卟啉、萘酰亚胺等载体的合成及在荧光分子探针和离子选择性电极中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以有机化合物为载体的化学传感的研究是一个十分活跃的领域,寻找具有高选择性的新型有机分子识别载体用于化学传感研究是一项非常有意义的工作。本文在广泛查阅相关文献的基础上,结合本实验室原有的工作基础,针对传感器在灵敏度和选择性等方面存在的问题,设计并合成了一系列新型的荧光探针分子和离子选择性电极的载体分子,并将它们用于pH、金属阳离子和阴离子的检测中。具体内容如下:
     1.设计并合成了可咯化合物为荧光载体的化学传感器用于pH测定。本文合成了一种新化合物,10-(4-氨基)-5,15-二(1,3,5-三甲基苯基)可咯,并以该化合物作为载体固定在溶胶-凝胶膜中,制备成光化学传感器用于对溶液pH值的测量。该传感器的构建是基于可咯具有多步的质子化和去质子化的性质,从而引起可咯荧光值对溶液pH值的响应。由于10-(4-氨基)-5, 15-二(1, 3, 5-三甲基苯基)可咯具有多个质子活性中心,因此基于它的传感器对pH的响应范围比5, 10, 15, 20-四苯基卟啉和5, 10, 15-三(五氟苯基)可咯的要宽得多。基于10-(4-氨基)-5, 15-二(1, 3, 5-三甲基苯基)可咯的传感器对pH响应的线性范围是2.17-10.30。该传感器表现出良好的可逆性和重现性,常见的阳离子对其检测pH无明显的干扰。
     2.设计并合成了以卟啉衍生物为载体的比率型荧光分子探针用于生物相关离子Zn2+的测定。本文设计并合成了一个含有2-(氧基甲基)吡啶单元的卟啉衍生物,并将其制成荧光探针用于识别金属离子。通常情况下,卟啉化合物被用来识别重金属离子,而该卟啉化合物却可以用来制备比率型传感器识别锌离子。比率型荧光信号的实现是基于卟啉的金属化,2-(氧基甲基)吡啶单元的协同作用促进了金属离子进入卟啉环,即化合物可以与锌离子形成配合物(配合比为1:1,结合常数K为1.04×105),这为锌离子荧光探针的构建提供了理论基础。我们考察了这个锌离子荧光探针的响应特性,锌离子响应的线性范围是3.2×10-7到1.8×10-4 M,检测下限为5.5×10-8 M。实验结果表明,在中性条件下(pH 4.0-8.0),该化合物对锌的响应几乎不受pH的影响。此外,该探针对锌离子具有很好的选择性。
     3.设计并合成了以萘酐-蒽双荧光团化合物为载体的双增强荧光分子探针用于Hg2+的测定。首次设计并合成了2-(N-丁基-1,8-萘酰亚胺-4-哌嗪基-甲基)-6-(蒽-9-甲基-哌嗪基-甲基)吡啶,并将其制成荧光分子探针用于有毒离子Hg(II)的测定,其中萘酐-蒽荧光染料作为荧光基团,含氮的2,6-二(哌嗪基-1-甲基)吡啶作为识别基团。此探针基于著名的光致电子转移(PET)机理,实现了单激发,双发射的检测Hg(II)。2,6-二(哌嗪基-1-甲基)吡啶单元可以与Hg(II)形成配合物(配合比为1:1),导致了该化合物的两个发射峰的荧光强度增强,这为汞离子荧光探针的构建提供了基础。我们考察了这个Hg(II)荧光探针的响应特性。Hg(II)响应的线性范围是2.4×10-7到8.6×10-5 M,检测下限为4.6×10-8 M。实验结果表明,在中性条件下(pH 5.0-8.0),该化合物对汞的响应几乎不受pH的影响。并且该探针对汞离子具有良好的选择性。
     4.设计并合成了以萘酐-卟啉双荧光团化合物为载体的比率型荧光分子探针用于有毒离子Hg2+的测定。首次合成了萘酐-卟啉双荧光团化合物,并将其制成比率型荧光分子探针用于有毒离子Hg(II)的测定。比率信号的实现是基于该化合物能够和汞离子发生配位作用,并且化合物的两个荧光基团(萘酐和卟啉)具有相同的激发波长,不同的发射波长(两个发射波长之间的距离较宽,为125 nm),这为汞离子荧光探针的构建提供了理论基础。汞离子响应的线性范围是7.8×10-7到1.2×10-4 M,检测下限为8.0×10-8 M。实验结果表明,在中性条件下(pH 4.0-8.0),该化合物对汞的响应几乎不受pH的影响。并且该探针对汞离子具有很好的选择性。
     5.设计并合成了以多取代酚-钌吡啶化合物为荧光探针用于Co2+的测定。酰胺键连接的2,6-二{[(2-羟基-5-叔丁基苄基)(吡啶-2-亚甲基)胺基]亚甲基}-4-甲基苯酚和钌三联吡啶配合物被首次用作在乙醇/水(1:1,v/v)溶液中识别二价钴离子。其中钌三联吡啶作为荧光基团,多取代苯酚作为识别基团。多取代苯酚可以与钴离子形成配合物(配合比为1:1,结合常数K为2.5×105),这为钴离子荧光探针的构建提供了理论基础。我们考察了这个钴离子荧光探针的响应特性。钴离子响应的线性范围是1.0×10-7到5.0×10-4 M,检测下限为5×10-8 M。实验结果表明,在中性条件下(pH 4.5-9.5),该化合物对钴的响应几乎不受pH的影响。此外,在金属阳离子中,除了铜离子,该探针对钴离子具有良好的选择性。该探针被用在水样中钴离子的测定。
     6.研制了基于酰胺键联接的双卟啉的铅离子选择性电极。首次合成了化合物酰胺键联氧杂蒽双卟啉(ADPX),并将其用于铅离子选择性电极的制备。其中ADPX作为PVC膜的载体,2-硝基苯基辛基酯(o-NPOE)作为增塑剂,四苯硼钠(NaTPB)为添加剂。考察了膜组分对电极性能的影响,得到了最佳的组分配比,即ADPX: NaTPB: o-NPOE: PVC的质量比为3:3:65:32。电极表现出良好的响应特性,线性响应范围是从2.6×10-6到1.0×10-1 M。在中性条件下(pH 4.5-7.5),电极的响应几乎不受pH的影响。另外,电极表现出对铅离子良好的选择性,并将其初步用于铅离子的滴定分析。
     7.研制了基于酰胺键联接的金属双卟啉的硫氰酸根离子选择性电极。首次合成了化合物酰胺键联氧杂蒽双锰卟啉(Mn2Cl2ADPX),并将其用于硫氰酸根离子选择性电极的制备。其中Mn2Cl2ADPX作为PVC膜的载体,2-硝基苯基辛基酯(o-NPOE)作为增塑剂。考察了膜组分对电极性能的影响,得到了最佳的组分配比,即Mn2Cl2ADPX: o-NPOE: PVC的质量比为3:65:32。电极表现出良好的响应特性,线性响应范围是从2.4×10-6到1.0×10-1 M。在中性条件下(pH 3.0-8.0),电极的响应几乎不受pH的影响。另外,电极表现出对硫氰酸根离子良好的选择性,并将其初步用于人体尿液中SCN-的测定,获得了满意的结果。
In recent years, the research on chemical sensors based on organic dyes remains very active and searching for new fluorophores to improve sensitivity and selectivity of chemical sensors is still a challenge for the analytical research efforts. In this thesis, a series of novel fluorescent probes and ion-selective carriers were designed and synthesized to determine pH, metal ions and anions. The contents of this thesis are presented as follows:
     1. The synthesis of a new compound, 10-(4-aminophenyl)-5,15-dimesitylcorrole, and its application for preparation of optical chemical pH sensors are described. The dye was immobilized in a sol–gel glass matrix and exposed to aqueous buffer solutions. The response of the sensor was studied which is based on the fluorescence intensity changing of corrole owing to multiple steps of protonation and deprotonation. Due to the presence of several proton sensitive centers, 10-(4-Aminophenyl)-5,15-dimesitylcorrole based optode shows wider response range toward pH than that of tetraphenylporphyrin(TPPH2) and 5,10,15-tris(pentafluorophenyl)corrole(H3(tpfc)). It shows a linear pH response in the range of 2.17-10.30. The effect of the composition of the sensor membrane has been studied and the experimental conditions are optimized. The optode shows good reproducibility and reversibility, and common co-existing inorganic ions did not show obvious interference to its pH measurement.
     2. A porphyrin derivative containing two 2-(oxymethyl)pyridine units has been designed and synthesized as chemosensor for recognition of metal ions. Unlike many common porphyrin derivatives that show response to different heavy metal ions, the porphyrin derivative exhibits unexpected ratiometric fluorescence response to Zn2+ with high selectivity. The response of the novel chemosensor to zinc was based on the porphyrin metallation with cooperating effect of 2-(oxymethyl)pyridine units. The change of fluorescence of the porphyrin derivative was attributed to the formation of an inclusion complex between porphyrin ring and Zn2+ by 1:1 complex ratio (K= 1.04×105), which has been utilized as the basis of the fabrication of the Zn2+-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Zn2+-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Zn2+ with a linear range covering from 3.2×10?7 to 1.8×10?4 M and a detection limit of 5.5×10?8 M. The experimental results show that the response behavior of the porphyrin derivative to Zn2+ is pH-independent in medium condition (pH 4.0–8.0) with excellent selectivity for Zn2+ over transition metal cations.
     3. 2-{[(N-butyl-1,8-naphthalimide-4-yl)piperazine]methyl}-6-{[(anthracene-9- yl)-methyl-piperazine]-methyl}pyridine has been designed and synthesized to recognize Hg(II) in EtOH/H2O(1:1,v/v) solution, with naphthalimides-anthracene dyad selected as the fluorophore and a nitrogen-containing 2,6-bis(piperazine-1-yl-methyl) pyridine as the receptor. The new chemosensor for mercury was based on the well-known photoinduced electron-transfer (PET) mechanism and provided single-excitation, dual-emission detection. The dual fluorescence emission enhancement of the compound was attributed to the formation of an inclusion complex between 2,6-bis(piperazine-1-yl-methyl)pyridine unit and Hg(II) with a 1:1 complex ratio, which has been utilized as the basis of the fabrication of the Hg(II)-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Hg(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Hg(II) with a linear range covering from 2.4×10-7 to 8.6×10-5 M and a detection limit of 4.6×10-8 M. The experimental results show that the response behavior of the compound to Hg(II) is pH independent in medium condition (pH 5.0-8.0). And the proposed Hg(II)-sensitive chemosensor showed excellent selectivity for Hg(II) over other metal cations.
     4. The synthesis of a novel fluoroionophore containing naphthalimide and porphyrin and its application as a HgII-sensitive ratiometric fluorescent chemosensor are described. The realization of ratiometric signaling is based on developing a new stategy with two fluorophores (naphthalimide and porphyrin) in one molecule having the same excitation wavelength. The response of the chemosensor is based on the fluorescence ratiometric change of the compound by coordination with HgII and large shift between the two emission maxima (125 nm) with single excitation wavelength. The compound-based chemosensor shows a linear response toward HgII in the concentration range from 7.8×10-7 to 1.2×10-4 M with a detection limit of 8.0×10-8 M, and a working pH range from 4.0 to 8.0. The chemosensor shows excellent selectivity for HgII over other transition metal cations. Based on this, a highly sensitive and selective method for the determination of mercury was developed.
     5. An amide-linked 2,6-bis{[(2-hydroxy-5-tert-butylbenzyl)(pyridyl-2-methyl)- amino]-methyl}-4-methylphenol-ruthenium (II) tris(bipyridine) 2PF6- complex was first used to recognize Co(II) in EtOH/H2O(1:1,v/v) solution, with the ruthenium (II) tris(bipyridine) moiety selected as a fluorophore and the multi-substituted phenol unit chosen as a receptor. The fluorescence quenching of the compound was attributed to the formation of an inclusion complex between multi-substituted phenol unit and Co(II) by 1:1 complex ratio(K= 2.5×105), which has been utilized as the basis of the fabrication of the Co(II)-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Co(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Co(II) with a linear range covering from 1.0×10-7 to 5.0×10-5 M and a detection limit of 5×10-8 M. The experimental results show that the response behavior of the compound to Co(II) is pH independent in medium condition(pH 4.5-9.5) with excellent selectivity for Co(II) over transition metal cations except Cu(II). And the chemosensor has been used for determination of Co(II) in water samples.
     6. The synthesis of a new compound, amide-linked diporphyrin xanthene(ADPX), and its application for preparation of lead(II) ion selective electrodes are described. The electrode was prepared with a PVC membrane combining ADPX as an electroactive material, 2-nitrophenyl octyl ether (o-NPOE) as a plasticizer and sodium tetraphenylborate (NaTPB) as an additive in the percentage ratio of 3:3:65:32 (ADPX: NaTPB: o-NPOE: PVC, w:w). The electrode exhibited linear response with a near Nernstian slope of 28.2 mV per decade within the concentration range of 3.2×10-6 to 1.0×10-1 M lead ions, with a working pH range from 4.5 to 7.5, and a fast response time of less than 30s. Selectivity coefficients for Pb(II) relative to a number of interfering ions were investigated. The electrode is highly selective for Pb2+ ions over a large number of cations. Several electroactive materials and solvent mediators have been compared and the experimental conditions were optimized. The sensor was applied as indicator electrode in titration of Pb(II) with potassium chromate solution with satisfactory results.
     7. The synthesis of a new compound, amide-linked manganese diporphyrin xanthene(Mn2Cl2ADPX), and its application for preparation of thiocyanate selective electrodes are described. The electrode was prepared with a PVC membrane combining Mn2Cl2ADPX as an electro active material, 2-nitrophenyl octyl ether (o-NPOE) as a plasticizer in the percentage ratio of 3:65:32 (ADPX: o-NPOE: PVC, w:w). The electrode exhibited linear response within the concentration range of 2.4×10-6 to 1.0×10-1 M SCN-, with a working pH range from 3.0 to 8.0 and a fast response time of less than 60s. Several electro active materials and solvent mediators have been compared and the experimental conditions were optimized. Selectivity coefficients for SCN- relative to a number of interfering ions were investigated. The electrode exhibits anti-Hofmeister selectivity toward SCN- with respect to common co-existing anions. The electrode was applied to the determination of SCN- in body urine with satisfactory results.
引文
[1] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A T M, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 1997, 97(5): 1515-1566.
    [2] Prodi L, Bolletta F, Montalti M, Zaccheroni N. Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 2000, 205(1): 59-83.
    [3] Bargossi C, Fiorini M C, Montalti M, Prodi L, Zaccheroni N. Recent developments in transition metal ion detection by luminescent chemosensors. Coordination Chemistry Reviews, 2000, 208(1): 17-32.
    [4] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3-40.
    [5] de Silva A P, Fox D B, Huxley A J M, Moody T S. Combining luminescence, coordination and electron transfer for signalling purposes. Coordination Chemistry Reviews, 2000, 205(1): 41-57.
    [6] Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews, 2004, 248(1-2): 205-229.
    [7] Rurack K, Resch-Genger U. Rigidization, preorientation and electronic decoupling-the‘magic triangle’for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 2002, 31(2): 116-127.
    [8]孟祥明,刘磊,郭庆祥.铅、汞、镉离子的荧光传感器研究进展.化学进展,2005, 17(1): 45-54.
    [9]朱维平,徐玉芳,钱旭红.具有重要生物学意义的重金属及过渡金属离子荧光分子探针.化学进展,2007, 19(9): 1229-1238.
    [10] Bakker E, Buhlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chemical Reviews, 1997, 97(8): 3083-3132.
    [11] Buhlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chemical Reviews, 1998, 98(4): 1593-1688.
    [12] Bakker E, Qin Y. Electrochemical Sensors. Analytical Chemistry, 2006, 78(12): 3965-3984.
    [13] Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors. ChemicalReviews, 2008, 108(2): 329-351.
    [14]吴世康,荧光化学传感器研究中的光化学与光物理问题.化学进展, 2004, 16(2): 174-183.
    [15] Il'ichev Yu V, Kuhnle W, Zachariasse K A. Intramolecular charge transfer in dual fluorescent 4-(dialkylamino)benzonitriles. Reaction efficiency enhancement by increasing the size of the amino and benzonitrile subunits by alkyl substituents. Journal of Physical Chemistry A, 1998, 102(28): 5670-5680.
    [16]樊美公,光化学基本原理与光子学材料科学.北京:科学出版社,2001, 30-34.
    [17] Sherrill C B, Marshall D J, Moser M J, Larsen C A, Daude-Snow L, Prudent J R. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. Journal of the American Chemical Society, 2004, 126(14): 4550-4556.
    [18]刘育,尤长城,张衡益.超分子化学.天津:南开大学出版社, 2001, 131.
    [19] Purrello R, Gurrieri S, Lauceri R. Porphyrin assemblies as chemical sensors. Coordination Chemistry Reviews, 1999, 190-192: 683-706.
    [20] Purrello R, Bellacchio E, Gurrieri S, Lauceri R, Raudino A, Scolaro L M, Santoro A M. pH modulation of porphyrins self-assembly onto polylysine. Journal of Physical Chemistry B, 1998, 102(44): 8852-8857.
    [21] Gurrieri S, Aliffi A, Bellacchio E, Lauceri R, Purrello R. Spectroscopic characterization of porphyrin supramolecular aggregates on poly-lysine and their application to quantitative DNA determination. Inorganica Chimica Acta, 1999, 286(2): 121-126.
    [22] Yang R H, Li K A, Wang K M, Liu F, Li N, Zhao F L. Cyclodextrin-porphyrin supramolecular sensitizer for mercury(II) ion. Analytica Chimica Acta, 2002, 469(2): 285-293.
    [23] Zhang X B, Guo C C, Li Z Z, Shen G L, Yu R Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry, 2002, 74(4): 821–825.
    [24] Tabata M, Kumamoto M, Nishimoto J. Ion-Pair extraction of metalloporphyrins into acetonitrile for determination of copper(II). Analytical Chemistry, 1996, 68(5): 758-762.
    [25] Weng Y Q, Yue F, Zhong Y R, Ye B H. A copper(II) ion-selective on-off-type fluoroionophore based on zinc porphyrin-dipyridylamino. Inorganic Chemistry, 2007, 46(19): 7749-7755.
    [26]曹成波,朱艳丽,于学丽,张长桥.萘酰亚胺类功能材料应用研究进展.精细与专用化学品,2007, 15(3-4): 6-10.
    [27] Bojinov V, Grabchev I. A new method for synthesis of 4-allyloxy-1, 8-naphthalimide derivatives for use as fluorescent briZhteners. Dyes and Pigments, 2001, 51(1): 57-61.
    [28] Martin E, Coronado J L Gu, Cammacho J J, Pardo A. Experimental and theoretical study of the intramolecular charge transfer on the derivatives 4-methoxy and 4-acetamide 1, 8-naphthalimide N-substituted. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175(1): 1-7.
    [29]赵同丰,等. 1, 8-萘酰亚胺类荧光材料的进展.染料工业, 1997, 34(1): 8-15.
    [30]王秀玲,李亚明,张华.用于有机电致发光材料的萘酰亚胺类荧光染料的研究进展,染料与染色, 2005, 42(3): 1-4.
    [31] Niu C C, Zeng G M, Chen L X, Shen G L, Yu R Q. Proton“off-on”behaviour of methylpiperazinyl derivative of naphthalimide: a pH sensor based on fluorescence enhancement. The Analyst, 2004, 129(1): 20-24.
    [32] Cui D, Qian X, Liu F, Zhang R. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Organic Letters, 2004, 6(16): 2757-2760.
    [33] He H, Mortellaro M A, Leiner M J P, Young S T, Fraatz R J, Tusa J K. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Analytical Chemistry, 2003, 75(3): 549-555.
    [34] Rurack K, Resch-Genger U, Bricks J L, Spieles M. Cation-triggered‘switching on’of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chemical Communications, 2000, (21): 2103-2104.
    [35] Xu Z, Xiao Y, Qian X, Cui J, Cui D. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Organic Letters, 2005, 7(5): 889-892.
    [36] Xu Z, Qian X, Cui J. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. Organic Letters, 2005, 7(14): 3029-3032.
    [37] Xu Z, Qian X, Cui J, Zhang R. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission. Tetrahedron, 2006, 62(43): 10117-10122.
    [38] Nanjappan P, Czarnik A W. Metal ion catalyzed reactions of acrylonitrile, acrylamide, and ethyl acrylate by way of their Diels-Alder cycloadducts. Journalof the American Chemical Society, 1987, 109(6): 1826-1833.
    [39] Huston M E, Haider K W, Czarnik A W. Chelation enhanced fluorescence in 9,10-bis[[(2-(dimethylamino)ethyl)methylamino]methyl]anthracene. Journal of the American Chemical Society, 1988, 110(13): 4460-4462.
    [40] Yoon J, Ohler N E, Vance D H, Aumiller W D, Czarnik A W. A fluorescent chemosensor signalling only Hg(II) and Cu(II) in water. Tetrahedron Letters, 1997, 38(22): 3845-3848.
    [41] de Silva S A, Zavaleta A, Baron D E, Allam O, Isidor E V, Kashimura N, Percarpio J M. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Letters, 1997, 38(13): 2237-2240.
    [42] de Silva, A. P.; de Silva, S. A. Fluorescent signalling crown ethers;‘switching on’of fluorescence by alkali metal ion recognition and binding in situ. Journal of the Chemical Society, Chemical Communications, 1986, (23): 1709-1710.
    [43] Akkaya E U, Huston M E, Czarnik A W. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. Journal of the American Chemical Society, 1990, 112(9): 3590-3593.
    [44] Huston M E, Engleman C, Czarnik A W. Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. Journal of the American Chemical Society, 1990, 112(19): 7054-7056.
    [45] Ertas N, Akkaya E U, Yavuz Ataman O. Simultaneous determination of cadmium and zinc using a fiber optic device and fluorescence spectrometry. Talanta, 2000, 51(4): 693-699.
    [46] Santis G D, Fabbrizzi L, Licchelli M, Mangano C, Sacchi D, Sardone N. A fluorescent chemosensor for the copper(II) ion. Inorganica Chimica Acta, 1997, 257(1): 69-76.
    [47] Perkovic M W. Allosteric manipulation of photoexcited state relaxation in (bpy)2RuII(binicotinic acid). Inorganic Chemistry, 2000, 39(21): 4962-4968.
    [48] Bolletta F, Costa I, Fabbrizzi L, Licchelli M, Montalti M, Pallavicini P, Prodi L, Zaccheroni N. A [RuII(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON–OFF luminescent chemosensor for Ni2+ and Cu2+ in water, based on an ET (energy transfer) mechanism. Journal of the Chemical Society, Dalton Transactions, 1999, (9): 1381-1386.
    [49] Pedersen C J. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 1967, 89(10): 2495-2496.
    [50] Pedersen C J. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 1967, 89(26): 7017-7036.
    [51] Dietrich B, Lehn J M, Sauvage J P. Cryptates-XI complexes macrobicycliques, formation, structure, proprietes. Tetrahedron, 1973, 29(11): 1647-1658.
    [52] Tamura H, Kimura K, Shono T. Coated wire sodium and potassium-selective electrodes based on bis(crown ether) compounds. Analytical Chemistry, 1982, 54(7): 1224-1227.
    [53] Wong K H, Ng H L. Synthesis of bis-benzo-15-crown-5 and bis-benzo-18-crown-6-ethers. Tetrahedron Letters, 1979, 20(44): 4295-4296.
    [54] Ikeda T, Abe A, Kikukawa K, Matsuda T. Preparation and characterization of unsymmetrical bis(benzocrown ether)s: preferential complexation with rubidium cation. Chemistry Letters, 1983, 12(3): 369-372.
    [55] Gutsche C D. Calixarenes. Accounts of Chemical Research, 1983, 16(5): 161-170.
    [56] Gutsche C D, Dhawan B, No K H, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. Journal of the American Chemical Society, 1981, 103(13): 3782-3792.
    [57] Cadogan A, Diamond D, Smyth M R, Svehla G, McKervey M A, Seward E M, Harris S J. Caesium-selective poly(vinyl chloride) membrane electrodes based on calix[6]arene esters. The Analyst, 1990, 115(9): 1207-1210.
    [58] O’Connor K M, Svehla G, Harris S J, McKervey M A. Calixarene-based potentiometric ion-selective electrodes for silver. Talanta, 1992, 39(11): 1549-1554.
    [59] Wuthier U, Pham H V, Zuend R, Welti D, Funck R J J, Bezegh A, Ammann D, Pretsch, E, Simon W. Tin organic compounds as neutral carriers for anion selective electrodes. Analytical Chemistry, 1984, 56(3): 535-538.
    [60] Glazier S A, Arnold M A. Selectivity of membrane electrodes based on derivatives of dibenzyltin dichloride. Analytical Chemistry, 1991, 63(8): 754-759.
    [61] Schulthess P, Ammann D, Kraeutler B, Caderas C, Stepanek R, Simon W. Nitrite-selective liquid membrane electrode. Analytical Chemistry, 1985, 57(7): 1397-1401.
    [62] Daunert S, Bachas L G. Anion-selective electrodes based on a hydrophobic vitamin B12 derivative. Analytical Chemistry, 1989, 61(5): 499-503.
    [63] Li J Z, Pang X Y, Yu R Q. Substituted cobalt phthalocyanine complexes as carriers for nitrite-sensitive electrodes. Analytica Chimica Acta, 1994, 297(3): 437-442.
    [64] Li J Z, Wu X C, Yuan R, Lin H G, Yu R Q. Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly(vinyl chloride) membrane electrodes. The Analyst, 1994, 119(6): 1363-1366.
    [65] Biesaga M, Pyrzynska K, Trojanowicz M. Porphyrin in analytical chemistry. Talanta, 2000, 51(2): 209-224.
    [66] Gupta V K, Jain A K, Singh L P, Khurana U. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Analytica Chimica Acta, 1997, 355(1): 33-41.
    [67] Gupta V K, Jain A K, Mangla R, Kumar P. A new Zn2+-selective sensor based on 5,10,15,20-tetraphenyl-21H, 23H-porphine in PVC maxtrix. Electroanalysis, 2001, 13(12): 1036-1040.
    [68] Fakhari A R, Shamsipur M, Ghanbari Kh. Zinc(II)-selective membrane electrode based on tetra(2-aminophenyl)porphyrin. Analytica Chimica Acta, 2002, 460(2): 177-183.
    [69] Ardakani M M, Dehghani H, Jalayer M, Zare H R. Potentiometric determination of silver(I) by selective membrane electrode based on derivative of porphyrin. Analytical Sciences, 2004, 20(12): 1667-1672.
    [70] Ammann D, Huser M, Krautler B, Schulthess P, Lindemann B, Halder E, Simon W. Anion selectivity of metalloporphrins in membranes. Helvetica Chimica Acta, 1986, 69(4): 849-854.
    [71] Chang Q L, Meyerhoff M E. Membrane-dialyzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems Part 2. A selective sensing system for salicylate. Analytica Chimica Acta, 1986, 186, 81-90.
    [72] Chaniotakis N A, Park S B, Meyerhoff M E. Salicylate-selective membrane electrode based on tin(IV)-tetraphenylporphyrin. Analytical Chemistry, 1989, 61(6): 566-570.
    [73] Bakker E, Malinowska E, Schiller R D, Meyerhoff M E. Anion-selective membrane electrodes based on metalloporphyrins: the influence of lipophilic anionic and cationic sites on potentiometric selectivity. Talanta, 1994, 41(6): 881-890.
    [74] Malinowska E, Meyerhoff M E. Role of axial ligation on potentiometric response of Co(III) tetraphenylporphyrin-doped polymeric membranes to nitrite ions. Analytica Chimica Acta, 1995, 300(1-3): 33-43.
    [75] Steinle E D, Schaller U, Meyerhoff M E. Response characteristics ofanion-selective polymeric membrane electrodes based on gallium(III), indium(III) and thallium(III) porphyrins. Analytical Sciences, 1998, 14(1): 79-84.
    [76] Gao D, Li J H, Yu R Q, Zheng G D. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Analytical Chemistry, 1994, 66(14): 2245-2249.
    [77] Gao D, Liu D, Yu R Q, Zheng G D. Neutral carrier membrane electrode based on binuclear metalloporphyrin. Fresenius' Journal of Analytical Chemistry, 1995, 351(6): 484-488.
    [78] Gao D, Gu J, Yu R Q, Zheng G D. Nitrite-sensitive liquid membrane electrodes based on metalloporphyrin derivatives. The Analyst, 1995, 120(2): 499-502.
    [79] Zhang X B, Guo C C, Jian L X, Shen G L, Yu R Q. Fluoroborate ion sensitive PVC membrane electrode based on chloro[tetra(m-amino-phenyl)porphinato]-manganese as neutral carrier. Analytica Chimica Acta, 2000, 419(2): 227-233.
    [80] Zhang X B, Guo C C, Jian L X, Shen G L, Yu R Q. Bismetalloporphyrin based ISE sensitive for fluoroborate. The Analyst, 2000, 125(12): 2285-2288.
    [81] Zhang X B, Guo C C, Jian L X, Shen G L, Yu R Q. Bismetalloporphyrin complexes as neutral carriers for salicylate-sensitive electrode. Analytical Sciences, 2000, 16(12): 1285-1289.
    [82] Gupta V K, Jain A K, Singh L P, Khurana U, Kumar P. Molybdate sensor based on 5,10,15,20-tetraphenylporphyrinatocobalt complex in a PVC matrix. Analytica Chimica Acta, 1999, 379(1-2): 201-208.
    [83] Lee H K, Song K, Seo H R, Jeon S. Nitrate-selective electrodes based on meso-tetrakis[(2-arylphenylurea)-phenyl]porphyrins as neutral lipophilic ionophores. Talanta, 2004, 62(2): 293-297.
    [84] Ma S C, Chaniotakis N A, Meyerhoff M E. Response properties of ion-selective polymeric membrane electrodes prepared with aminated and carboxylated poly(vinyl chloride). Analytical Chemistry, 1988, 60(20): 2293-2299.
    [85] Ma S C, Meyerhoff M E. Potentiometric pH response of membranes prepared with various aminated-poly(vinyl chloride)products. Microchimica Acta, 1990, 100(3-4): 197-208.
    [86] Cosofret V V, Nahir T M, Lindner E, Buck R P. New neutral carrier-based H+ selective membrane electrodes. Journal of Electroanalytical Chemistry, 1992, 327(1-2): 137-146.
    [87] Lindner E, Cosofret V V, Kusy R P, Buck R P, Rosatzin T, Schaller U, Simon W,Jeney J, Tóth K, Pungor E. Responses of H+ selective solvent polymeric membrane electrodes fabricated from modified PVC membranes. Talanta, 1993, 40(7): 957-967.
    [88] Morf W E, Seiler K, Rusterholz B, Simon W. Design of a novel calcium-selective optode membrane based on neutral ionophores. Analytical Chemistry, 1990, 62(7): 738-742.
    [89] Pringsheim E, Terpetschnig E, Wolfbeis O S. Optical sensing of pH using thin films of substituted polyanilines. Analytica Chimica Acta, 1997, 357(3): 247-252.
    [90] Grant S A, Glass R S. A sol–gel based fiber optic sensor for local blood pH measurements. Sensors and Actuators B, 1997, 45(1): 35-42.
    [91] Kosch U, Klimant I, Werner T, Wolfbeis O S. Strategies To Design pH Optodes with Luminescence Decay Times in the Microsecond Time Regime. Analytical Chemistry, 1998, 70(18): 3892-3897.
    [92] Ji J, Rosenzweig Z. Fiber optic pH/Ca2+ fluorescence microsensor based on spectral processing of sensing signals. Analytica Chimica Acta, 1999, 397(1-3): 93-102.
    [93] Michael K L, Taylor L C, Walt D R. A Far-Field-Viewing Sensor for Making Analytical Measurements in Remote Locations. Analytical Chemistry, 1999, 71(14): 2766-2773.
    [94] Cajlakovic M, Lobnik A, Werner T. Stability of new optical pH sensing material based on cross-linked poly(vinyl alcohol) copolymer. Analytica Chimica Acta, 2002, 455(2): 207-213.
    [95] Niu C G, Zeng G M, Chen L X, Shen G L, Yu R Q. Proton“off-on”behaviour of methylpiperazinyl derivative of naphthalimide: a pH sensor based on fluorescence enhancement. The Analyst, 2004, 129(1): 20-24.
    [96] Fry D R, Bobbitt D R. Investigation of Dynamically Modified Optical Fiber Sensors for pH Sensing at the Extremes of the pH Scale. Microchemical Journal, 2001, 69(2): 123-131.
    [97] Lobnik A, Oehme I, Murkovic I, Wolfbeis O S. pH optical sensors based on sol–gels: Chemical doping versus covalent immobilization. Analytica Chimica Acta, 1998, 367(1-3): 159-165.
    [98] Nivens D A, Zhang Y, Angel S M. A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol–gel. Analytica Chimica Acta, 1998, 376(2): 235-245.
    [99] Nivens D A, Schiza M V, Angel S M. Multilayer sol–gel membranes for opticalsensing applications: single layer pH and dual layer CO2 and NH3 sensors. Talanta, 2002, 58(3): 543-550.
    [100] Brasselet S, Moerner W E. Fluorescence behaviour of single-molecule pH-sensors. Single Molecules, 2000, 1(1): 17-23.
    [101] Ferguson J A, Healey B G, Bronk K S, Barnard S M, Walt D R. Simultaneous monitoring of pH, CO2 and O2 using an optical imaging fiber. Analytica Chimica Acta, 1997, 340(1-3): 123-131.
    [102] Lin H J, Szmacinski H, Lakowicz J R. Lifetime-Based pH Sensors: Indicators for acidic environments. Analytical Biochemistry, 1999, 269(1): 162-167.
    [103] Kosch U, Klimant I, Wolfbeis O S. Long-lifetime based pH micro-optodes without oxygen interference. Fresenius' journal of analytical chemistry, 1999, 364(1-2): 48-53.
    [104] Liu Y. H., Dam T. H., Pantano P. A pH-sensitive nanotip array imaging sensor. Analytica Chimica Acta, 2000, 419(2): 215-225.
    [105] Sanchez-Barragan I, Costa-Fernandez J M, Sanz-Medel A. Tailoring the pH response range of fluorescent-based pH sensing phases by sol–gel surfactants co-immobilization. Sensors and Actuators B, 2005, 107(1): 69-76.
    [106] Gross Z, Galili N, Saltsman I. The first direct synthesis of corroles from pyrrole. Angewandte Chemie International Edition, 1999, 38(10): 1427-1429.
    [107] Gross Z, Galili N, Simkhovich L, Saltsman I, Botoshansky M, Blaser D, Boese R, Goldberg I. Solvent-free condensation of pyrrole and pentafluorobenzaldehyde: a novel synthetic pathway to corrole and oligopyrromethenes. Organic Letters, 1999, 1(4): 599-602.
    [108] Paolesse R, Jaquinod L, Nurco D J, Mini S, Sagone F, Boschi T, Smith K M. 5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chemical Communications, 1999, (14): 1307-1308.
    [109] Paolesse R, Nardis S, Sagone F, Khoury R G. Synthesis and functionalization of meso-aryl-substituted corroles. The Journal of Organic Chemistry, 2001, 66(2): 550-556.
    [110] Mahammed A, Weaver J J, Gray H B, Abdelas M, Gross Z. How acidic are corroles and why? Tetrahedron Letters, 2003, 44(10): 2077-2079.
    [111] Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J, Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. The Journal of Organic Chemistry, 1967, 32(2): 476-476.
    [112] Lee C H, Lindsey J S. One-flask synthesis of meso-substituted dipyrromethanesand their application in the synthesis of trans-substituted porphyrin building blocks. Tetrahedron, 1994, 50(39): 11427-11440.
    [113] Littler B J, Miller M A, Hung C H, Wagner R W, O’Shea D F, Boyle P D, Lindsey J S. Refined synthesis of 5-substituted dipyrromethanes. The Journal of Organic Chemistry, 1999, 64(4): 1391-1396.
    [114] Papkovsky D B, Ponomarev G V, Wolfbeis O S. Protonation of porphyrins in liquid PVC membranes: Effects of anionic additives and application to pH-sensing. Journal of Photochemistry and Photobiology A, 1997, 104(1-3): 151-158.
    [115] Niu C G, Gui X Q, Zeng G M, Yuan X Z. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. The Analyst, 2005, 130(11): 1551-1556.
    [116] Vallee B L, Falchuk K H. The biochemical basis of zinc physiology. Physiological Reviews, 1993, 73(1): 79-118.
    [117] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271(5252): 1081-1085.
    [118] Choi D W, Koh J Y. Zinc and brain injury. Annual Review of Neuroscience, 1998, 21: 347-375.
    [119] Burdette S C, Lippard S J. ICCC34-golden edition of coordination chemistry reviews. Coordination chemistry for the neurosciences. Coordination Chemistry Reviews, 2001, 216-217: 333-361.
    [120] Dennis A E, Smith R C.“Turn-on”fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor. Chemical Communications, 2007, (44): 4641-4643.
    [121] Kimura E, Koike T. Recent development of zinc-fluorophores. Chemical Society Reviews, 1998, 27(3): 179-184.
    [122] Kaur S, Kumar S. Photoactive chemosensors 3: a unique case of fluorescence enhancement with Cu(II). Chemical Communications, 2002, (23): 2840-2841.
    [123] Nishimura G, Shiraishi Y, Hirai T. A fluorescent chemosensor for wide-range pH detection. Chemical Communications, 2005, (42): 5313-5315.
    [124] Pearce D A, Jotterand N, Carrico I S, Imperiali B. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems. Journal of the American Chemical Society, 2001, 123(21): 5160-5161.
    [125] Jiang P, Chen L, Lin J, Liu Q, Ding J, Gao X, Guo Z. Novel zinc fluorescentprobe bearing dansyl and aminoquinoline groups. Chemical Communications, 2002, (13): 1424-1425.
    [126] Mei Y, Bentley P A. A ratiometric fluorescent sensor for Zn2+ based on internal charge transfer (ICT). Bioorganic & Medicinal Chemistry Letters, 2006, 16(12): 3131-3134.
    [127] Nolan E M, Jaworski J, Okamoto K -I, Hayashi Y, Sheng M, Lippard S J. QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). Journal of the American Chemical Society, 2005, 127(48): 16812-16823.
    [128] Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn2+. Journal of the American Chemical Society, 2003, 125(38): 11458-11459.
    [129] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chemical Communications, 2004, (9): 1094-1095.
    [130] Lim N C, Schuster J V, Porto M C, Tanudra M A, Yao L, Freake H C, Brückner C. Coumarin-based chemosensors for zinc(II): toward the determination of thedesign slgorithm for CHEF-type and ratiometric probes. Inorganic Chemistry, 2005, 44(6): 2018-2030.
    [131] Grigg R, Amilaprasadh Norbert W D J. The proton-controlled fluorescence of aminomethyltetraphenylporphyrin–tin(IV) derivatives. Chemical Communications, 1992, (18): 1298-1299.
    [132] Abad S, Kluciar M, Miranda M A, Pischel U. Proton-induced fluorescence switching in novel naphthalimide-dansylamide dyads. The Journal of Organic Chemistry, 2005, 70(25): 10565-10568.
    [133] Bellacchio E, Gurrieri S, Lauceri R, MagrìA, Scolaro L M, Purrello R, Romeo A. Nanomolar determination of copper(II) and zinc(II) using supramolecular complexes of meso-tetrakis(4-N-methylpyridyl)porphine on polyglutamate. Chemical Communications, 1998, (13): 1333-1334.
    [134] Tabata M, Tanaka M. Porphyrins as reagents for trace-metal analysis. Trends in Analytical Chemistry, 1991, 10(4): 128-133.
    [135] Yang R H, Li K A, Wang K M, Zhao F L, Li N, Liu F. Porphyrin assembly onβ-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Analytical Chemistry, 2003, 75(3): 612-621.
    [136] Royzen M, Dai Z, Canary J W. Ratiometric displacement approach to Cu(II)sensing by fluorescence. Journal of the American Chemical Society, 2005, 127(6): 1612-1613.
    [137] Coskun A, Akkaya E U. Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach. Journal of the American Chemical Society, 2005, 127(30): 10464-10465.
    [138] Kwon J Y, Jang Y J, Lee Y J, Kim K M, Seo M S, Nam W, Yoon J. A highly selective fluorescent chemosensor for Pb2+. Journal of the American Chemical Society, 2005, 127(28): 10107-10111.
    [139] Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn2+. Journal of the American Chemical Society, 2005, 127(43): 14962-14963.
    [140] Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T. A selective fluorescent sensor for imaging Cd2+ in living cells. Journal of the American Chemical Society, 2007, 129 (6): 1500-1501.
    [141] Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. Journal of the American Chemical Society, 2002, 124(36): 10650-10651.
    [142] Komatsu K, Urano Y, Kojima H, Nagano T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. Journal of the American Chemical Society, 2007, 129(44): 13447-13454.
    [143] Zhu X J, Fu S T, Wong W K, Guo J P, Wong W Y. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angewandte Chemie International Edition, 2006, 45(19): 3150-3154.
    [144] Crynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 1985, 260(6): 3440-3450.
    [145] Quimby D J, Longo F R. Luminescence studies on several tetraarylporphins and their zinc derivatives. Journal of the American Chemical Society, 1975, 97(18): 5111-5117.
    [146] Choi M M F, Wu X J, Li Y R. Optode membrane fordetermination of nicotine via generation of its bromoethane derivative. Analytical Chemistry, 1999, 71(7): 1342-1349.
    [147] Descalzo A B, Martínez-Má?ez R, Radeglia R, Rurack K, Soto J. Couplingselectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm. Journal of the American Chemical Society, 2003, 125(12): 3418-3419.
    [148] Moon S Y, Youn N J, Park S M, Chang S K. Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. The Journal of Organic Chemistry, 2005, 70(6): 2394-2397.
    [149] Caballero A, Martínez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, Tárraga A, Molina P, Veciana J. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. Journal of the American Chemical Society, 2005, 127(45): 15666-15667.
    [150] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in zqueous media. Journal of the American Chemical Society, 2005, 127(48): 16760-16761.
    [151] Song K C, Kim J S, Park S M, Chung K C, Ahn S, Chang S K. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Organic Letters, 2006, 8(16): 3413-3416.
    [152] Wu J S, Hwang I C, Kim K S, Kim J S. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF-ON. Organic Letters, 2007, 9(5): 907-910.
    [153] Martínez R, Espinosa A, Tárraga A, Molina P. New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine. Organic Letters, 2005, 7(26): 5869-5872.
    [154] Bag B, Bharadwaj P K. Attachment of electron-withdrawing 2,4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/H+-specific exciplex and monomer emissions. Organic Letters, 2005, 7(8): 1573-1576.
    [155] Lor M, Thielemans J, Viaene L, Cotlet M, Hofkens J, Weil T, Hampel C, Müllen K, Verhoeven J W, Van der Auweraer M, De Schryver F C. Photoinduced electron transfer in a rigid first generation triphenylamine core dendrimer substituted with a peryleneimide acceptor. Journal of the American Chemical Society, 2002, 124(33): 9918-9925.
    [156] Nad S, Pal H. Photoinduced electron transfer from aliphatic amines to coumarin dyes. Journal of Chemical Physics, 2002, 116(4): 1658-1670.
    [157] Yang R, Li K, Liu F, Li N, Zhao F, Chan W. 3,3',5,5'-Tetramethyl-N-(9-anthrylmethyl)benzidine: a dual-signaling fluorescent reagent for optical sensing of aliphatic aldehydes. Analytical Chemistry, 2003,75(15): 3908-3914.
    [158] Guo X F, Qian X H, Jia L H. A highly selective andsensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society, 2004, 126(8): 2272-2273.
    [159] Foster C L, Kilner C A, Thornton-Pett M, Halcrow M A. Steric effects on the stereochemistry of copper complexes of 2,6-bis(pyrazol-1-ylmethyl)pyridines. Polyhedron, 2002, 21(9-10): 1031-1041.
    [160] Talanova G G, Elkarim N S A, Talanov V S, Bartsch R A. A calixarene-based fluorogenic reagent for selective mercury(II) recognition. Analytical Chemistry, 1999, 71(15): 3106-3109.
    [161] Moon S Y, Cha N R, Kim Y H, Chang S K. New Hg2+-selective chromo- and fluoroionophore based upon 8-hydroxyquinoline. The Journal of Organic Chemistry, 2004, 69(1): 181-183.
    [162] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angewandte Chemie International Edition, 2004, 43(33): 4300-4302.
    [163] Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society, 2003, 125(47): 14270-14271.
    [164] Ojida A, Nonaka H, Miyahara Y, Tamaru S, Sada K, Hamachi I. Bis(Dpa-ZnII) appended xanthone: excitation ratiometric chemosensor for phosphate anions. Angewandte Chemie International Edition, 2006, 45(33): 5518-5521.
    [165] Yang R H, Chan W H, Lee A W M, Xia P F, Zhang H K, Li K A. A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity. Journal of the American Chemical Society, 2003, 125(10): 2884-2885.
    [166] Coskun A, Akkaya E U. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg(II) sensor. Journal of the American Chemical Society, 2006, 128(45): 14474-14475.
    [167] Ramachandram B, Saroja G, Sankaran N B, Samanta A. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. Journal of Physical Chemistry B, 2000, 104(49): 11824-11832.
    [168] He H, Mortellaro M A, Leiner M J P, Young S T, Fraatz R J, Tusa J K. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Analytical Chemistry, 2003, 75(3): 549-555.
    [169]阎晓斌,翁敏,张曼华,沈涛.荧光素卟啉分子间分子内能量及电子转移反应.中国科学B辑, 1997, 27(3): 282-288.
    [170] Kadish K M, Shiue L R. Reactions of metalloporphyrin. pi. radicals. 3. Solvent- and ligand-binding effects on the one-electron oxidation of 5, 10, 15, 20-tetraphenylporphyrin-d10 metal ions in nonaqueous media. Inorganic Chemistry, 1982, 21(10): 3623-3630.
    [171] Vasilikiotis G S, Kouimtzis T, Apostolopoulou C, Voulgaropoulos A. Spectrophotometric determination of cobalt(II) with 2,2’-dipyridyl-2-pyridylhydrazone. Analytica Chimica Acta, 1974, 70(2): 319-326.
    [172] Themelis D G, Zachariadis G A, Stratis J A. Selective spectrophotometric determination of cobalt(II) using 2,2-dipyridyl-2-pyridylhydrazone and a flow injection manifold. The Analyst, 1995, 120(5): 1593-1598.
    [173]魏琴,杜斌,沈霞,回东冰.微乳液增稳1-(2-吡啶偶氮)-2-萘酚光度法测定汽油中痕量抗静电剂环烷酸钴.分析化学, 1994, 22(11): 1132-1134.
    [174] Reddy B R, Bhaskara Sarma P V R. Extractive spectrophotometric determination of cobalt using Cyanex-272. Talanta, 1994, 41(8): 1335-1339.
    [175] Shen H X, Tang Y P, Xiao X L, Zhang S F, Liu R X. Synthesis and studies on the analytical functions of a highly selective spectrophotometric reagent 2-(8-quinolylazo)-5-N,N-dimethylaminobenzoic acid. The Analyst, 1995, 120(5): 1599-1602.
    [176] Jin G, Zhu Y R, Jiang W Q, Xie B P, Cheng B. Spectrophotometric determination of cobalt(II) using the chromogenic reagent 4,4-diazobenzenediazoaminoazobenzene in a micellar surfactant medium. The Analyst, 1997, 122(3): 263-265.
    [177]赵凤林,连伟,童沈阳. 2-(2’-咪唑偶氮)苯酚-4-磺酸吸光光度法测定钴的研究.理化检验-化学分册, 1997, 33(9): 395-396.
    [178] Li Z, Guanyu Y, Wang B X, Jiang C Q, Yin G Y. Study of 2-(2-quinolinylazo)-5-dimethylaminobenzoic acid as a new chromogenic reagent for the spectrophotometric determination of cobalt. Analytical and Bioanalytical Chemistry, 2002, 374 (7-8): 1318-1324.
    [179] Mori I, Fujita Y, Toyoda M, Hamada M, Akagi M. Simple fluorophotometric determination of eobalt(II) with p-hydroxy-2-anilinopyridine and hydrogen peroxide. Fresenius' journal of analytical chemistry, 1992, 343(12): 902-904.
    [180] Zeng Z T, Jewsbury R A. The synthesis and applications of a new chromogenicand fluorescence reagent for cobalt(II). The Analyst, 1998, 123(12): 2845-2850.
    [181] Mori I, Takasaki K, Fujita Y, Matsuo T. Selective and sensitive fluorometric determinations of cobalt(II) and hydrogen peroxide with fluorescein-hydrazide. Talanta, 1998, 47(3): 631-637.
    [182] Ma Q L, Cao Q E, Zhao Y K, Wu S Q, Hu Z D, Xu Q H. Two sensitive fluorescence methods for the determination of cobaltous in food and hair samples. Food Chemistry, 2000, 71(1): 123-127.
    [183] Monteil-Rivera F, Dumonceau J. Fluorescence spectrometry for quantitative characterization of cobalt(II) complexation by Leonardite humic acid. Analytical and Bioanalytical Chemistry, 2002, 374 (6): 1105-1112.
    [184] Montalti M, Prodi L, Zaccheroni N. Fluorescence quenching amplification in silica nanosensors for metal ions. Journal of Materials Chemistry, 2005, 15(27-28): 2810-2814.
    [185] Sun L C, Hammarstrom L, Akermark B, Styring S. Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 2001, 30(1): 36-49.
    [186] Sjodin M, Styring S, Wolpher H, Xu Y H, Sun L C, Hammarstrom L. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. Journal of the American Chemical Society, 2005, 127(11): 3855-3863.
    [187] Balzani V, Juris A, Venturi M. Luminescent and redox-active polynuclear transition metal complexes. Chemical Reviews, 1996, 96(2): 759-833.
    [188] Kaes C, Katz A, Hosseini M W. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2, 2’-bipyridine units. Chemical Reviews, 2000, 100(10): 3553-3590.
    [189] Padilla-Tosta M E, M Lloris J, Martinez-Manez R, Benito A, Soto J, Pardo T, Miranda M A, Marcos M D. Bis(terpyridyl)-ruthenium(II) units attached to polyazacycloalkanes as sensing fluorescent receptors for transition metal ions. European Journal of Inorganic Chemistry, 2000, 2000(4): 741-748.
    [190] Pratt M D, Beer P D. Heterodinuclear ruthenium(II) bipyridyl-transition metal dithiocarbamate macrocycles for anion recognition and sensing. Tetrahedron, 2004, 60(49): 11227-11238.
    [191]李宏洋,施锋,彭孝军,张蓉,陈小强,张丽珠,孙立成. Mn(III, III)配合物及含酚配体[N4O3]3- - 2Ru( bPy)3模型化合物的性能研究.化学学报, 2004, 62(9): 916-922.
    [192] Liu W H, Wang Y, Tang J H, Shen G L, Yu R Q. An optical fiber sensor for berberine based on immobilized 1,4-bis(naphth[2,1-d]oxazole-2-yl)benzene in a new copolymer. Talanta, 1998, 46(4): 679-688.
    [193] Tahan J E, Granadillo V A, Romero R A. Electrothermal atomic absorption spectrometric determination of Al, Cu, Fe, Pb, V and Zn in clinical samples and in certified environmental reference materials. Analytica Chimica Acta, 1994, 295(1-2): 187-197.
    [194] Bowins R J, Mcnutt R H. Electrothermal isotope dilution inductively coupled plasma mass spectrometry method for the determination of sub-ng/ml levels of lead in human plasma. Journal of Analytical Atomic Spectrometry, 1994, 9(11): 1233-1236.
    [195] Zougagh A, Torres A G, Alonso E V, Pavon J M C. Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. Talanta, 2004, 62(3): 503-510.
    [196] Lu S Y, Li X J, Liu W, Lin H. Simultaneous determination of Pb, Cd, Cr and Co released from ceramic ware by ICP-AES. Spectroscopy and Spectral Analysis, 2004, 24(9): 1124-1126.
    [197] Chen C T, Huang W P. A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society, 2002, 124(22): 6246-6247.
    [198] Liu J M, Bu J H., Zheng Q Y, Chen C F, Huang Z T. Highly selective fluorescent sensing of Pb2+ by a new calix[4]arene derivative. Tetrahedron Letter, 2006, 47(12): 1905-1908.
    [199] Rouhollahi A, Ganjali M R, Shamsipur, M. Lead ion-selective PVC membrane electrode based on 5,5’-dithiobis-(2-nitrobenzoic acid). Talanta, 1998, 46(6): 1341-1346.
    [200] Ohki A, Kim J S, Suzuki Y, Hayashita T, Maeda S. Lead-selective poly(vinyl chloride) membrane electrodes based on acyclic dibenzopolyether diamides. Talanta, 1997, 44(6): 1131-1135.
    [201] Tavakkoli N, Khojasteh Z, Sharghi H, Shamsipur M. Lead ion-selective membrane electrodes based on some recently synthesized 9,10-anthraquinone derivatives. Analytica Chimica Acta, 1998, 360(1-3): 203-208.
    [202] Abbaspour A, Tavakol F. Lead-selective electrode by using benzyl disulphide as ionophore. Analytica Chimica Acta, 1999, 378(1-3): 145-149.
    [203] Mousavi M F, Sahari S, Alizadeh N, Shamaipur M. Lead ion-selective membrane electrode based on 1,10-dibenzyl-1,10-diaza-18-crown-6. Analytica ChimicaActa, 2000, 414(1-2): 189-194.
    [204] Zareh M M, Ghoneim A K, Abd El-Aziz M H. Effect of presence of 18-crown-6 on the response of 1-pyrrolidine dicarbodithioate-based lead selective electrode. Talanta, 2001, 54(6): 1049-1057.
    [205] Sadeghi S , Dashti G R, Shamsipur M. Lead-selective poly(vinyl cholride) membrane electrode based on piroxicam as a neutral carrier. Sensors and Actuators B, 2002, 81 (2-3): 223-228.
    [206] Lee H K, Song K, Seo H R, Chio Y K, Jeon S. Lead (II)-selective electrodes based on tetrakis(2-hydroxy-1-naphthyl)porphyrins: effect of atropisomers. Sensors and Actuators B, 2004, 99(2-3): 323-329.
    [207] Zhang X B, Han Z X, Fang Z H, Shen G L, Yu R Q. 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Analytica Chimica Acta, 2006, 562(2): 210-215.
    [208] Li C Y, Zhang X B, Han Z X, ?kermark B, Sun L, Shen G L, Yu R Q. A wide pH range optical sensing system based on a sol–gel encapsulated amino-functionalised corrole. The Analyst, 2006, 131(3): 388-393.
    [209] Zhang X B, Guo C C, Xu J B, Shen G L, Yu R Q. A novel ethacrynic acid sensor based on a lanthanide porphyrin complex in a PVC matrix. The Analyst, 2000, 125(5): 867-870.
    [210] Zhang X B, Li Z Z, Guo C C, Chen S H, Shen G L, Yu R Q. Porphyrin–metalloporphyrin composite based optical fiber sensor for the determination of berberine. Analytica Chimica Acta, 2001, 439(1): 65-71.
    [211] Chang C J, Deng Y, Heyduk A F, Chang C K, Necera D G. Xanthene-bridged cofacial bisporphyrins. Inorganic Chemistry, 2000, 39(5): 959-966.
    [212] Chang C J, Deng Y, Peng S M, Lee G H, Yeh C Y, Necera D G. A convergent synthetic approach using sterically demanding arylidipyrrylmethanes for tuning the pocket sizes of cofacial bisporphyrins. Inorganic Chemistry, 2002, 41(11): 3008-3016.
    [213] Yeh C Y, Chang C J, Nocera D G.“Hangman”porphyrin for the assembly of a model heme water channel. Journal of the American Chemical Society, 2001, 123(7): 1513-1514.
    [214] Horning E C. Organic Syntheses Coll. New York: Wiley, 1959: 3, 140-140.
    [215] Kruper W J, Chamberlin J T, Kochanny A M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins. The Journal of Organic Chemistry, 1989, 54(11): 2753-2756.
    [216] Craggs A, Moody G. J, Thomas J D R. PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments. Journal of Chemical Education, 1974, 51(8): 541-544.
    [217] Sakakibara Y, Okutsu S, Enokida T, Tani T. Red organic electroluminescence devices with a reduced porphyrin compound, tetraphenylchlorin. Applied Physics Letters, 1999, 74(18): 2587-2589.
    [218] Ohno O, Kaizu Y, Kobayashi H. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media. Journal of Chemical Physics, 1993, 99(5): 4128-4139.
    [219] Tsuge K, Kataoka M, Seto Y. Cyanide and thiocyanate levels in blood and saliva of healthy adult volunteers. Journal of Health Science, 2000, 46(5): 343–350.
    [220] Michigami Y, Fujii K, Ueda K, Yamamoto Y. Determination of thiocyanate in human saliva and urine by ion chromatography. The Analyst, 1992, 117(12): 1855–1858.
    [221] Staden J F V, Botha A. Spectrophotometric determination of thiocyanate by sequential injection analysis. Analytica Chimica Acta, 2000, 403(1-2): 279–286.
    [222] Gong B, Gong G. Fluorimetric method for the determination of thiocyanate with 2′,7′-dichlorofluorescein and iodine. Analytica Chimica Acta, 1999, 394(2-3): 171–175.
    [223] Sollner K, Shean G M. Liquid ion-exchange membranes of extreme selectivity and high permeability for anions. Journal of the American Chemical Society, 1964, 86(9): 1901–1902.
    [224] Erden S, Demirel A, Memon S, Yilmaz M, Canel E, Kilic E. Using of hydrogen ion-selective poly(vinyl chloride) membrane electrode based on calix[4]arene as thiocyanate ion-selective electrode. Sensors and Actuators B, 2006, 113(1): 290–296.
    [225] Chai Y Q, Dai J Y, Yuan R, Zhong X, Liu Y. Highly thiocyanate-selective membrane electrodes based on the N,N'-bis-(benzaldehyde)-glycine copper(II) complex as a neutral carrier. Desalination, 2005, 180(1-3): 207–215.
    [226] Amini M K, Rafi A, Ghaedi M, Habibi M H, Zo M M. Bis(2-mercaptobenzoxazolato)mercury(II) and bis(2-pyridinethiolato)mercury(II) complexes as carriers for thiocyanate selective electrodes. Microchemical Journal, 2003, 75(3): 143–150.
    [227] Hassan S S M, Ghalia M H A, Amr A G E, Mohamed A K H. Novel thiocyanate-selective membrane sensors based on di-, tetra-, andhexa-imidepyridine ionophores. Analytica Chimica Acta, 2003, 482(1): 9–18.
    [228] Abbaspour A, Kamyabi M A, Esmaeilbeig A R, Kia R. Thiocyanate-selective electrode based on unsymmetrical benzoN4 nickel(II) macrocyclic complexes. Talanta, 2002, 57(5): 859–867.
    [229] Amini M K, Shahrokhian S, Tangestaninejad S. Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Analytica Chimica Acta, 1999, 402(1-2): 137–143.
    [230] Shamsipur M, Poursaberi T, Rezapour M, Ganjali M R, Mousavi M F, Lippolis V, Montesu D R. [Cu(L)](NO3)2 (L = 4, 7-bis(3-aminopropyl)-1-thia-4, 7-diazacyclononane) as a suitable ionophore for construction of thiocyanate-selective electrodes and their use in determination of urinary and salivary thiocyanate concentration. Electroanalysis, 2004, 16(18): 1336–1342.
    [231] Dai J Y, Yuan R., Chai Y Q, An L X, Zhong X, Liu Y, Tang D P. Highly thiocyanate-selective PVC membrane electrode based on lipophilic ferrocene derivative. Electroanalysis, 2005, 17(20): 1865–1869.
    [232] Buhlmann P, Yahya L, Enderes R. Ion-selective electrodes for thiocyanate based on the dinuclear zinc(II) complex of a bis-N,O-bidentate schiff base. Electroanalysis, 2004, 16(12): 973–978.
    [233] Kibbey C E, Park S B, DeAdwyler G, Meyerhoff M E. Further studies on the potentiometric salicylate response of polymeric membranes doped with tin(IV)-tetraphenylporphyrins. Journal of Electroanalytical Chemistry, 1992, 335(1-2): 135–149.
    [234] Daunert S, Wallace S, Florido A, Bachas L G. Anion-selective electrodes based on electropolymerized porphyrin films. Analytical Chemistry, 1991, 63(17): 1676–1679.
    [235] Helms J H, Haar L W T , Hatfield W E, Hattis D L, Jayaraj K, Toney G E, Gold A, Mewborn T D, Pemberton J E. Effect of meso substituents on exchange-coupling interactions in .mu.-oxo iron(III) porphyrin dimmers. Inorganic Chemistry, 1986, 25(14): 2334–2337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700