非线性模型预测控制(NMPC)在微型飞行器自适应控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间事业的发展,飞行器的规模越来越大,对姿态控制性能的要求也越来越高。飞行器是在一定的空间环境中飞行,而空间环境中充满着各种物理介质,对飞行器的姿态运动产生不同程度的影响,所以空间飞行器的姿态控制相当复杂,它受到如下因素的制约:(ⅰ)带时延的非线性动态特性(ⅱ)模型和参数的不确定性(ⅲ)燃料的激荡性以及燃料消耗所引起飞行器的质量变化(ⅳ)推力和输入力矩的约束性(ⅴ)额定角速度约束和姿态约束(ⅵ)在故障发生的情况下自动重新配置的必要性。当前飞行器主要的控制方法是基于近似时不变线性系统的频域分析法(如PID控制),这种方法的优点是简单且易于稳定性和鲁棒性分析,但它所达到的低性能和低效率却转化成了飞行器控制过程的附加载荷,还远不够满足当前飞行器控制的要求。非线性模型预测控制NMPC(Nonlinear Model Predictive Control)是求解多变量非线性系统的一种有效方法,目前已成功地应用于包括复杂的非线性并带有高安全性和激励约束的工业过程(如石油化工领域、航空航天领域等)控制,其控制所能达到的高稳定性和强鲁棒性已在近期的许多刊物上分析过。非线性模型预测控制(NMPC)的优点和它能在故障情况下自动重新配置的灵活性使得它能完成未来空间飞行器自适应控制的使命。模型预测控制法所能达到的性能和效率也能满足当前和未来空间飞行器控制的要求。
     本文的主要研究工作是探讨非线性模型预测控制(NMPC)应用于空间飞行器自适应控制的可行性及对提高控制精度和减少燃料使用方面的优越性,同时利用函数空间模型预测控制算法(F-MPC)对空间飞行器的位置和姿态控制进行仿真,具体内容如下:
     一.空间飞行器姿态和轨迹控制问题的数学分析、建模以及仿真。
     二.非线性模型预测控制器的设计。
     三.对控制器的调试和测试(包括对控制器的稳定性和鲁棒性的分析)。
     四.验证非线性模型预测控制(NMPC)应用于空间飞行器控制的可行性及其节省燃料和高控制精度的优越性。
     五.提出本课题的后续研究课题。
     本文运用非线性模型预测控制理论对空间飞行器位置和姿态的控制进行了系统的分析、研究和计算机仿真,在以下两个方面取得显著成效:
     1.飞行器动力学模型的特性使得标准的MPC算法无法直接用于飞行器的控制。本文提出了几种方法用于解决这一问题。在控制对象内部嵌入稳定模型,MPC法可成功地应用于飞行器的速度控制。
     2.使用一种基于空间函数最优化的函数空间模型预测控制新算法(F-MPC)控制飞行器的姿态。该算法用于飞行器的精点控制可获得满意的效果,也可用于完成飞行器的旋转控制任务,例如该算法用于飞行器的精点控制可使点误差小于0.05度。该算法的一个重要优点是能解决飞行器姿态控制过程中所产生的一些难题。例如:如果飞行器三轴推力器中的某一轴发生故障,那么常规的反馈算法将无法把飞行器定位到给定的方向,但F-MPC算法则可胜任这一任务。根据仿真结果可推出以下结论:
     Ⅰ.由于未来空间飞行器控制在成本和控制性能方面都有较严格的要求,故当前需要通过使用模型预测控制来改善传统的控制方法使控制权限、组件使用和寿命等达到最优化。
     Ⅱ.在未来的飞行器控制使命中,要求期望控制成本大大降低,这就需要减少重要的反馈传感器的使用,例如用于速度反馈的高质量陀螺仪等,也使得飞行器控制在如无反馈信息等的情况下为保持控制性能而依赖于预测控制技术。尽管如此,有效的状态估计的相关性技术和系统识别技术仍然在提高控制性能方面扮演着重要的角色。
     Ⅲ.用于工业过程控制的MPC标准公式(线性化动力学)不能直接应用于飞行器的动力学控制。通过对本课题的研究,并结合计算机仿真来证明非线性模型预测控制法可以而且能够完成未来空间飞行
    
     厦门大学硕士论义 摘 要
     器的控制使命并满足其控制要求,使得用PID控制和现代控制对空间飞行器的控制过程所遇到的问题得
     以解决,这些研究成果将对开拓非线性模型预测控制(NMPC)在我国工业领域的应用产生积极的影响。
With the development of the scales of spacecraft projects,the demands for spacecraft attitude control are becoming more and more important today. Spacecrafts are working in the space environment,which is full of sorts of physical mediums. And these mediums will impact on the altitude movement of spacecraft. Spacecraft attitude control during propulsive maneuvers is complicated due to several factors as listed below:(i) nonlinear dynamics with time delays,(ii) modeling and parameter uncertainties,(iii) flexible modes due to fuel sloshing and appendages,(vi) constraints on propulsive force and torque inputs,(v) constraints on acceptable angular rates and attitude,(iv) autonomous reconfiguration requirements under failure conditions. The current control approaches are based on frequency domain methods such as PID control which assumes linear time invariant system dynamics. The advantages of these approaches are simplicity and ease of stability and robustness analysis. However,the decrease in performanc
    e and poor efficiency translates to additional payload and cannot meet the demand of current spacecraft control. Nonlinear Model Predictive Control (NMPC) is an effective method of solving multi-variable nonlinear system and has been used successfully in a number of industrial applications involving complex nonlinear processes such as petroleum chemical engineering and spaceflight domains with hard safety and actuator constraints. The remarkable stability and robustness properties of MPC observed in practice have been analyzed in a number of recent publications. The optimality of Nonlinear MPC design and its flexibility for reconfiguration make it an idea candidate for future spacecraft missions like attitude control using thrusters.
    This thesis presents the feasibility of Nonlinear Model Predictive Control implemented in spacecraft control and the optimality of increasing the control precision and decreasing the fuels expenditure. And the discussions are then focused on the simulation of spacecraft control using Function-space Model Predictive Control algorithm as mentioned below:
    1. Problem formulation,modeling and simulation of the spacecraft attitude and trajectory control.
    2. Designation of Nonlinear Model Predictive Controllers.
    3. Controller Tuning and Testing including Stability and Robustness Analysis.
    4. Test results to the implementation of MPC for spacecraft control.
    5. The problems to be studied in future are presented.
    This thesis studies the spacecraft control using Nonlinear Model Predictive Control and computer simulations are applied in it. The main results fall into two main areas.
    1. Application of the standard MPC algorithms was not possible due to the nature of the spacecraft dynamic model. Several methods were proposed to alleviate these difficulties,with varying success. MPC was successfully applied to the spacecraft rate control (setpoint and tracking problems) when applied on an internally stabilized model of the plant dynamics.
    2. A new predictive control algorithm,the Function-space Model Predictive Control(F-MPC) method,was developed based on a function-space optimization of the control input for attitude control. This method yielded very promising results on precision pointing tasks,and is also applicable to the slewing task. Pointing errors of less than 0.05 degrees were achievable with off-line nominal control computation . One key advantage of the MPC feedback stabilization algorithm is that it can handle some well known difficult cases that can arise in attitude control. For example,if one of the actuator fails,conventional feedback algorithms can no longer position a spacecraft to arbitrary orientation while this algorithm remains viable.
    Preliminary investigations of the MPC approach to attitude control lead to the following conclusions:I . Because of increasingly stringent requirements on the cost and control performance for future missions,
    
    
    
    it is imperative to try to improve on the abilities of traditional control methods by using some aspects of model
引文
1. Glen J. Kissel., "Precision Pointing for the Pluto Mission Spacecraft". In Proceedings of the 18th Annual AAS Guidance and Control Conference, February 1995.
    2. Shahian B. "Study of Covariance Mismatch on Attitude Determination". Interoffice Memo. 3430-93-339, Jet Propulsion Laboratory, September 1993.
    3. James R.. Wertz., Spacecraft Attitude Determination and Control. D. Reidel Publishing Company, 1978
    4. David Rathbun., "Preliminary Pluto Controller Design Performance". JPL Interoffice Memo IOM 343-94-092,February 1994.
    5. David Rathbun., "Preliminary Pluto Open Loop Slew Performance". JPL Interoffice Memo IOM 434-94-205, May 1994.
    6. E. Ali and E. Zafiriou., "Optimization-based tuning of nonlinear model predictive control with state estimation". J. Process Control, 2(3),1993.
    7. C.E. Garcia and M. Morari. "Internal Model Control: A Unifying review and some new results", lnd. Eng.Chem. Process Dev., 21:308-323,1982.
    8. Prett D. Garcia C.E. and Morari M. "Model Predictive Control: Theory and Practice-A Survey". Automatica,25, 1989.
    9.谢树光,周学才等,一类带有输入和状态约束的非线性稳定性约束模型预测控制的研究,中国仪器仪表学报(2001年第六期,p8~p11),该文己被中国生产力高级技术专家委员会收录
    10.谢树光,周学才,一种空间飞行器姿态控制非线性模型的预测控制新算法,计算机仿真(2002年第三期)
    11.黄圳圭,航天器姿态动力学,长沙:国防科技大学出版社,1997
    12. Seereeram S. Divelbiss A. and Wen J. "A Global Approach to Kinematic Path Planning for Robots with Holonomic and Non-holonomic Constraints". In Proceedings of the 1993 IMA Workshop on Robotics,Minneapolis, MN, January 1993.
    13. Lizarralde F. and Wen J.T. "Attitude Control without Angular Velocity Measurements: A Passivity Approach".To appear: IEEE Transactions on Automatic Control. 1996.
    14. Seereeram S. and Wen J.T. "A Global Approach to Path Planning for Redundant Manipulators". IEEE Transactions on Robotic and Automation, 11 (2), February 1995.
    15. Divelbiss A. and Wen J.T. "Non-holonomic Motion Planning with Inequality Constraints". In Proceedings of the 1994 IEEE Conference on Robotics and Automation. San Diego, CA, May 1994.
    16. Divelbiss A. and Wen J.T. "Trajectory -Tracking Control of a Car-Trailer System". To appear: IEEE Transaction on Automatic Control, 1996
    17. Popa D. and Wen J.T. "Identification of Singularity Points for Non-holonomic Motion Planning Algorithms".Submitted to the 1996 IFAC Conference, June 1995
    18. Sontag E.D. and Lin Y."Gradient Techniques for Systems with No Drift". In Proceedings of the 1992 Conference on Signals and Systems. 1992
    19. David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading. MA, 1984.
    20. John T. Wen and Sanjeev Seereeram Nonlinear Predictive Control applied to Spacecraft Attitude Control.Proeceedings of the American Control Conference Albuquerque, New Mexico, June 1997.
    21. Ben-Israel A. and McCormick G.P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley & Sons, New York, 1968
    22. Brogan W.L. Modern Control Theory. Prentice-Hall, Inc., Englewood Cliffs, NJ, 2nd edition, 1985.
    23. Sontag E.D. and Lin Y. "Gradient Techniques for Systems with No Drift" In Proceedings of Conference in Signals and Systems, 1992.
    24. Divelbiss A. and Wen J.T.," A Global Approach to Non-holonomic Motion Planning", In Proceedings of the 1992 IEEE CDC Conference, Tuscon. Arizona, 1992.
    
    
    25. A. W. Divelbiss and J.T., "A Global Approach to Non-holonomic Path Planning with Constraints". CAT report#11, Rensselaer Polytechnic Institute, March 1992.
    26. Teukolsky S. A. Press W.H., Flannery B.P. and Vetterling W.T. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1986.
    27. Stengel R.F., Stochastic Optimal Control-Theory and Application, John Wiley & Sons, 1986
    28. Donald E. Kirk. Optimal Control Theory-An Introduction. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1970.
    29. Z.B. Tang., "Adaptive Partitioned Random Search for Global Optimization", IEEE Transactions on Automatic Control. 1994.
    30. Astrom K.J., Computer Controlled Systems--Theory and Design, Prentice Hall Inc.,1984
    31. Bruijin P.M., Bootsma L J., Predictive Control Using Impulse Response Models, 6th IFAC/IFIP Conference,Dusseldorf, 1980
    32. J.Richalet., "Industrial Applications of Model Based Predictive Control". Automatica.26(5),1993.
    33. Bryson A.E., Control of Spacecraft and Aircraft. Princeton University Press, 1993.
    34. Boussalis, D., D.S. Bayard and S.J. Wang,(1992), "Adaptive Spacecraft Attitude Control with Application to Space Station", 1st IEEE Conference on Control Applications, Dayton Ohio, September 1992.
    35. Chiou, H and Zafiriou. E.(1994), "Frequency Domain Design of Robustly Stable Constrained Model Predictive Controllers" Automatic Control Conf.. 1994
    36. Enright, P.J.,(1993)., "Thrust Vector Control Algorithm Design for the Cassini Spacecraft,' Paper AIAA 93-1043, AIAA/AHS/AHS/ASEE Aerospace Design Conference, Irvine, Calif., Feb. 1993
    37. Garcia, C.E. and M. Morari(1982), "Internal Model Control, 1. A Unifying Review and Some New Results',Ind. Eng. Chem. Process Dev., 21: pp308-323.
    38. Garcia, C.E., Prett, D.M., M. Morari,(1989), "Model Predictive Control: Theroy and Practice-a Survey",Automatica, 25, pp. 335-348,1989
    39. Hadaegh, F.Y., C.F. Lin, H.T. Chiu, and S.Y. Ong.(1993), Neural intelligent control for maneuvering spacecraft, In Proceedings of IEEE Conference on Aerospace Control Systems, pp.259-263,1993
    40. Meadows, E and Rawlings,J.(1993)., Receding horizon control with an infinite horizon, Proc. American Control Conf., San Francisco, California, pp.2926-2930
    41. J.H. Holland., Adaption in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor MI,1975.
    42. R. Penrose., "A Generalized inverse for Matrices". Proc. Cambridge Phil. Soc., 51:406-403,1955.
    43.袁著祉,递推广义预测自校正控制器,自动化学报,1989,15(4):348-351
    44.李友善主编,自动控制原理,国防工业出版社,1981
    45.秦寿康编著,最优化理论和方法,电子工业出版社,1986
    46.秦寿康,张正方,最优控制,电子工业出版社,1984
    47.张志勇等著,精通Matlab5.3版,北京航空航天大学出版社,2000.8
    48.冯纯伯,田玉平等著,鲁棒控制系统设计,东南大学出版社,1995.12
    49.徐昕,李涛等著,Matlab工具箱应用指南-控制工程篇,电子工业出版社,2000.5
    50 孙世贤,黄圳圭主编,理论力学教程,长沙:国防科技大学出版社,1997
    51 黄圳圭,赵志建,大型航天器动力学与控制,长沙:国防科技大学出版社,1990
    52 M.H.卡普兰著,凌福根译,空间飞行器动力学和控制,北京:科学出版社,1981
    53 T.R.Kane等著,黄克累等译,航天飞行器动力学,北京:科学出版社,1998
    54 黄文虎等著,多柔体系统动力学,科学出版社,1996
    55 俞忠原,陈一民编著,工业过程控制计算机系统,北京理工大学出版社,1995
    56 A.R.Klumpp, "Singularity-free extraction of a quaterion from a directional cosine matrix" J. Spacecraft, vol.13, pp.754-755,1976.
    
    
    57 魏克新等,Matlab语言与自动控制系统设计,机械工业出版社,1997
    58 薛定宇著,控制系统计算机辅助设计-Matlab语言及应用,清华大学出版社,1996
    59 崔桃瑞编,控制系统的分析设计程序,西北工业大学出版社,1985
    60 孙增析编,计算机控制理论及应用,清华大学出版社,2000
    61 B.M.柯夫杜年科等著,张燕林译,轨道宇宙飞行器空气动力学,北京:科学出版社,1998
    62 Wertz, J.R.,(1978), Spacecraft Attitude Dynamics and Control, D. Reidel Publishing Co., Boston, 1978
    63 Zafiriou, E. (1990), Robust model predictive control of processes with hard constraints, Comp. Chem. Engng.14(4/5):359-371.
    64 Zheng, A., Balakrishnan V. and Morari, M.,(1994). "Constrained Stabilization of Discrete-Time Systems" Special Issue on Control of Systems with Saturating Actuators, Int. J. of Robust and Nonlinear Control,1994.
    65 Stengel, R.F., C.I. Morrison.(1992), "Robustness of Solutions to a Benchmark Control Problem", Journal of Guidance, Control, and Dynamics, vol. 15, no. 5, Sept-Oct 1992
    66 Soroush, M, C. Kravaris,(1993), "Model Predictive Control of Multivariable Nonlinear Processes in Continuous-Time", American Control Conference, San Francisco, Calif., June 1993.
    67 Rossiter, J.A., B. Kouvaritakis and J.R. Gossner, (1995), "Feasibility and Stability Results for Constrained Stable Generalized Predictive Control", Automatica Journal vol31, number 6, June 1995
    68 Rouhani, R. and R.K. Mehra,(1982), "Model Algorithmic Control(MAC); Basic Theoretical Properties", Automatica, vol.18, no. 4,1982
    69 Scaleso, R.S. and Tepedelenlioglu, N.(1992), "A fast new algorithm tbr training feed-forward Neural Networks" IEEE T-SP, No.1,vol 40. Jan 1992.
    70 Sistu, P.B., R.S. Gopinath and B.W. Bequette,(1992), Computational Issues in Nonlinear Predictive Control,Computers Chem. Engng.
    71 Soeterboek, R. (1991), Predictive Control=A Unified Approach, Prentice Hall. Englewood Cliffs, N.J.
    72 Soroush, M, C. Kravaris,(1993), "Model Predictive Control of Multivariable Nonlinear Processes in Continuous-Time", American Control Conference, San Francisco, Calif., June 1993.
    73 P.C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, INC, 1986
    74 A.L.Greensite著,长工译,飞行控制系统的分析与设计,北京:国防工业出版社,1978
    75 林来兴,空间控制技术,北京:宇航出版社,1992
    76 G.M.Lerner等,空间飞行器的姿态确定和控制,国外空间控制技术,1980
    77 中谷一郎,自旋卫星姿态控制程序,国外空间控制技术,1977
    78 屠善澄等,中国同步实验通信卫星STW-1的控制,宇航学报,1986
    79 黄圳圭,多喷嘴系统控制律,国防科技大学学报,1987
    80 Nobuaki Kawato等,零角动量三轴稳定卫星的最优组合估算利控制系统,国外空间控制技术,1977
    8l A.E.Sabroff等,同步通信卫星的三轴姿态稳定,国外空间控制技术,1977
    82 刘延柱,航天器姿态动力学,北京:国防工业出版社,1955
    83 程国采,四元数及其应用,长沙:国防科技大学出版社,1991
    84 李力新、黄圳圭,大型空间结构姿态动力学和控制,国防科技大学学报,1992
    85 舒迪前,自校正内模控制器,北京科技大学学报,1993,15(4):400-407
    86 舒迪前主编,自适应控制,沈阳:东北大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700