密封间隙对混流式水轮机稳定性影响的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国某电站混流式水轮机因密封间隙引起的机组振动问题,采用计算流体动力学软件CFX,基于N-S方程和RNGκ-ε湍流模型,将含密封间隙的原型水轮机进行了全流道的定常、非定常数值计算,主要成果包括以下几部分:
     通过对原型水轮机定常流动计算,发现密封间隙的泄漏量和机组轴向水推力在同一出力工况下与密封间隙值有关,间隙值越大,泄漏量和机组轴向水推力越大。在同一间隙值下,密封间隙的泄漏量和机组轴向水推力随出力的增加而增大,其增大的幅度与密封间隙值密切相关。
     分析了密封间隙值对水轮机稳定流场的影响。密封间隙对转轮前流场有明显的扰动作用,这种扰动作用受密封间隙值和位置的影响。越小的间隙值扰动作用越强烈,越靠近间隙进、口扰动效果越明显。密封间隙对尾水管的影响主要在靠近尾水管进口边壁区,随着密封间隙值的加大,尾水管进口边壁附近的压力分布得以改善。对比了不同密封间隙值的流场分布,得出密封间隙进口轴向平均压力变化与间隙值有关,小间隙值时平均压力轴向梯度大,流场不稳定。密封间隙压力腔内压力分布沿径向成梯级减小趋势,这种趋势仍然与密封间隙值有关。
     对原型水轮机几个典型工况进行了非定常计算。探讨了密封间隙值对机组压力脉动的影响。在密封间隙内得到了与现场试验测得机组振动主频接近的压力脉动频率,证明原型水轮机的振动是由密封间隙内的压力脉动引起的,并对机组振动的解决方案进行了验证。将所计算结果与现场实验对比后得出:转轮密封间隙值与机组匹配存在着稳定区和非稳定区的概念。
     所以在机组设计时需要对转轮密封间隙值的大小进行综合考虑,避免密封间隙匹配不合理引起的振动问题,以保证机组安全稳定的运行。
To the vibration of a power plant turbine caused by sealing clearance, the whole flow passage steady and unsteady numerical calculation of the turbine including sealing clearance is calculated by CFD software CFX, based on N-S equation and RNGκ-εturbulence model. The main research findings are as follows:
     Based on the steady flow calculation results of the prototype turbine, the leakage rate and the axial hydraulic thrust are related with the value of sealing clearance under the same output condition. The more sealing clearance value, the more leakage rate and the axial hydraulic thrust the turbine has. With the same clearance value, the leakage rate of the sealing clearance and the axial hydraulic thrust will increase as the increase of the output. The increasing rang is significantly attributed to the value of sealing clearance.
     The effect of the steady flow of the turbine caused by the sealing clearance is analyzed. Sealing clearance has obvious disturbance effect on flow field in front of inlet of runner, which is related to the sealing clearance value and position. The smaller sealing clearance value is, the more obvious the disturbance effect is as well as the nearer to the inlet of the sealing clearance is. The effect of the sealing clearance to the draft tube is occurred in boundary wall near the inlet of draft tube. As the sealing clearance increased, the pressure distribution of the inlet of the draft tube near the boundary wall improved as well as its tangential velocity. The contrast of the flow field distribution of the different sealing clearance value is completed with the conclusion that the gradient of average pressure in axial of sealing clearance inlet is related with sealing clearance value. The smaller sealing clearance value is, the greater axial gradient of average pressure which leading to the flow field unsteady. The trend of pressure distribution of the pressure chamber of the sealing clearance is reduction in radial direction, which is attributed to the sealing clearance value.
     Some typical unsteady working condition of prototype turbine is calculated. The effect of the unit pressure fluctuation caused by sealing clearance is discussed. The paper got the frequency of pressure in sealing clearance which is approached to vibration frequency of unit. It proved that the vibration of prototype turbine is caused by pressure fluctuation in sealing clearance. At the same time, the project solution is validated. After contrasting of calculated and tested results, we found that:there is a concept about steady and unsteady area between sealing clearance and unit stability.
     Therefore the design of crown's sealing clearance value should be considered in a comprehensive way to prevent the vibration caused by the caused by runner crown's sealing clearance. Consequently the unit can be operated safely and stably.
引文
[1]陶星明,刘光宁.关于混流式水轮机水力稳定性的几点建议[J].大电机技术,2002,(2):40-44.
    [2]周旱.大型混流式水轮机稳定性研究与对策[J].大电机技术,2005,28(10):5-8.
    [3]王珂嵛.水力机组振动[M].北京:水利水电出版社,1986,1.
    [4]韩凤琴,久保田桥.混流式水轮机整体三维粘性解析-最高效率点的流动[J].大电机技术,2000(2):56-60.
    [5]韦彩新.水力机械流场数值计算及性能预测[M].武汉:华中科技大学水力机械教研室,1991(10).
    [6]姚大坤,李至昭,曲大庄.混流式水轮机自激振动分析[J].大电机技术,1998,(5):43-47.
    [7]马震岳,董毓新.水电站机组及厂房振动的研究与治理[M].北京:中国水利水电出版社,2004,10.
    [8]戴勇峰,王海,张克危等.混流可逆式转轮密封装置的泄漏量及其对机组运行的影响[J].水力发电学报,2005,24(2):100-104.
    [9]沈祖诒,田树棠等.水力机械优化设计和计算机辅助分析[M].南京:河海大学出版社,1995.
    [10]水利水电科学研究院.水轮机水力振动译文集[M].北京:水利电力出版社,1979,3.
    [11]J.Cabrera, R.Vega.Vibration behavior in Hydro Power Plants.Field Data Analysis [C]. Proceedings of the 20th IAHR Symposium, Charlotte, UnitedStates,2000.
    [12]Tenekes H, Lumley J L. A First Course in Turbulent [M]. Cambridge, MIT Pree,1973.
    [13]周学涟.计算水力学[M].北京:清华大学出版社,1995.
    [14]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [15]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [16]Flavy H.T.尾水管压力脉动浅析[J].国外大电机,1998,(12):55-59.
    [17]Thierry Jacob等.混流式水轮机压力脉动-模型和真机试验结果[J].国外大电机,1998,(5):65-72.
    [18]P.Dorfler.高比转速混流式模型水轮机压力脉动试验[J].水利水电快报,1994,(18):11-16.
    [19]M. Fanelli. Research on Off-Design Behavior of Francis Turbines:An Overview of presient state, Difficulties, Open Problem, Needs and Strategies [C].5thInt. Meeting on the behavior of Hydraulic Machinery, Milano,1991.
    [20]Brekke. H.关于混流式水轮机的损失、动态特性和空化的研究[J].国外大电机,2005,(3):61-67.
    [21]P.Robert.部分负荷下混流式水轮机空腔涡带的矩阵模拟[J].国外大电机,1999,(4):53-57.
    [22]Qing Hua Shi. Experimental investigation of fruquency characteristics of draft tube pressure pulsations for Francis turbines[C]. Proc.18th IAHR Symposium. Valencia, spain 1996:185-192.
    [23]Riedelbauch S, Klemm D, Hauff C. Importance of interaction between turbine components in flow fields simulation[C]. Proceeding of 18th IAHR Symposium on Hydraulic Machine and cavication.
    Valencia, spain 1996.
    [24]ALA Mesquita, GD Ciocan. Experimental Analysis of the Flow Between stay and Guide Vanes of Pump-turbine in pumping Mode [J]. Journal of Brazilian society of Mechanical Sciences,1999, 21(4):580-588.
    [25]Wang X M and NiShi M. Swirling Flow With Helical Vortex Core In A Draft Tube Predicted By A Vortex Method[C]. LAHR Symposium Dordrechet,1996,965-974.
    [26]杨建明.水轮机尾水管和转轮中的湍流计算研究[D].北京:清华大学,1999.
    [27]张梁等.混流式水轮机压力脉动预测[J].大电机技术,2002(5):34-38.
    [28]Albert Ruprecht, T Helmerich, T Aschenbrenner, el al. Simulation of Vortex Rope in A Turbine Draft Tube[C]. Proceedings of the Hydraulic Machinery and Systems 21st IAHR Symposium,2002, 10:9-12.
    [29]Gabriel Dan Ciocan, Monica Sanda Iliescu. Experimental Study and Numerical Simulation of the FLIDNT Draft Tube Rotating Vortex[J]. Journal of Fluids Engineering, FEBRUARY 2007,129: 146-157.
    [30]王正伟,周凌九,黄源芳.尾水管涡带引起的不稳定流动计算与分析[J].清华大学学报(自然科学版),2002,42(12):1647-1650.
    [31]曾永忠,刘小兵.混流式水轮机尾水管漩涡流的LES法预测[J].中国农村水利水电,2007,3:55-63.
    [32]刘树红,邵奇,吴玉林等.三峡水轮机的非定常湍流计算及整机压力脉动分析[J].水力发电学报,2004,23(5):97-101.
    [33]潘擎宇,吴玉林,岑章志.水轮机尾水管涡带诱发的转轮横向激振力计算[J].清华大学学报(自然科学版),1999,39(8):84-87.
    [34]杨建明,刘文俊,吴玉林.用大涡模拟方法计算尾水管内非定常周期性湍流[J].水利学报,2001,(8):79-84
    [35]E.A. Baskharone, A.S. Daniel, S.J. Hensel. Rotordynamic effects of the Shroud-to Housing Leakage Flow in Centrifugal Pumps [J]. ASME Journal of Fluid Engineering,1994,116(9):558-565.
    [36]E.A. Baskharone, N.J. Wyman. Primary leakage flow interaction in a pumps stage[J]. ASME Journal of Fluid Engineering,1999,121(5):133-138.
    [37]肖若富.中比转速混流式水轮机内流场数值模拟及性能改善研究:[博士学位论文][D].武汉:华中科技大学,2004,6.
    [38]吴钢,张克危,戴勇峰,等.低比转速转轮泄漏量对水电机组抬机的影响[J].水力发电学报,2004,23(4):106-111.
    [39]董彦同.混流式水轮机减压管和密封间隙流场数值模拟:[硕士学位论文][D].西安:西安理工大学,2008,4.
    [40]徐珍懋.浅论混流式水轮机运行的“强振禁运区”[J].水电站机电技术,2003,(S1):11-12.
    [41]王福军.计算流体动力学-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [42]B.Raverdy, I.M, P.Sagaut, N.Liamis. High-resolution large-eddy simulation of flow around low-pressure turbine blade [J]. AIAA Journal,2003,41(3):390-397.
    [43]V.Michelassi, J.G. Wissink, J. Frohlich, W. Rodi. Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes [J]. AIAA Journal,2003,41(11):2143-2156.
    [44]M.Tutar, GOguz. Large eddy simulation of wind flow around parallel buildings with varying configurations [J]. Fluid Dynamics Research,2002,31(5-6):289-315.
    [45]CFD技术在在哈电公司水轮机模型开发中的应用[J].大电机技术,2001,(2):61.
    [46]张启德.水轮机水力开发技术进步[J].东方电机,2001,(1):1-6.
    [47]M.Piller, E. Nobile, J.Thomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow [J]. Journal of Fluid Mechanics,2002 (458):419-441.
    [48]J.Cx Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[C]. International Journal of Heat and Fluid Flow,2003,24(4):626-635.
    [49]郭鹏程.水力机械内部复杂流动的数值研究与性能分析:[博士学位论文][D].西安:西安理工大学,2006,9.
    [50]刘胜柱.水轮机内部流动分析与性能优化研究:[博士学位论文][D].西安:西安理工大学,2005,10.
    [51]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [52]刘宇,杨建明,戴江,吴玉林.混流式水轮机三维非定常湍流计算[J].水力发电学报,2004,23(4):102-105.
    [53]张兆顺.湍流[M].北京:国防工业出版社,2002,1.
    [54]韩丹.双向贯流泵站进出水流道流场数值模拟:[硕士学位论文][D].南京:河海大学,2005,4.
    [55]马文生.原型水轮机全流道计算及计算精度分析:[硕士学位论文][D].北京:中国农业大学,2005,6.
    [56]刘建军.用多块多网格方法数值模拟三维粘性流动[J].工程热物理学报,2002,23(1):46-48.
    [57]张来平,徐庆新,张涵信.非结构网格及混合网格复杂无粘流场并行计算方法研究[J].空气动力学学报,2002,20(S1):14-20.
    [58]Lo S H. A new mesh generation scheme for arbitrary planar domains[J]. International Journal for Numerical Methods in Engineering,1985,21(8):1403-1426.
    [59]宇波,王秋旺,林明杰,等.一种非结构化同位网格算法[J].工程热物理学报,1998,19(4):475-479.
    [60]胡于进,赵虎跃,赵建军.基于Delaunay准则的三维网格自动插点算法[J].华中理工大学学报,2000,28(5):7-9.
    [61]哈尔滨大电机研究所.水轮机设计手册[M].北京:机械工业出版社,1976,11.
    [62]刘大凯.水轮机(第三版)[M].北京:中国水利水电出版社,1997,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700