挠性卫星动力学建模与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挠性卫星的动力学建模和控制系统设计是航天领域研究的一个重要课题。本文针对单翼大挠性太阳帆板卫星,建立了挠性卫星动力学模型,在此基础上,研究了地球捕获、刚体卫星三轴姿态稳定、充液卫星三轴姿态稳定问题。另外,本文还建立了挠性卫星的控制模型。主要内容有五个方面:
     1、运用牛顿定律、角动量定律和变分原理建立了带挠性附件的卫星动力学模型,分析了挠性太阳帆板转动对卫星动力学模型的影响。
     2、以经典控制理论作为主要工具,研究了卫星捕获地球的技术,并对卫星捕获地球的整个过程进行了数值仿真。
     3、设计了刚体卫星的三轴姿态稳定控制律,分析了外界干扰对刚体卫星姿态的影响和系统的稳定性。
     4、在挠性卫星动力学模型的基础上,建立了只考虑太阳帆板三阶振动模态的挠性卫星三轴姿态控制模型。
     5、针对带有椭球腔全充液的卫星,建立了液体做均匀涡旋运动的充液卫星动力学模型,分析了外界干扰和液体阻尼对卫星姿态稳定的影响。
     通过对挠性卫星动力学模型和控制模型的研究,解决了挠性卫星姿态控制中的关键问题,对于研究挠性卫星的控制技术有一定的指导作用。文中设计的姿态捕获系统和刚体卫星姿态稳定系统,具有良好的动态特性,能够抵制外界的干扰,控制器简单且易于实现,具有较好的工程应用价值。
Dynamic modeling and control system designing of a flexible satellite is a very important subject in the aerospace engineering. The dynamic model of the satellite with a flexible appendage has been studied in this thesis. Also,the techniques of the satellite earth acquisition and three-axis attitude stabilization of both the rigid satellite and the liquid-filled satellite have been researched. Besides,the control system design of the flexible satellite has been discussed. The main researches enclosed in this thesis are as follows:
    1. Based on the Newton's law of motion,the law of angular momentum and the variation principle,the dynamic model of the satellite with a flexible appendage has been researched. Using this dynamic model,the influences of the flexible solar-array's rotation have been discussed.
    2. Employing classical control techniques,the satellite earth acquisition has been studied and numerically simulated.
    3. The three-axis attitude stabilization of the rigid satellite has been studied. And,the influences of the external disturbances on the system stabilization have been studied.
    4. The three-axis attitude stabilization system of the flexible satellite has been studied,in which three basic vibration modes of the solar array have been considered.
    5. The dynamic system of the liquid-solid coupled satellite that is filled with an ideal liquid has been researched. The external disturbances and the liquid viscosity have been concerned in this study.
    The researches presented in this thesis are very useful to the flexible satellite attitude control. The control systems designed for the earth acquisition and for the attitude stabilization in this thesis have shown us their good dynamic properties.
引文
[1] 屠善澄主编.卫星姿态动力学与控制(1).宇航出版社,1999.
    [2] 屠善澄主编.卫星姿态动力学与控制(2).宇航出版社,1999.
    [3] 刘延柱著.航天器姿态动力学.北京:国防工业出版社,1995.
    [4] 郑大钟编著.线性系统理论.清华大学出版社,1998.
    [5] 黄圳圭编著.航天器姿态动力学.国防科技大学出版社,1997.
    [6] 章仁为编著.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998.
    [7] 刘明俊,于明祁,杨泉林编著.自动控制原理.长沙:国防科技大学出版社,2000.
    [8] 程国采编著.航天飞行器最优控制理论与方法.国防工业出版社,1999.
    [9] 舒兆根编著.现代控制引论.国防科技大学出版社,1997.
    [10] 孙世贤,黄圳圭等编著.理论力学教程.国防科技大学出版社,1997.
    [11] 黄圳圭,赵志建编著.大型航天器动力学与控制.国防科技大学出版社,1990.
    [12] 李东旭编著.高等结构动力学.长沙:国防科技大学出版社,1997.
    [13] 凯恩T.R.,莱金斯P.W.,李文森D.A.著.黄克累,张安厚译.航天飞行器动力学.北京:科学出版社,1988.
    [14] M.H.卡普兰著.空间飞行器动力学和控制.科学出版社,1981.
    [15] 王照林等编.现代控制理论基础.国防工业出版社,1981.
    [16] 马兴瑞,苟兴宇等,李铁寿.航天器动力学发展概况.宇航学报,2000年第3期.
    [17] Itzhack Y. Bar-Itzhack, Paul Y. Montgomery and Joseph C. Garrick. Algorithms for Attitude Determination Using the Global Positioning System.Journal of Guidance,Control and Dynamics.Vol.21 No.6. 1998.
    [18] Hanspeter Schaub,Maruthi R.Akella and John L.junkins.Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed Loop Dynamics. Journal of Guidance, Control and Dynamics.Vol.24 No.1. 2001.
    [19] Aage Skullestad and James M. Gilbert. H Control of a gravity gradient stabilized satellite.Control Engineering Practice.No.8.2000.
    [20] Katsuhiko Yamada and Shoji Yoshikawa. Adaptive Attitude Control for an Artifical Satellite with Mobile Bodies.Journal of Guidanace,Control and Dynamics.Vol.19 No.4.1996.
    [21] Walter M. van Buijtenen, Gerard Schram, Robert Babuska and Henk B.Verbmggen.Adaptive Fuzzy Control of Satellite Attitude by Reinforcement Learning.IEEE Transactions on Fuzzy Systems.Vol.6 No.2.1998.
    [22] Sandrine Le Ballois and Gilles Duc. H Control of an Earth Observation Satellite. Journal of Guidance, Control and Dynamics.Vol.19 No.3. 1996.
    [23] Jinlu Kuang and A.Y.T.Leung. H Feedback for Attitude Control of Liquid-Filled
    
     Spacecraft. Journal of Guidance, Control and Dynamics. Vol.24 No. 1. 2001.
    [24] Alok Sinha and David W. Miller. Optimal Sliding-Mode Control of a Flexible Spacecraft Under Stochastic Disturbances. Journal of Guidance, Control and Dynamics. Vol.18 No.3. 1995.
    [25] Shih-Che Lo and Yon-Ping Chen. Smooth Sliding-Mode Control for Spacecraft Attitude Tracking Maneuvers. Journal of Guidance, Control and Dynamics. Vol. 18 No.6. 1995.
    [26] Michele Grassi and Massimiliano Pastena. Minimum Power Optimum Control of Microsatellite Attitude Dynamics. Journal of Guidance, Control and Dynamics. Vol.23 No.5. 2000.
    [27] Hyochoong Bang, Bang Yeop Kim and Han Hwangbo. Attitude Control of a Bias Momentum Geostationary Satellite in an Inclined Orbit. Journal of Guidance, Control and Dynamics. Vol.23 No.5. 2000.
    [28] Kevin A. Ford and Christopher D. Hall. Singular Direction Avoidance Steering for Control-Moment Gyros. Journal of Guidance, Control and Dynamics. Vol.23 No.4. 1999.
    [29] Christopher J. Heiberg, David Bailey and Bong Wie. Precision Spacecraft Pointing Using Single-Gimbal Control Moment Gyroscope with Disturbance. Journal of Guidance, Control and Dynamics. Vol.23 No. 1. 2000.
    [30] John D. Johnston and Eart A. Thornton. Thermally Induced Attitude Dynamics of a Spacecraft with a Flexible Appendage . Journal of Guidance, Control and Dynamics. Vol.21 No.4. 1998.
    [31] Xipu Li, Arthur J. Throckmorton and Jeffery B. Boka. Stability Analysis on Earth Observing System AM-1 Spacecraft Earth Acquisition. Journal of Guidance, Control and Dynamics. Vol. 19 No.3. 1996.
    [32] Ricardo S. Sanchez Pena, Roberto Alonso and Pablo A. Anigstein. Robust Optimal Solution to the Attitude/Force Control Problem. IEEE Transactions on Aerospace and Electronic Systems. No.3. 2000.
    [33] Dimitry Gorinevsky and George Vukovich. Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver. Journal of Guidance, Control and Dynamics. Vol.21 No.2. 1998.
    [34] T. Floquet, W. Perruquetti and J. P. Barbot. Angular Velocity Stabilization of a Rigid Body Via VSS Control. Journal of Dynamics Systems, Measurement and Control. Vol.122 December 2000.
    [35] S. Di Gennaro . Active Vibration Suppression in Flexible Spacecraft Attitude Tracking. Journal of Guidance, Control and Dynamics. Vol.21 No.3. 1998.
    [36] Ying-Yuh Lin and Gern-Liang Lin. General Attitude Maneuvers of Spacecraft with Flexible Structures. Journal of Dynamics Systems, Measurement and Control. Vol. 18 No.2. 1995.
    
    
    [37] Bong Wie, Qiang Liu and Frank Bauert. Classical and Robust H_∞ Control Redesign for the Hubble Space Telescope. Journal of Guidance, Control and Dynamics. Vol. 16 No.6. 1993.
    [38] Anthony J. Calise and Edward V. Byrns Jr. Parameter Sensitivity Reduction in Fixed-Order Dynamic Compensation . Journal of Guidance, Control and Dynamics. Vol.15 No.2. 1992.
    [39] Mark E. Pittelkau. Optimal Periodic Control for Spacecraft Pointing and Attitude Determination. Journal of Guidance, Control and Dynamics. Vol. 16 No.6. 1993.
    [40] Bong Wie and Marcelo Gonzalez. Control Synthesis for Flexible Space Structures Excited by Persistent Disturbances. Journal of Guidance, Control and Dynamics. Vol.15 No.1. 1992.
    [41] Donald J. Leo and Daniel J. Inman. Pointing Control and Vibration Suppression of a Slewing Flexible Frame. Journal of Guidance, Control and Dynamics. Vol.17 No.3. 1994.
    [42] Bong. Wie. Space Vehicle Dynamics and Control. American Institute of Aeronautics and Astronautics. Inc. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700