宇.陆鸣. 3DIB三维基础隔震模型振动台试验研究[J].建筑结构学报(增刊2).2009.10:105~111
    [55]赵亚敏.三维基础隔震结构体系理论与振动台试验研究[D].北京:北京工业大学, 2007.
    [56]张永山,颜学渊,王焕定,魏陆顺,赵桂峰.三维隔震抗倾覆支座力学性能试验研究[J].工程力学.2009.6:124~129
    [57]颜学渊,张永山,王焕定,魏陆顺.三类三维隔震抗倾覆支座力学性能试验研究[J].振动与冲击.2009,28(10):49~53
    [58]魏陆顺.组合隔震与三维隔震_振_理论及试验研究[D].哈尔滨工业大学博士学位论文.2009.
    [59]赵亚敏,苏经宇,陆鸣.组合式三维隔震支座力学性能试验研究[J].工程抗震与加固改造.2010,32(1):57~62
    [60] Kelly J M. Earthquake Resistant Design with Rebber Second Edition. London, Springer Verlag London Limited, 1997
    [61] Gloria Terenzi. Dynamics of SDOF Systems with Nonlinear Viscous Damping.Journal of Engineering Mechanics. 1999, 125(8): 956~963
    [62] Li Zhongxi, Zhou Xiyuan. Vibration Property and Earthquake Response Analysis method for Regular Isolated Building. Earthquake Engineering and Engineering Vibraton. 2002, 22(2): 33~41
    [63]王铁英.橡胶垫隔震结构的抗倾覆研究[D].哈尔滨:哈尔滨工业大学, 2004.
    [64]付伟庆.磁流变智能隔震与橡胶垫高层隔震的理论与试验研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [65]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究[J].建筑结构学报. 2003, 24(2):14~19
    [66]李宏男.我国工程结构抗震研究的新进展[J].沈阳建筑工程学院学报, 1992,8(2):185 ~ 189.
    [67]李宏男,王苏岩,贾俊辉.采用基础摩擦隔震房屋高宽比限值的研究[J].地震工程与工程振动,1997,17(3):73~76
    [68]日本免震构造协会.(图解)隔震结构入门[M].叶列平译.北京:科学出版社,1998
    [69] Ceccoli,Mazzotti C,Savoiam M.Non -linear Seismic Analysis of Base-Isolated RC Frame Structures[J].Earthquake Engineering and Structural Dynamics,1998,28(2):633-653.
    [70]熊仲明,王清敏,丰定国等.多层基础滑移隔震房屋滑动抗倾覆稳定性判定[J] .西安建筑科技大学学报,1998, 30 ( 3) : 288 ~ 290
    [71] Chung Woo-Jung,Yun Chung-Bang,Kim Nam-Sik.Shaking table and seudodynamic tests for the evaluation of the seismic performance of base-isolated structures[J].J of Engineering Structures,ASCE,1999,21(4):365~379
    [72] Takenaka Corporation. Construction Completed of "Park City Suginami," the World's Tallest Base-Isolated Superhigh-Rise Condominium, a reverse concept for improved seismic response.
    [73] Takenaka Corporation. Hybrid Base Isolation System Used in Superhigh-Rise Office Building for the First Time in the World, a reverse concept for improved seismic response.
    [74]吴香香,孙丽,李宏男.竖向地震动对隔震结构高宽比限值的影响分析[J].沈阳建筑工程学院学报, 2002, 18( 2) : 81 ~ 84
    [75]吴香香,李宏男.竖向地震动对基础隔震结构高宽比限值的影响[J].同济大学学报, 2004, 32 ( 1) : 10~ 14
    [76]谷伟,刘斌.橡胶垫基础隔震结构考虑竖向地震作用高宽比限制研究[J].工业建筑, 2004, 34 ( 10) : 17~ 20
    [77]祁皑,范宏伟.基础隔震结构高宽比限值研究[J].建筑结构学报. 2004,25(6):52~58
    [78]王铁英.橡胶垫隔震结构的抗倾覆研究[D].哈尔滨:哈尔滨工业大学. 2004
    [79]刘文光,杨巧荣,周福霖,等.大高宽比隔震结构地震反应的实用分析方法[J] .地震工程与工程振动, 2004, 24( 4) : 115 ~ 121
    [80]王伟刚,盛宏玉.隔震结构考虑动力影响的抗倾覆研究[J] .合肥工业大学学报, 2005, 28 ( 1) : 68~ 70
    [81]付伟庆,刘文光,魏路顺.大高宽比隔震结构模型水平向振动台试验[J].沈阳建筑大学学报. 2005, 21(4):320~324
    [82]祁皑,林云腾.添加钢筋提高隔震结构高宽比限值的研究[J].地震工程与工程振动. 2005, 25(1):120~125
    [83]许宏洲,王全凤.隔震结构抗倾覆可靠度影响因素分析[J].华侨大学学报. 2005, 26(2):156~160
    [84]张永山,王焕定,颜学渊.改进型三维隔震装置[P].中国: ZL200620064041.8, 2006.
    [85]张永山,王焕定,颜学渊.新型三维隔震装置[P].中国: ZL200620064043.7, 2006.
    [86]张永山,王焕定,颜学渊.一种具有抗拉作用的叠层橡胶隔震支座[P].中国: ZL200620064042.2, 2006.
    [87]王铁英,王焕定,刘文光,张永山.大高宽比橡胶垫隔震结构振动台试验研究(1)[J].哈尔滨工业大学学报2006,38(12):2060~2064
    [88]王铁英,王焕定,刘文光,张永山.大高宽比橡胶垫隔震结构振动台试验研究(2)[J].哈尔滨工业大学学报2007,39(2):196~200
    [89]祁皑,范宏伟.基于结构设计的基础隔震结构高宽比限值的研究[J].土木工程学报. 2007, 40(4): 13~20
    [90]颜学渊,张永山,王焕定,魏陆顺.高层结构三维基础隔震抗倾覆试验研究[J].建筑结构学报2009,30(4):1~8
    [91]颜学渊,张永山,王焕定,魏陆顺.三维隔震抗倾覆结构振动台试验[J].工程力学.2010,27(5):91~96
    [92]颜学渊.钢铅组合耗能器和高层三维隔震抗倾覆系统研究[D].哈尔滨:哈尔滨工业大学. 2009
    [93]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社. 1996
    [94]徐挺.相似理论与模型试验[M].中国农业工业出版社. 1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700