用户名: 密码: 验证码:
三维数据场表面重建及在人体动画和人体测量学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光三维数字化技术是应用激光测量方法获取物体表面三维数据场,并在计算机中实现数据场的预处理、生成可视化模型并进行人机交互处理及其它相关研究的数字化技术和方法。该技术集光、机、电、算于一体,广泛应用于医学矫形、逆向工程和快速成型、人机工效学及服装设计与制造业、三维动画和虚拟现实等领域。
     本文以三维数据场,特别是人体轮廓线数据场为对象,实现数据场的预处理,重点解决三维表面网格重建问题,研究网格平滑、孔洞填补和网格简化等模型编辑与优化算法。提出基于径向基函数和梯度最速下降法相结合的骨架提取算法,实现基于关节骨架链的人体模型动画算法。最后完成了人机工效学和服装设计中人体立姿和坐姿关键尺寸测量。主要创新点如下:
     (1)对人体轮廓线数据场进行预处理。提出基于距离模糊逻辑判断删除轮廓线噪声的方法和基于人体特征的人体朝向自动调整算法,应用迭代对应点匹配算法自动对齐多传感器数据。
     (2)提出一种三维数据场表面重建算法并实现网格的编辑优化。利用曲面局平特性,提出基于投影的三角网格重建算法,并根据人体轮廓线数据特点优化邻域搜索以加快重建速度;网格编辑优化包括基于弹性模型的迭代低通滤波网格平滑、基于灰色预测GM(1,1)模型的孔洞填补和基于二次误差测度的单元折叠网格简化算法。
     (3)实现三维模型骨架自动提取和人体计算机动画算法。提出基于径向基函数空间曲面隐式表示和梯度最速下降法相结合的三维模型骨架提取算法,通过在人体骨架上定位关节点,设定属性而生成关节骨架链,提出通过柔性模型绑定“皮肤点”到对应关节点以初步实现人体动画。
     (4)完成人体关键尺寸,特别是人体坐姿尺寸的自动测量。应用动画算法将人体模型变形到测量姿势:站姿和坐姿。设计人体测点的自动定位算法,测量了人机工程学与服装设计中常用的38个人体关键尺寸,给出了测量结果。
Laser 3D digitization technique includes obtaining the surface point data of 3D real object with laser methods, implementing data pretreatment, creating and interavtively editing 3D surface models in computer and other correlative research fields. The technique integrates optics, mechanics, electronics and algorithms and commands increasing applications, such as medical diorthosis, reverse engineering and rapid prototyping manufacture, ergonomics and garment design and manufacture, 3D animation and virtual reality etc.
     With 3D data set, especially human body contour data obtained from Laser 3D-scanning system as research objects the data pre-processing is first carried out, and then suface mesh reconstruction based on local-flatness property and projection is studied in detail. After surface mesh editing and optimization, including mesh smoothing, mesh hole filling and mesh simplification, the algorithm for skeleton extraction from 3D mesh models using radial basis functions and gradient rapid descent is presented, and the human animation on the basis of joint-skeleton links is performed. As the last key content of the subject human key sizes auto-measurement is implemented.
     The main innovations are as follows:
     (1) Pre-processing human body contour point data set. The method based on distance fuzzy logic judgement to delete noise and stray points from point cloud is presented and the algorithm for auto-adjust human orientation and the human auto-partition based on human feature points are introduced. Iterative corresponding points (ICP) algorithm is used to registrate point cloud from multi-sensor.
     (2) A 3D Data surface meshes reconstruction algorithm based on projection that makes use of local-flatness property of 3D surface is proposed. This method can recognize the holes and boundaries automatically, and by taking full advantage of characteristics of human contour data reconstruction time can be shortened. After surface reconstruction is completed, the mesh editing and optimization methods are discussed, including mesh-smoothing algorithm based on spring model and lower-pass filter, hole-filling algorithm using grey prediction GM(1,1), and mesh simplification algorithm based on mesh cell contraction under the rule of quadric error metric.
     (3) The 3D skeleton extraction from surface mesh models and human model animation based on skeleton are implemented. Firstly apply radial basis functions to implicit represent 3D mesh models, and by using gradient rapid descent method 3D skeletons can be computed and obtained. Locate the joints on the human body skeleton by manual and set the properties of each joint and so build up joint-skeleton links. After binding the skin vertices to corresponding joints by flexible model the human animation is implemented.
     (4) Human body key sizes automatic measurement is implemented. First use animation algorithm to change body posture to stand posture and squat posture in order to satisfy measurement requirements. Algorithms for locating feature points based on human suface mesh model are introduced. After 9 surface feature points and 4 feature joints are found out, the 38 key sizes, which are very useful in ergonomics and garment design and manufacture fields are measured and the results for male and female models are acquired respectively.
引文
[1] 张国雄. 三坐标测量机的发展趋势. 中国机械工程, 2000, 11 (2): 222-227.
    [2] Joao Bosco de Aquino Silva, M Burdekin. A modular space frame for assessing the performance of co-ordinate measuring machines (CMMs). Precision Engineering, 2002, 26 (1): 37-48.
    [3] L Li, N Schemenauer, X Peng, Y Zeng, P Gu. A reverse engineering system for rapid manufacturing of complex objects. Robotics and Computer Integrated Manufacturing, 2002, 18: 53-67.
    [4] 由志福. 曲面型体三维相位检测法技术及与 CAD/CAM 集成的研究, 博士论文, 清华大学机械工程系, 1998.
    [5] Hai Ding, Powell R E, et al. Warpage measurement comparison using shadow Moiré and projection Moiré methods. Proc. of 52nd Electronic Components and Technology Conference, 2002, 176 –182.
    [6] 牛小兵, 林玉池等. 光栅投影三维轮廓测量及关键技术分析. 光电子·激光, 2002, 13 (9): 983-986.
    [7] 司书春, 王蕴珊等. 移相式轮廓测量法相移误差的计算机模拟校正. 光电子·激光, 2001, 12 (8): 868-871.
    [8] 康新, 何小元. 两步移想实现投映栅相位测量轮廓术. 光学学报, 2003, 23 (1): 75-79.
    [9] Schmit J, Creath K. Window function influences on phase error in phase-shifting algorithm. Appl. Opt., 1996, 35 (28): 5642-5649.
    [10] Spagnolo G S, Guattari G, et al. Contouring of artwork surfacee by ringe projecton and FFT analysis. Opt. Lasers Engng., 2000, 33 (2): 141-156.
    [11] Gabriella Tognola, Marta Parazzini, et al. A fast and reliable system for 3D surface acquisition and reconstruction. Image and Vision Computing, 2003, 21: 295–305.
    [12] 许智钦, 孙长库等. 三维彩色逆向工程. 光电子·激光, 2001, 12 (9): 937-939.
    [13] Park J, DeSouza G N, Kak A C. Dual-beam structured-light scanning for 3-D object modeling. Proc. of Third International Conference on 3-D Digital Imaging and Modeling, 2001, 65-72.
    [14] Frankchen, 汪世祯. 光学方法测量三维形状综述. 云光技术, 2002, 34 (2): 36-47.
    [15] 吕且妮, 张以谟, 葛宝臻等. 数字全息技术及其在粒子场测试中的研究进展. 光电子·激光, 2002, 13 (10): 1087-1091.
    [16] 葛宝臻, 罗文国, 吕且妮等. 数字再现三维物体菲涅尔计算全息的研究. 光电子·激光, 2002, 13 (12): 1289-1292.
    [17] 黄锦, 张晓兵等. 基于图像处理的三维测量方法. 电子器件, 2002, 25 (4): 364-368.
    [18] Hancock J, Langer D, et al. Active laser radar for high-performance measurements. IEEE International Conference on Robotics and Automation, 1998, 2: 1465-1470.
    [19] 唐泽圣等. 三维数据场可视化. 第一版, 北京, 清华大学出版社, 1999.
    [20] Herman G.T., Liu H.K., Three-Dimensional Display of Human Organs from Computed Tomograms. Computer Graphics Image Processing, 1979, 9:1-21.
    [21] Lorensen W.E., Cline H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics. 1987,21(4): 163-169.
    [22] Nielson G., Hamann B.. The Asymptotic Decider: Resolving the Ambiguity in Marching Cube. Visualization’91,1991: 83-91.
    [23] J. Wilhelms, A. Von Gelder, Topological Considerations in IsoSurface Generation. San Diego Workshop on Volume Visualization, 1990,24(5): 79-86.
    [24] Zhou Y, Chen W Tang Z. An Elaborate Ambiguity Detection Method for Constructing Isosurfaces within Tetrahedral Meshes. Computers & Graphics. 1995,19(3): 355-364.
    [25] Doi A, Koide A. An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells. IECIE Transactions, 1991, E74 (1): 214-224.
    [26] Cline H. E., Lorensen W. E.. Two Algorithms for Three-dimensional Reconstruction of Tomograms. Medical Physics. 1988, 15(3): 320-327.
    [27] Bowyer, A.. Computing Dirichlet Tessellations. Computer Journal. 1981,24(2): 162-166.
    [28] Lawson C L. Generation of a triangular grid with application to contour plotting. California Institute of technology Jet Propulsion Laboratory. Technical Memorandum 299, 1972.
    [29] Gopi M, Krishnan S. A fast and efficient projection-based approach for surface reconstruction. High Performance Computer Graphics, Multimedia and Visualization, 2000, (1): 1-12.
    [30] Boissonnat J D. Geometry structures for the three-dimensional shape representation. ACM Transaction on Computer Graphics. 1984, 3(4): 266-286.
    [31] Edelsbrunner H, Mücke E P. Three-dimensional alpha shapes. ACM Transactions on Graphics. 1994,13(1): 43-72.
    [32] Amenta N, Bern M. Surface reconstruction by Voronoi filtering. Discrete Compute Geometry, 1999, 22(4): 481-504.
    [33] Ruprecht, D.,Nagel, R., Muller, H. Spatial free-form deformation with scattered data interpolation methods. Computer and Graphics.1995, 19(1): 63-71.
    [34] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruction from unorganized points. Computer Graphics (SIGGRAPH ’92 Proceedings), 1992: 71-78.
    [35] 黄运保, 王启付, 武剑洁等. 基于局部三维 Delaunay 的插值网格边界增量构造算法. 工程图学学报. 2004,3: 46-52.
    [36] 周懦荣, 张丽艳, 苏旭等. 海量散乱点的曲面重建算法研究. 软件学报. 2001,12(2): 249-255.
    [37] 谭建荣, 李立新. 基于曲面局平特性的散乱数据拓扑重建算法. 软件学报. 2003, 13(11): 2121-2106.
    [38] 王青, 王融清, 鲍虎军等. 散乱数据点的增量快速曲面重建算法. 软件学报. 2000, 11(9): 122l-l227.
    [39] Fuchs H, Kedem Z M, Optimal Surface Reconstruction from Planar Contours. Communication of the ACM. 1977, 20(10): 693-702.
    [40] Keppel E. Approximating Complex Surfaces bu Triangulation of Contour Lines. IBM Journal Res. Develop. 1975: 2~10.
    [41] Christiansen H N. Sederberg T W. Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics. Computer Graphics. 1978, 12(2): 187-192.
    [42] Ganapathy S, Dennehy T G. A New General Triangulation Method for Planar Contours. Computer Graphics. 1982, 16(3): 69-75.
    [43] Ekoule A. B. Peyrin F C. A Triangulation Algorithm from Arbitrary Shaped Multiple Planar Contours. ACM Transaction on Graphics. 1991, 10(2): 182-199.
    [44] Meyers D. Skinners S. Surfaces From Contours ACM Transactions on Graphics. 1992, 11(3): 228-258.
    [45] Jae-Moon Chung. Noboru Ohnishi. Matching and recognition of planar shapes using medial axis properties. Area Della Ricerca Genova, 2004,6: 14-18.
    [46] Jones M W. Chen M. A New Approach to the Construction of Surfaces from Contour Data. Eurographics’94. 1994, 13(3): C75-C84.
    [47] 鲍苏苏, 林斌. 医学图象三维表面重建分叉曲面的数学形态学研究. 计算机科学. 2003, 30(12): 136-138.
    [48] 张家树, 李时光. 一种新的物体连续切片图象的截面三维重建. 西南师范大学学报(自然科学版). 1992,17(9): 313-319.
    [49] 张勇, 纪凤欣, 欧宗英, 秦绪佳.一种由二维轮廓线重建物体表面的方法. 小型微型计算机系统. 2002, 23(12): 1514-1516.
    [50] Taubin Geometric Signal Processing on Polygonal Meshes. EUROGRAPHICS’2000.
    [51] Hao Zhang, Eugene Fiume. Butterworth Filtering and Implicit Fairing of Irregular Meshes. IEEE: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03), 2003:
    [52] Atsushi Yamada, Kenji Shimada, Tomotake Furuhata. A Discrete Spring Model to Generate Fair Curves and Surfaces. In: Proceedings of Pacific Graphics'99, 1999: 270-279.
    [53] Peter Liepa. Filling Holes in Meshes. Eurographics Symposium on Geometry Processing’2003. 2003:199-206.
    [54] Yongtae Jun. A piecewise hole filling algorithm in reverse engineering. Computer-Aided Design. 2005(37): 263-270.
    [55] Charles K. Chui, Min-Jun Lai. Filling polygonal holes using C1 cubic triangular spline patches. Computer Aided Geometric Design. 2000(17): 297-307.
    [56] 张丽艳, 周儒荣, 周来水. 三角网格模型孔洞修补算法研究. 应用科学学报. 2002, 20(3): 221-224.
    [57] 杜佶, 张丽艳, 王宏涛等. 基于径向基函数的三角网格曲面孔洞修补算法.计算机辅助设计与图形学学报. 2005,17(9): 1976-1982.
    [58] James Davis, Stephen R. Marschner, Matt Garr, Marc Levoy. Filling Holes in Complex Surfaces using Volumetric Diffusion. IEEE Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission (3DPVT.02). 2002:1-11.
    [59] J. C. Carr; R. K. Beatson, J. B. Cherrie, et al. Reconstruction and Representation of 3D Objects with Radial Basis Functions. ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA: 67-76.
    [60] Chun-Yen Chen, Kuo-Young Cheng, H. Y. Mark Liao. A Sharpness Dependent Approach to 3D Polygon Mesh Hole Filling. EUROGRAPHICS’2005, 2005,9: 13-16.
    [61] JIANNING WANG, MANUEL M. OLIVEIRA. A Hole-Filling Strategy for Reconstruction of Smooth Surfaces in Range Images. In: Proceedings of Computer Graphics and Image Processing (SIBGRAPI'03), Sao Paulo, Brazil, 2003: 11-18.
    [62] SCHROEDER W J, ZARGE J A. LORENSON W E. Decimation of triangle meshes. Computer Graphics. 1992, 26(2): 65-70.
    [63] Hoppe H, DeRose T, Duchamp T, et al. Mesh Optimization. Computer Graphics. 1993:19-26.
    [64] Hamann B. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, 1994, 11(2): 179~2l4.
    [65] CIGNONI P, MONTANI C, SCOPIGNO R. Metro: Measuring error on simplified surfaces. EURO-GRAPHICS’98. 1998, 7(2): 1167-1174.
    [66] 马小虎, 潘志庚, 石教英. 基于三角形移去准则的多面体模型简化方法. 计算机学报. 1998, 21(6): 492-498.
    [67] GARLAND M. Multiresolution modeling: survey & future opportunities. In: Proceedings of EURO-GRAPHICS, Electronic version. Austria: Vienna, 1999.
    [68] 李现民, 李桂清, 张小玲. 基于子分规则的边折叠简化方法. 计算机辅助设计与图形学学报. 2002, 14(1): 8-13.
    [69] 周昆, 潘志庚, 石教英. 基于三角形折叠的网格简化算法. 计算机学报. 1998, 21(6): 506-513.
    [70] Kalvin A. D., Taylor R H. Superfaces: Polygonal Mesh Simplification with Bounded Error. IEEE Computer Graphics and Application.1996: 64-77.
    [71] Dehaemer Jr, J. Michael. Simplification of Objects Rendered by Polygonal Approximations. Computer & Graphics. 1991,15(2): 175-184.
    [72] Eck M, De Rose T. Multiresolution analysis of arbitrary meshes. Computer Graphics. 1995, 29(2): 173-182.
    [73] Rossignac J, Borrel T, et al. Mesh optimization. Computer Graphics (SIGGRAPH’93). 1993(27): 19-26.
    [74] H. Hoppe. Progressive Meshes, ACM SIGGRAPH Proc., 1996: 99-108.
    [75] Xia J C, Varshney A. Dynamic View-dependent Simplification for Polygonal Models. Proceedings of Visualization’96. 1996: 327-334.
    [76] Hoppe H. View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering. Proceedings of IEEE Visualization Conference. 1998:35-42.
    [77] Michael Garland, Paul S. Heckbert. Simplifying Surfaces with Color and Texture using Quadric Error Metrics. IEEE.1998: 263-269.
    [78] 赵惠芳, 阮秋琦. 基于二次误差测度的带属性三角网格简化算法. 中国铁道科学.2005,26(1): 79-82.
    [79] J Cohen, A Varshney, D Manopcha, et al. Simplification Envelopes. Computer Graphics (SIGGRAPH’96), 1996,30: 119-128.
    [80] H. Blum. A Transformation for Extracting new Descriptors of Shape. In Proc. Symp Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press, 1967: 362-381.
    [81] V. Poty, S. Ubeda. A parallel thinning algorithm using k×k masks. Internation Journal of Pattern Recognition and Artificial Intelligence. 1993,7(5): 1183-1202.
    [82] Y. Y. Zhang, P. S. P. Wang. A fast and flexible thinning algorithm. IEEE Transactions on Computers. 1989(38): 741-745.
    [83] 樊雅萍, 黄生学, 温佩芝等. 基于数字距离变换的3D模型骨架提取算法. 信息与控制. 2004, 33(6): 686-693.
    [84] Yong Zhou, Arie Kaufman, Arthue W. Toga. Three-dimensional skeleton and centerline generation based on approximate minimum distance field. The Visual Computer. 1998(14): 303-314.
    [85] 胡英, 侯悦, 徐心和. 基于双距离场的三维中心路径提取算法. 中国图象图形学报. 2003, 8A(11): 1272-1276
    [86] Ingmar Bitter, Arie E. Kaufman, Mie Sato. Penalized-Distance Volumetric Skeleton Algorithm. IEEE Transactions on Visualization and Computer Graphics. 2001, 7(3): 195-206.
    [87] R. L. Ogniewicz, O. Kubler. Hierarchic Voronoi Skeletons. Pattern Recognition. 1995: 1-15.
    [88] M. Naf, G. Szekely, R. Kikinis. 3D Voronoi Skeletons and Their Usage for the Characterization and Recognition of 3D Organ Shape. COMPUTER VISION AND IMAGE UNDERSTAND. 1997, 66(2): 147-161.
    [89] Vijay Srinivasan, Lee R. Nackman. Voronoi diagram for multiply connected polygonal domains I: Algorithm. IBM J. RES. DEVELOP, 1987, 31(3): 361-370.
    [90] R. Fabbri, L. F. Estrozi, L. da F. Costa. On Voronoi Diagrams and Medial Axes. Journal of Mathematical Imaging and Vision. 2002,17(1): 24-40.
    [91] Jayachandra M Reddy, George M Turkiyyah. Computation of 3D skeletons using a generalized Delaunay triangulation technique. Computer-Aided Design. 1995, 27(9): 677-694.
    [92] Jen-Hui Chuang, Chi-Hao Tsai, Min-Chi Ko. Skeletonization of three-Dimensional Object Using Generalized Potential Field. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 2000,22(11): 1241-1251.
    [93] Narendra Ahuja, Jen-Hui Chuang. Shape Representation Using a Generalized Potential Field Model. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 1997, 19(2): 169-176.
    [94] Frederic Leymarie, Martine D. Levine. Simulating the Grassfire Transform using an Active Contour Model. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 1992, 14(1): 56-75.
    [95] Evan C. Sherbrooke. Nicholas M. Patrikalakis, Erik Brisson. Computation of the Medial Axis Transform of 3-D Polyhedra. ACCM Solid Modeling’95. Salt Lake City, Utah, USA. 1995: 187-199.
    [96] Yuandong Yang, Oliver Brock, Robert N. Moll. Efficient and Robust Computation of an Approximated Medial Axis. In Proceedings of the ACM. Symposium on Solid Modeling and Applications, Genoa, Italy, 2004: 15-24.
    [97] Yong Zhou, Arthur W. Toga. Efficient Skeletonization of Volumetric Objects. IEEE Transactions on Visualization and Computer Graphics. 1999, 5(3): 196-209.
    [98] D. Silver, X. Wang. Volume Tracking. Proc. IEEE Visualization’96. San Francisco. 1996: 157-164.
    [99] Roger Tam, Wolfgang Heidrich. Shape Simplification Based on the Medial Axis Transform. IEEE Visualization 2003, Seattle, Washington, USA. 2003: 481-488.
    [100] Paik DS, Beaulieu CF, Jeffrey RB, Rubin GD, Napel S. Automated flight path planning for virtual endoscopy. Med Phys. 1998:629-637.
    [101] Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, et al. Automatic Animation Skeleton Construction Using Repulsive Force Field. Pacific Conference on Computer Graphics and Applications 2003: 409-413.
    [102] Zordan B V, Majkowsk A, Chiu B, Fast M. Dynamic response for motion capture animation. ACM Transactions on Graphics, 2005, 24(3): 697-701.
    [103] Magnenat-Thalmann N, Laperriere R, Thalmann D. Joint-Dependent Local Deformations for Hand Animation and Object Grasping. Proceedingsof Graphics Interface’88, 1988: 26-33.
    [104] Kalra P, Thalmann N M, Moccozet L, Sannier G, Aubel A, Thalmann D. Real-time animation of realistic virtual humans. Computer Graphics and Applications. 1998, 18(5): 42-56.
    [105] Mohr A, Tokheim L, Gleicher M. Direct manipulation of interactive character skins. Proceedings of the 2003 symposium on Interactive 3D graphics, 2003: 27-30.
    [106] Lewis J P, Cordner M, Fong N. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. Computer Graphics (SIGGRAPH’2000 Proceedings), 2000: 165-172.
    [107] Leclercq A, Akkouche S, Galin E. Mixing triangle meshes and implicit surfaces in character animation. Animation and Simulation’01 (12th Eurographics Workshop Proceedings), Manchester, England, 2001: 37-47.
    [108] Gagvani N, Silver D. Animating Volumetric Models.Graphical Models, 2001, 63(6): 443-458.
    [109] Nedel L. P, Thalmann D. Anatomically modeling of deformable human bodies. The Visual Computer, 2000, 16(6): 306-321.
    [110] 刘宝善, 郭小朝, 马雪松.中国男性飞行员人体尺寸测量实用性特征. 人类工效学, 2002,8(4):1-2.
    [111] 刘宝善, 郭小朝, 马雪松.中国男性飞行员人体尺寸测量资料分析.人类工效学, 2003,9(2):1-2.
    [112] 邬红芳. 人体尺寸测量CAT及服装CAD系统. 安徽机电学院学报,2000, 15(4):29-31.
    [113] 徐军, 陶开山. 人体工程学概论. 第一版. 北京: 中国纺织出版社, 2002.
    [114] 费广正, 乔林. Visual C++ 6.0高级编程技术 OpenGL篇. 第一版, 北京: 中国铁道出版社,2000.
    [115] Richard S. Wirght, Hr Michael Sweet. OpenGL Super Bible. 第二版, 北京: 人民邮电出版社, 2001.
    [116] OpenGL体系结构审核委员会. Dave Shreiner, Mason Woo, Jackie Neider, Tom Davis. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.4. 第四版, 北京:人民邮电出版社, 2005.
    [117] 葛宝臻,孙明睿,吕且妮等. 光带法激光三维人体扫描系统研究. 光电子·激光,2003,14(7): 733-736.
    [118] 孙宇臣. 激光三维彩色数字化系统关键技术研究. 博士学位论文. 天津:天津大学.2005,6.
    [119] 孙宇臣, 葛宝臻, 牟冰, 孙明睿, 张以谟. 采用线性分区方法对三维传感器的标定. 光电子·激光, 2005,16 (2):135-139.
    [120] Charlie C.L. Wang, Terry K.K. Chang, Matthew M.F. Yuen. From laser-sacnned data to feature human model: a system based on fuzzy logic concept. Computer-Aided Design. 2003(35): 241-253.
    [121] Besl P. J, McKay N. D. A method for registration of 3-D shapes. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
    [122] 杜朴. 三维人体轮廓数字化及尺寸测量技术研究. 硕士学位论文. 天津: 天津大学. 2006,1
    [123] K. S. Arun, et al., Least-Squares Fitting of Two 3-D Point Sets, IEEE Trans. on PAMI, 1987, 9(5): 698-700.
    [124] O. D. Faugeras, M. Hebert. The Representation, Recognition and Locating of 3D Objects. International Journal of Robotic Research. 1986,5(3): 27-52.
    [125] 金涛, 童水光. 逆向工程技术. 第一版. 北京: 机械工业出版社,2003.
    [126] 万军, 鞠鲁粤. 逆向工程中数据点云精简方法研究. 上海大学学报(自然科学版), 2004, 10 (1): 26-29.
    [127] 李光明, 田捷等. 基于距离均衡化的网格平滑算法. 计算机辅助设计与图形学学报. 2002,14 (9): 820-823.
    [128] 张丽艳, 周儒荣等. 海量测量数据简化技术研究. 计算机辅助设计与图形学学报. 2001, 13(11):1019-1023.
    [129] K. H. Lee, H. Woo and T. Suk. Data reduction methods for reverse engineering, Advanced manufacturing technology, 2001(17): 735-743.
    [130] Goodsell G. On finding p-th nearest neighbors of scattered points in two dimensions for small p. Computer Aided Geometric Design. 2000,17(4): 387-392.
    [131] Piegl L A, Tiller W. Algorithm for finding all k nearest neighbors. Computer-Aided Design, 2002, 34(2): 167-172.
    [132] 熊邦书, 何明一, 俞华臻. 三维散乱数据的k个最近邻域快速搜索算法. 计算机辅助设计与图形学学报. 2004,16(7): 909-912.
    [133] 田怀文, 王金诺. 表面重建中的三角网简化方法. 西南交通大学学报. 2002, 37(2): 150-153.
    [134] http://graphics.cs.uiuc.edu/~garland/software/qslim.html
    [135] http://www.loni.ucla.edu/
    [136] 王宏涛, 杜佶, 刘胜兰等. 基于径向基函数的多种类型孔洞修补算法研究. 机械科学与技术. 2005, 24(6): 744-747.
    [137] 刘思峰, 郭天榜, 党耀国. 灰色系统理论及其应用. 第二版. 北京: 科学出版社, 1999.
    [138] http://www.graphics.stanford.edu/data/
    [139] Turk G., O’ Brien J F. Variational implicit surfaces. Technical Report. GIT-GVU-99-15. Georgia: Georgia Institute of Technology. 1999.
    [140] M. Leyton. Symmetry-Curvature Duality. Computer Vision, Graphics and Image Processing. 1987(38): 327-341.
    [141] B. N. Datta. Numerical Linear Algebra and Applications, Brooks/Cole. 1995: 111-132.
    [142] 国家技术监督局. 用于技术设计的人体测量基础项目(GB/T5703-1999 eqv ISO7250:1996).中华人民共和国家标准. 1999.
    [143] http://course.cug.edu.cn/security_people_machine/02-1.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700