高层建筑风致响应实测测点的优化布置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高层建筑大量兴建,而风荷载是高层建筑设计的控制荷载之一,结构风效应的现场实测结果是掌握结构风荷载作用机理和结构动力响应及破坏机理最直接的资料,也是修正现有试验方法和理论模型最为权威的依据。本文对高层建筑风致响应进行了简化分析,并对其实测的测点优化布置问题进行了研究,提出了新的测点优化布置方法。
     本文首先对高层建筑风致响应实测测点优化布置研究状况进行了综述,包括:传感器(测点)优化布置准则和计算方法、以及各个学者在这些方面的研究,最后,总结了传感器与测点优化布置仍然存在的问题。
     其次,本文采用将高层建筑结构凝聚成多个质点的方法对高层建筑进行简化建模,得到最简便的葫芦串模型,并对简化模型进行动力特性分析,自振频率的计算结果与实测结果吻合的很好。
     然后,对高层建筑多维动力响应实测中测点的优化布置方法进行了研究,提出了高层建筑二维风致响应实测时适应度的计算方法,基于此适应度给出了二维测点优化布置的方法,并通过算例对此方法在实际工程中的应用进行了研究,从而将已有的高层建筑实测点优化布置研究从单向优化拓展到了多维优化。
     本文应用前述所建立的高层建筑简化模型计算了其风致加速度响应,然后进行了功率谱分析,并基于功率分析结果提出了新的测点优化布置判断准则,提出了可应用于高层建筑风致响应实测的测点优化布置新方法。
     最后,对全文的主要工作进行总结,得出本文的主要结论,并结合目前的实际研究现状,对高层建筑的实测测点优化布置方法的进一步研究进行了展望。
Many tall buildings have been constructed in recent years, and the wind load is one of the control loads in the design of tall building. The results of full-scale measurements of tall building is the most direct information to grip the mechanism of wind load and structural dynamic response and destruction and also is the most authoritative basis to revision the existing test methods and theoretical models. In this paper, the wind-induced response of tall buildings has been simplified analyzed, and the problem of determining optimal sensor locations has been studied, then a new method was established.
     Firstly, this paper shows the current research situations on determining optimal sensor locations for full-scale measurements of tall building, and we summed up the main judging criteria and methods of optimizing sensor (measuring point) location.
     Secondly, using a method that is changing multi-floor into one mass point, the simplest model of tall building was obtained, after analyzing the dynamic characteristics of the simplified model, the natural frequency which was deduced by the calculated results was agree well with the measured results.
     Then, the study, how to determine optimal measuring points for multi-dimensional dynamic measurements of tall building, has been done, thus the existing research is extended from single-dimensional optimization to multi-dimension.
     A simplified model of a tall building was created, and the wind-induced acceleration of the model has been calculated by finite element program. Then the power spectrum analysis of the simulated acceleration was carried out, based on the analysis results, some new judging criteria and method are put forward in this paper.
     Finally, the main conclusions have been achieved. According to the current research situations, which are about the determination of optimal sensor locations for full-scale measurements of tall building, the further research expectation was shown.
引文
[1]张相庭.工程抗风设计计算手册.北京:中国建筑工业出版社, 1998,1-146
    [2]张相庭.结构风工程(理论·规范·实践).北京:中国建筑工业出版社, 2006,1-253
    [3]舒新玲,周岱,王咏芳.风荷载测试与模拟技术的回顾及展望.振动与冲击,2002,21(3):6-10
    [4]熊曜,王汝恒,佟伟.高层建筑风荷载研究成果的评述.四川建筑科学研究,2007,33(4):47-51
    [5] Li Ge,Qin Quan,Dong Cong. Optimal placement of sensors for monitoring systems on suspension bridges using genetic algorithms. Engineering Mechanics,2000,17(1):25-34
    [6] Mar Reynier and Hisham Abou-Kandil, Sensors location for updating problems. Mechanical systems and signal Processing,1999,13(2):297-314
    [7] Q.S.Li,D.K.Liu, J.Q.Fang, C.M.Tam. Multi-level optimal design of buildings with active control under wind using genetic algorithms. Journal of Engineering and Industrial Aerodynamics,2000,86:65-86
    [8] I.Bruant,G.Coffignal,F.Lene,M.Verge. A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of sound and vibration,2001,243(5):861-882
    [9]李正农,刘福义,吴红华,李秋胜.高层建筑动力反应实测中测点的优化布置方法的研究.地震工程与工程振动,2003,23(5):149-156
    [10]李正农,唐银桥,高耸结构实测测点布置方法的研究.武汉理工大学学报,2005,27(04):40-43
    [11] Z.N.Li,J.Tang,Q.S.Li. Optimal sensor locations for structural vibration measurements. Applied Acoustics,2004,65:807-818
    [12]刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展,2000, 30(4):506-516
    [13] Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control and Dynamics,1991,14(2):251-259
    [14] Park Y S, Kim H B. Sensor placement guide for model comparison and improvement. In: Proceedings of the 14th International Modal AnalysisConference. Michigan,1996,404-409
    [15] Lim T W. Actuator/sensor placement for modal parameter identification of flexible structures. the International Journal of Analytical and Experimental Modal Analysis,1993,8(1):1-13
    [16] Liu Chinchao,Tasker F A. Sensor placement for multi-input multi-output dynamic identification. In: Proceedings of 36th AIAA/ASME/ASCE /AHS/ ASE SDM conference. Los Angeles: AIAA,1995,3327-3337
    [17] Bayard B S,Hadaegh F Y,Meldrum D R. Optimal experiment design for identification of large space structures. Automatica,1988,24(3):357-364
    [18] Rafajlowicz E. Optimal experimental design for identification of linear distributed -parameter systems: Frequency domain approach. IEEE Transaction on Automatic Control,1983,28(7):806-808
    [19] Tongco E,Meldrum D. Optimal sensor placement of large flexible space structures. Journal of Guidance Control and Dynamics,1996,19(4):961-963
    [20] Salama M,Rose T,Garba J. Optimal placement of exciters and sensors for verification of large dynamical systems. In: Proceedings of 28th AIAA/ ASME/ASCE/AHS/ASE SDM conference.Monterey:AIAA,1987,1024-1031
    [21] Shih Y T,Lee A C,Chen J H. Sensor and actuator placement for modal identification. Mechanical Systems and Signal Processing,1998,12(5): 641-659
    [22] Reynier M,Hisham A K. Sensor location for updating problems. Mechanical Systems and Signal Processing,1999,13(2):297-314
    [23] Baruh H,Choe K. Sensor failure detection method for flexible structures. Journal of Guidance,Control and Dynamics,1987,10(5): 474-482
    [24] Pape D A. Selection of measurement locations for experimental modal analysis. In: Proceedings of the 12th International Modal Analysis Conference. Hawaii, 1994,34-41
    [25] Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal, 1965,3(2):380
    [26] Yousuff A,Skelton R E. Controller reduction by component cost analysis. IEEE Transaction on Automatic Control,1984,29(6):520-530
    [27] Breitfeld T. A method for identification of a set of optimal measurement points for experimental modal analysis. The International Journal of Analytical and Experimental Modal Analysis,1996,11:254-273
    [28] Sepulveda A E,Jin I M,Schmit Jr L A. Optimal placement of active elements in control augmented structural synthesis. AIAA Journal,1993,31(10): 1906-1915
    [29] Sunar M,Rao S S. Thermo piezoelectric control design and actuator placement. AIAA Journal,1997,35(2):534-539
    [30] Tolson R H,Huang J K. Integrated control of thermally distorted large space antennas. Journal of Guidance, Control and Dynamics,1992,15(3):605-614
    [31] Delorenzo M L. Sensor and actuator selection for large space structure control. Journal of Guidance, Control and Dynamics,1990,13(2):249-257
    [32] Hafkta R T,Adelman H M. Selection of actuator locations for static shape control of large space structures by heuristic integer programming. Computers and Structures, 1985,20(3):575-582
    [33] Metropolis N,Rosenbluth A,Rosenbluth M,Teller A,Teller E. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 1953,21(6):1092-1108
    [34]闫洁,曹秉刚,杨仲庆等.柔性结构作动器/传感器优化配置研究.应用力学学报,2001,18(3):47-53
    [35]钟树生,钟永慧,倪忠.高层建筑的结构时程分析.四川建筑,2007,27(06): 169-173
    [36]金虎,楼文娟,沈国辉.X型超高层建筑的三维风荷载及风振响应.华中科技大学学报(自然科学版),2008,36(06):110-114
    [37]金问鲁.高层建筑结构的连续化分析.北京:中国铁道出版社,1994,17-165
    [38]吕西林,朱杰江,刘捷.上海环球金融中心结构简化弹塑性时程分析及试验验证.地震工程与工程振动,2005,25(02):34-42
    [39]孙训方,方孝淑,关来泰.材料力学(Ⅰ).第1版.北京:高等教育出版社,1982,322-344
    [40]沈蒲生,孟焕陵,刘杨.考虑构件抗扭刚度的高层建筑结构抗扭计算.铁道科学与工程学报,2006,3(2):21-25
    [41]孙立红.高层建筑不同结构形式对扭转性能的影响分析探讨.广东建材, 2008,8:185-187
    [42]李围.ANSYS土木工程应用实例,北京:中国水利水电出版社,2006,1-7
    [43]宫玉才,周洪伟,陈璞等.快速子空间迭代法、迭代Ritz向量法与迭代Lanczos法的比较.振动工程学报,2005,18(2):227-232
    [44]楼梦麟.结构动力分析的子结构方法.第1版.上海:同济大学出版社, 1997,20-24
    [45] M.I.Friswell,J.E.Mottershead. Finite element model updating in structural dynamics. London:Kluwer Academic Publishers,1999,8-26
    [46] J.M.W.Brownjo,T.C.pan,X.Y.Deng. Correlating dynamic characteristics from field measurements and numerical analysis of high-rise building, Earthquake Engineering and Structural Dynamics,2000,29:523-543
    [47]刘娟,黄维平.传感器优化配置的修正逐步累积法.青岛海洋大学学报(自然科学版),2003,33(3):476-482
    [48]李桂青.抗震结构计算理论和方法.北京:地震出版社,1985,145-165
    [49]中华人民共和国建设部.建筑结构荷载规范(GB50009-2001).北京:中国建筑工业出版社,2006,28-50
    [50]埃米尔·希缪,罗伯特·H·斯坎伦.风对结构的作用-风工程导论.刘尚培等译.第2版.上海:同济大学出版社,1993,1-46
    [51]黄本才.结构抗风分析原理及应用.上海:同济大学出版社,2001,1-62
    [52]陈丽,李秋胜,吴玖荣等.中信广场风场特性及风致结构振动的同步监测.自然灾害学报,2006,15(3):169-174
    [53]张相庭.高层建筑抗风抗震设计计算.上海:同济大学出版社,1997,1-167
    [54] D·E·纽兰.随机振动与谱分析概论.第1版.北京:机械工业出版社, 1980,163-166
    [55]庄表中,梁以德,张佑启.结构随机振动.第1版,北京:国防工业出版社,1995,1-79,170-179
    [56]星谷胜.随机振动分析.常宝琦译.第1版.北京:地震出版社,1977,1-19
    [57]杨小兵,孔繁盛,李正农.超高层建筑风致响应中的数据挖掘.自然灾害学报,2005,14(2):99-102
    [58]顾明,叶丰.高层建筑风致响应和等效静力风荷载的特征.工程力学,2006, 23(7):93-98
    [59]周印,江欢成.高层建筑风致动态响应中的背景响应.工程力学,1999,16(2):16-21
    [60]申建红,李春祥.土木工程结构风场实测及新技术研究的进展.振动与冲击, 2008,27(10):115-120
    [61]阎启,谢强,李杰.风场长期观测与数据分析.建筑科学与工程学报, 2009, 26(1):37-42
    [62]肖仪清,孙建超,李秋胜.台风湍流积分尺度与脉动风速谱——基于实测数据的分析.自然灾害学报,2006,15(5):45-53
    [63]伊廷华,李宏男,王国新.基于简化模型的超高层结构传感器优化布置.计算力学学报,2008,25(4):417-423
    [64]周星德,汪凤泉.基于可靠性的框架结构作动器/传感器最优配置.东南大学学报(自然科学版),2003,(6):746-749
    [65]苏怀智,吴中如.大坝工程安全监测仪器优化设计.南昌工程学报,2005, 24(3):5-9
    [66]梁枢果,李辉明,瞿伟廉.高层建筑风荷载计算中的基本振型表达式分析.同济大学学报,2002,30(5):578-582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700