高烈度区不同减震结构的对比分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高烈度区高层建筑的抗震研究是防灾减灾领域中需要重点解决的方向之一。目前,传统的结构抗震设计方法都是通过加强结构使其达到抗震设防目标。这种“以强制强”的设计方法并不能有效地降低结构的地震反应,而且费用较高。为了解决高烈度区高层结构难以达到抗震性能要求的问题,结合隔震技术和耗能减震技术的特点,对高烈度区某框剪商住楼采用隔震和消能减震装置展开了相关研究,主要包括:
     1.对高烈度区某高层框剪商住楼进行9度小震和中震的下的设计分析。结果表明,将部分柱改用型钢砼柱可使结构满足9度小震下的性能指标,中震下部分柱的轴力会从受压进入受拉状态,且在三向地震作用下结构内力明显增大。因此,随着结构高度的增加,对于高烈度区结构的设计,框架柱受拉破坏问题值得注意。
     2.鉴于高烈度区普通结构在抗震设计中存在着截面尺寸偏大,而承载力仍难以满足抗震要求的问题,对高烈度区某高层框剪商住楼采用隔震支座和阻尼器的混合隔震方案进行设计对比分析。结果表明,采用混合隔震后,隔震层上部结构可以按抗震设防烈度降低一度进行设计;采用自行设计的抗拉隔震支座能够很好控制结构产生的拉力,使得隔震支座的拉应力在罕遇地震作用下可控制在规范限制范围内;采用粘滞阻尼器能有效的降低上部结构地震响应且较好控制罕遇地震下隔震层的位移。
     3.对高烈度区某高层框剪商住楼分别设置粘滞阻尼器、铅粘弹阻尼器、防屈曲耗能支撑以及去剪力墙加防屈曲支撑和粘滞阻尼器的模型与普通无控结构模型进行对比分析研究。结果表明:采用不同减震方案后结构层间位移角、楼板应力、剪力墙应力、柱子的弯矩和剪力均有不同程度的减小,且大震下各减震装置均能耗散大量能量,说明其减震效果较显著;此外,粘滞阻尼器对结构的各响应控制效果最好,高烈度区此类结构的的抗震设计时应优先考虑使用粘滞阻尼器。
     4.对某一具体工程采用混合隔震、消能减震结构和普通结构进行经济性对比分析。结果表明,普通抗震结构通过增大截面提高结构的强度和刚度使得其费用较高;而隔震和耗能减震结构截面尺寸和配筋量均相对减小;采用基础隔震和耗能减震设计,初始造价费用均低于普通抗震结构。因此采用隔震和耗能减震的结构具有良好的经济性特征。
Seismic research of the high-rise buildings in highly seismic region is one of the direction which need to be resolved in the disaster prevention and mitigation field.At present,the seismic design method of traditional structure is enable the structure have enough strength,stiffness and ductility to achieves the aseismatic fortify goals.This design methods of strengthen structure can't reduce the earthquake responses effectively, and cost is high.In order to solve the problem of the high-rise building hard to reach the requirements of seismic performance in the highly seismic region.Combined with technical characteristics of isolation and energy dissipation technology.The mian works and conclusions are as follow:
     1. A frame shear wall structure in the seismic fortification intensity of nine is analyzed.Design problems of structure in highly seismic region should be paid attention to. Due to the ductility and seismic performance of the composite structures.It meet the performance index under the frequent earthquake.The axial force of part of the columns are from compressed into tensile condition under the middle earthquake.Internal force of structure are increased under the earthquake effect.The force of the component in the structure design of highly seismic region should be attention.
     2.Based on the disadvantages of ordinary anti-seismic design in the highly seismic region.Such as the big section size and bearing capacity of seismic requirements can't be satisfied.Mixed isolation design is used to design a frame shear wall structure in these area.The analysis results show that the seismic fortification intensity of the the superstructure can be reduced by one degree. The isolation bearing stress of the high-rise building in rare earthquake is limited by the code. Viscous dampers can reduce the earthquake response of the upper structure.And the isolation layer displacement is limited by the code effectively.
     3.A frame shear wall structure with viscous dampers, lead-viscoelastic dampers, buckling-restrained braces and frame-braces are analyzed. The analysis results show that structure interlayer displacement angle, floor stress, shear wall stress, the bending moment and shear of the column are reduced on different degree when used the damper. A lot of energy is dissipationed under the rare earthquake when used the dampers.These effect of reduce earthquake is remarkable. In addition, the control effect of viscous dampers is best. Viscous dampers should be preferred used in the aseismic design of such structure in high intensity area.
     4. The different structure schemes are used in a specific project .Through the different structure schemes for economic analysis. The strength and rigidity are improved by increasing the structure of section in ordinary anti-seismic structure. The cost of materials is high.The section and reinforcement of base-isolated and energy dissipation structure is decreased.All the initial cost of base isolation and energy dissipation structures are lower than anti-seismic structure. Therefore, these two technology are economical technology reduced the earthquake.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [2]叶列平译.图解隔震结构入门.科学出版社,1998
    [3]张敏政.近年地震震害的几点启示[J].工程抗震,2001,86 (l):11-15
    [4]张雷明,刘西拉.钢筋混凝土结构倒塌分析的前沿研究[J].地震工程与工程振动,2003,23(3)47-52
    [5]崔鸿超,日本兵库县南部地震震害综述[J],建筑结构学报,1996,17(2):2-13
    [6] Zayas, V.A., Low, S. S. and Mahin, S. A.. A simple pendulum technique for achieving seismic isolation. Earthquake Spectra.1990(6):317~334
    [7] ZHOU, F.L. Seismic isolation of Civil Buildings in P.R.China. Progress in Structural Engineering and Materials. 2002 Vol.3, No.3
    [8]刘文光译.隔震结构设计.地震出版社, 2006.
    [9]何永超,邓长根,曾康康.日本高层建筑基础隔震技术的开发和应用[J].工业建筑, 2002, 32(5): 29-31
    [10] Jenn Shin Hwang, Ting Yu Hsu.Experimental study of isolated building under triaxial ground excitations[J].Journal of structural Engineering,ASCE, 2000(126):879-826
    [11] Takenaka Corporation.Japan’s first“flat slab base-isolated high-rise condominium building”under construction[EB/OL].http:// Takenaka_e/news_e/pr0108_01.htm.2001
    [12] Jangid R.S.and Kelly J.M.(2001)Base isolation for near-fault motions.Earthquake Engineering&Structural Dynamics,30(5):691-707
    [13] AL-Hussaini,T.M.Zayas,et al..“Seismic isolation of Multi-story Frame Structures Using Spherical Spherical Sliding isolation System”[R].Rep.No.NCEER-94-007,National Center for Earthquake Engineering Research.1994.State of University of New York at Buffalo.
    [14] Kageyama M,Lba T,Umekl K,et al.Development of three dimensional base isolation system with cable reinforcing air spring[C/OL]//Transactions of the 17 th international Conference on Structural Mechanics in Reactor Technology.Prague,Czech Republic,August 17-22,2003[2008-05-07].http://www.iasm irt.org/SM iRT17/k09-5.pdf
    [15] Masahiko Higashino, Shin Okamoto. Response Control and Seismic isolation of Buildings, 2006:63~87
    [16] Morlshlta M,Lnoue K,Fujlta T.Development of three dimensional seismic isolation systems for fast reactor application[J].Journal of Japan Association for Earthquake Engineering,2004,4(3):305-310
    [17] Hussaln S.M.and Al Satarl M.H.(2007)Vlscous-Damped Seismic isolation System for a Near-Fault Essential Services Facility.10th World Conference on Seismic isolation,Energy Dissipation and Active Vibrations Control of Structures,Lstanbul,Turkey,May 27-30,2007
    [18]浅野美次、山本裕.日本POLA艺术博物馆的隔震结构和玻璃天窗[J].建筑钢结构进展.2008,10(3):30-35.
    [19] Providakls C.P. Effect of LRB isolators and supplemental viscous dampers on seismic isolatedbuildings under near-fault excitations[J]. Engineering Structures,2008,30(5):1187–1198
    [20] Mohamed H. Al Satarl, Jamal A. Abdalla. Optimization of a base-isolation system consisting of natural rubber bearings and fluid viscous dampers[C]. 11 th World Conference on Seismic isolation, Energy Dissipation and Active Vibration Control of Structures, Guangzhou, China, 2009,Nov17-21
    [21] Zhou F.L.“Seismic isolation of Civil Building in P.R.China”[J].Progress in Structural Engineering and Material.2002.Vol.3,No.3.
    [22]吕西林、朱玉华等.组合基础隔震房屋模型振动台试验研究明.土木工程学报.2001.Vol.34,No.2,pp.43-48.
    [23]王曙光,刘伟庆,冯陈,宿迁市府苑小区某商住楼隔震设计[J].世界地震工程,2001,17(4):139-142
    [24]朱玉华,吕西林,施卫星等.多向地面运动作用时铅芯橡胶隔震房屋模型振动台试验研究[J].试验研究,2001,(1):34-37
    [25]吕西林,朱玉华.滑移摩擦隔震系统在多向地面运动作用下的试验研究[J].地震工程与工程振动,2002(6):12-15
    [26]刘伟庆,董军等.宿迁市文体综合馆基础隔震设计[J].建筑结构学报,2003,24(2):20-24
    [27]刘伟庆,王曙光,林勇.宿迁市人防指挥大楼隔震设计方法研究[J].建筑结构学报,2005,26(2):81-86
    [28]刘伟庆,程华群.宿迁开发区商务中心基础隔震分析报告[R].南京:南京工业大学建筑技术发展中心, 2006
    [29]孟庆利,林德全,张敏政.三维隔震系统振动台实验研究[J].地震工程与工程振动,2007,27(3):116-120
    [30]魏陆顺,周福霖,任珉,等.三维隔震(振)支座的工程应用与现场测试[J].地震工程与工程振动,2007,27(3):121-125
    [31]肖从真,薛彦涛,曾德民,李永双.成都凯德风尚高层建筑隔震设计与研究[J].建筑结构,2009,36(6):93-97
    [32]颜学渊,张永山等.高层结构三维基础隔震抗倾覆试验研究[J]建筑结构学报,2009,30(4):1-8
    [33]王光远.高耸结构风振控制高耸结构学术交流会,1980.
    [34]周云,邓雪松等.中国(大陆)耗能减震技术理论研究、应用的回顾与前瞻[J].工程抗震与加固改造,2006,28(6):1-15
    [35] Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. State University of New York at Buffalo, USA, 1997
    [36] Robert D Hanson, Lan D Alken, Douglas K Nims, et al. State-of-the-art and State-of-the- practice in Seismic Energy Dissipation. Proceeding of ATC-17-1 on Seismic isolation[J], Passive Energy Dissipation and Active Control. 1993, 2
    [37] Krawinkler, H., and Nassar, A.A., Seismic Design Based on Ductility and Cumulative Damage Demands and Capacities’Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Edited by Fajfar and Krawinkler, Elsevler. Applied Science, New York, 1992
    [38] Anli K.Chopra, Rakesh K. Goel. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of linear lastic Structures: SDOF Systems. PEER-1999/02, University of California, Berkeley,1999.
    [39]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):9-15
    [40] J M Tembulker, J M Naw. linear lastic Modeling and Seismic Energy Dissipation[J]. Journal of Structural Engineering. 1987, 113(6)
    [41]周云,刘季.耗能减震技术研究与应用进展[J].世界地震工程,1995(1):20-28
    [42]刘季,周云.结构抗震控制的研究与应用状况(上)—基础隔震与耗能减震技术[J].哈尔滨建筑大学学报,1995,28(4):1-10
    [43]周锡元,吴育才.工程抗震的新发展[M].北京:清华大学出版社;广州:暨南大学出版社, 2002
    [44] Ou J.P, Wu bo and Soong T.T. Recent Advances in Research on and Application of Passive Energy Dissipation Systems[J].地震工程与工程振动,1996,16(3):72-96
    [45]周云,徐彤,俞公华等.耗能减震技术研究及应用的新进展[J].地震工程与工程振动,1999,19(2):122-131
    [46] Reinborn AM,Li C and Construction M C.Experimental and analytiea investigation of seismic retrofit of structures with supplemental parti-fluid Viseous damping deviees[R].NCEER-95-0001,Static Universiy of New York,1995.
    [47] Makris N Constantinou,MC.Viscous DamPer:Testing,Modeling and Application in Vibration of Seismic isolation[R].NCEER Rep.90-0028,StateUniv.of New York at Baffalo,Baffalo,N.Y,1990.
    [48] Crosby P,Kelly J M,Singh J.Utilizing Viscoelastic Dampers in the Seismic Retrofit of a Thirteen Story Steel Frame Building.In:Structures CongressⅫ,Atlanta,GA,1994:1286-1291
    [49] A reporttoT.Y.Lin international and theGolden Gate Bridge District Pre-qualifie ation Testing of Viscous Damping for the Golden Gate Bridge Seismic Rehabilitation Project[R].Report No EERCL 95-03,Earthquake Engineering Research Center University of California at Barkeley.December27.
    [50] NiwaN,Kobori T, Takahashi M, Hatada T,Kurino H and TagumiJ.Passive seismic response Controlled high-rise building with high damping device.Earthquake Engineering and Structural Dynamics,1995,24(5):655-671.
    [51] Takenaka Corporation. Maintenance-free vibration-control damper developed using world-first new“zinc-aluminum”alloy,http://www. takenaka. co.jp/takenake-e/news-e/pr0102/m0102-03.htm,2001
    [52] Ahmad Rahlmlan,Enrique Martinez Romero,Standing Tall for the Torre Mayor Project at Mexico City[J].Modern Steel Construction,2003,4:1-8.
    [53] Alken L,Klmura L.The Use of Buckling-restrained Braces in the United States.Proceedings of the Japan Passive Control Symposium.Yokohama:Tokyo institute of Technology,2001
    [54] Sablil R,Alken L U S.Buliding Code Provisions for Buckling-Restrained Braced Frames:Basis and Development.Proceeding of the 13th World Conference on Earthquake Engineenring.Vancouver:2004:1828
    [55] Reina.P. and Normlie,D.(1997).Fully braced for seismic survival.Engineering News Record.July 21,34-36
    [56] Clark,P.,Alken,L.,Kasal,K.,Ko,E.,Kimura,L.,(1999).Design procedures for buildings incorporating hysteretic damping devices.Proceedings,69th Annual Convention,SEAOC,Sacramento,CA
    [57] Takenaka Corporation. An effective earthquake resistance technology for new or existingbuildings,http://www.takenaka.co.jp/takenaka-e/techno/n10-unbond/n10-unbond.htm,2001.
    [58] Takenaka Corporation.“Vibration resistant strengthening work while continuing operations”to be undertaken at the Hiroshlma Green Building using the“vibration-control unbond brace method with ultralow yield point steel”,http://www.takenaka.co.jp/takenaka-e/news-e/pr9809/m9809-03-e.htm,2001.
    [59] Parry Brown, Lan D Alken,and Jeff F Jafarzadeh.Seismic retrofit of the Wallace F.Bennett Federal Buliding, Modern Steel Construction, August 2001.
    [60]哈敏强.普通和新型抑制屈曲支撑的力学性能及其应用研究[D].上海:同济大学, 2004.
    [61]蔡益燕,郁银泉,屈曲约束支撑和制震设计[A].高层建筑抗震技术交流会论文集(第九届)[C].厦门, 2003: 7-10
    [62]瞿伟廉,程懋堃,毛增达等.设置粘弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法.建筑结构学报,1998,19(3):42-49
    [63]王亚勇,薛彦涛,欧进萍,吴斌等.北京饭店等重要建筑耗能减振抗震加固设计方法[J].建筑结构学报,2001.22(2):35-39
    [64]欧进萍.吴斌.龙旭.王亚勇.薛彦涛等七京饭店耗能减振抗震加固分析与设计时程分析法[J].地震工程与工程振动,2001,21(4):82-87
    [65]北京火车站抗震加固与改造设计项目组,北京火车站抗震鉴定与加固技术[J],工程抗震,2003(1):25-29
    [66]程文瀼,隋英杰,陈月明等.宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究.建筑结构学报,2000,21(3):30-35
    [67]邓洪洲,朱松晔,陈亦等.大跨越输电塔线体系风振控制研究.建筑结构学报,2003,24(4):60-64
    [68]阴毅,周云,梅力彪.潮汕星河大厦结构消能减震有限元时程分析.工程抗震与加固改造,2005,27(3):35-40.
    [69]陈道政,李爱群,张志强,叶正强.西安某科研楼顶钢结构塔楼风振控制的研究[J],钢结构,2004,19(4):41-46
    [70]陆伟东,刘伟庆,陈瑜.宿迁市建设大厦耗能减震设计[J],地震工程与工程振动,2004,24(5):92-96
    [71]王曙光,刘伟庆.宿迁市教育大厦耗能减震设计研究[J].防灾减灾工程学报,2005,25(1):63-67
    [72]张微敬,钱稼茹,沈顺高,朱丹.北京A380机库采用粘滞阻尼器的减振控制分析[J]建筑结构学报,2009,30(2):1-7
    [73]陈永祁,曹铁柱.液体黏滞阻尼器在盘古大观高层建筑上的抗震应用[J].钢结构, 2009,3(1):39-46.
    [74]程蓓,李胜林,申林,李文峰,胡天兵,张拥军.耗能减震支撑体系研究与在高烈度区的工程应用.建筑结构.2008,38(12):53-55
    [75]蔡克铨,赖俊维.挫屈曲制支撑之原理及应用[A],防灾减灾工程研究与进展[C],北京:科学出版社,2005
    [76]罗开海,王亚勇,荣维生.屈曲约束耗能支撑力学性能分析[J].工程抗震与加固改造,2005,29(2):23-28
    [77]吴耀辉,李爱群,张志强等.银泰中心主塔楼方案的抗震分析[J].建筑结构,2004,34(7):3-6.
    [78]芮明倬,李立树,贺军利等.屈曲约束支撑在上海古北财富中心高层钢结构中的应用研究[J].建筑结构,2007,37(5):25-28
    [79]叶列平,马千里,程光煜等.西部机电科技商务中心钢结构耗能减震计算分析[J].工程抗震与加固改造.2005,27(3):20-26
    [80]许秀珍,崔鸿超.北京通用国际时代广场1#楼防屈曲耗能支撑设计[A].高层建筑抗震技术交流会论文集(第十届)[C].广州: 2005
    [81]程光煜,叶列平,徐秀珍,崔鸿超.防屈曲耗能钢支撑的试验研究[J].建筑结构学报,2008,29(1):31-39
    [82]程光煜,叶列平,徐秀珍,崔鸿超.防屈曲耗能钢支撑设计方法的研究[J].建筑结构学报,2008:29(1):40-48
    [83]张腾飞,防屈曲支撑框架结构设计及耗能减震效果分析研究[D].北京:北京工业大学硕士学位论文,2009
    [84] Tsa,l K. C. and La,l J.W.A study of buckling restrained seismic braced frame, Structural Engineering, Chinese Society of Structural Engineering,17(2) (ln Chlnese)
    [85]党育,杜永峰等.基础隔震结构设计及施工指南[M].北京:中国水利水电出版社,2007.
    [86] Trevor E Kelly. Design Duildelines: Based isolation of structures. Revision 0:July 2001. http://www.holmesgroup.com
    [87] Naelm F, Kelly J M. Design of seismic isolated structures:from theory to practice[M]. NewYork: John Wiley and Sonsinc, 1999.
    [88]马良喆,陈永祁,赵广鹏,银泰中心主塔楼采用液体粘滞阻尼器的减振设计,建筑结构;J. Buliding Structure, Vol. 39,23-28. 2009
    [89]曹铁柱,陈永祁,超高层建筑-盘古大观安置抗震粘滞阻尼器的经济性能分析;第十二届高层建筑抗震技术交流会论文集,2009,PP600
    [90]陈永祁,高正博阳,抗震阻尼器在墨西哥Torre Mayor高层建筑中的应用;《钢结构》杂志2009(10)
    [91] Samuele infantl, Jamleson Robinson, Rob Smith, Viscous Dampers for High-Rise Buliding, 14WCEE
    [92]周福霖,工程结构减震控制[M].北京,科学出版社,1998,9-12
    [93]周云.耗能减震加固技术与设计方法[M].北京:科学出版社,2006
    [94]周云.摩擦耗能减震结构设计[M].武汉:武汉理工大学出版社,2006
    [95]周云.粘弹性阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006
    [96]周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006
    [97]周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社,2006
    [98]周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007
    [99]张中,高烈度区多层钢筋混凝土框架结构的位移控制[J],工程抗震与加固改造,2008,30(1):78-81
    [100]方鄂华,钱嫁茹.我国高层建筑抗震设计的若干问题明.土木工程学报,1999,32(2):3-8.
    [101]龚炳年,郝锐坤,赵宁.钢-混凝土混合结构模型动力特性的试验研究[J1.建筑结构学报,1995,16(3):37-43.
    [102]武敏刚,吕西林.超高层外钢框架-混凝土核心筒混合结构研究概况LC].现代土木工程的理论与实践,河海大学出版社,2003.
    [103] JGJ3-2002,高层建筑混凝土结构技术规程[s].北京:中国建筑工业出版社,2002.
    [104]白国良,楚留声,李晓文.高层框架-核心筒结构抗震防线问题研究.西安建筑科技大学学报,2007,39(4):445-450
    [105]袁浪,劳文,高烈度地震区多层建筑结构的设计[J],浙江建筑,2007,24(8):30-33
    [106] GB 50009-2001(2006),建筑结构荷载规范[S].北京:中国建筑工业出版社,2006.
    [107] GB 50011-2010.中华人民共和国国家标准.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [108]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2000,33(5):1-12.
    [109]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [110]谭平,周云,周福霖.大底盘多塔楼结构的混合隔震控制[J].世界地震工程,2007,23(2):12-19.
    [111]乌兰,李爱群等.厦门时代广场复杂连体隔震结构整体分析[J].工程抗震与加固改造,2010,32(1):38-43.
    [112]刘文光译.日本建筑学会[日].隔震结构设计[M].地震出版社,2006.
    [113]刘伟庆,王曙光,杜东升,高层混凝土结构隔震设计的研究与实践,混凝土结构与材料新进展[M]
    [114] CECS 126:2001叠层橡胶支座隔震技术规程[S].北京:中国工程建设标准化协会,2001.
    [115]周云,吴从晓,邹征敏,邓雪松.一种抗拉叠层橡胶隔震支座[P].中国,实用新型申请号200920263451.9.
    [116] ETABS中文版使用指南[M].北京:中国建筑工业出版社,2004.
    [117]广州市天河区天河北路北侧及林和东路东侧交汇处商务综合楼建筑结构超限设计可行性报告[R].广州:广州容柏生建筑工程设计事务所,2010
    [118]党育,杜永峰,毕长松.隔震建筑的经济性分析,工程抗震与加固改造,2006,28(4):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700