反作用轮机械结构及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近半个世纪,航天技术在世界范围内取得突飞猛进的发展,随着微纳米技术的不断革新,微小卫星正成为各航天大国的关注焦点。本论文中的反作用轮是NS-2卫星姿态控制系统(ADCS)执行机构的关键部件,约重420g。NS-2卫星采用三轴姿态稳定技术,在三轴各安置一轮,并在转速临近饱和时以磁力距器进行卸载,使得反作用轮转速恢复到规定范围,确保姿态稳定。本文主要研究反作用轮机械结构尤其是轮体的设计以及控制系统软硬件的设计。主其要内容为:
     1)优化飞轮轮体结构,使轮体在体积小的同时,实现尽可能大的惯量/质量比,并对壳体进行设计。
     2)设计了基于单片机和电机专用控制器的反作用轮控制系统,实现了稳定可靠,占用空间少,成本低的要求。
     3)进行了反作用轮控制电路测试试验,测试结果满足预期的设计要求。
In half a century, as the development of Micro/Nano-technology, Micro/Nano-satellite is focused on by the main space countries. The reaction wheel is a very important part of ADCS in NS-2 Satellite. The NS-2 is a micro-satellite in 20Kg, and the three-axis attitude stabilization system is used in this satellite. In this satellite, Three reaction wheels are mounted respectively along three orthogonal axes.. When the speed of RW is above saturation, a Magnetorquer is used to uninstall the RW until the speed of wheel is in the nominal range, to ensure the attitude of satellite stability. The design of the mechanical structure, the circuit and software of the control system on the RW. The details are as follows.
     1) To achieve the most inertia/mass ratio and the minor size of the RW, the Shell of the RW is designed and the size of the flywheel is optimized.
     2) the control system based on the SCM and the special control chip of BLDC(Brushless DC motor) is designed. The system included hardware and software, fulfils the requirements of cheap, small size and reliable operation
     3) The test of the designed control system is completed, and the test data is analyzed. The results meet the requirement of the technical specifications.
引文
[1][5]徐福祥,卫星工程概论,宇航出版社,2003年12第一版
    [2]Wiley J.Larson, James R. Wertz. Space Mission Analysis and Design. second edition. Kluwer Academic Publishers,1997
    [3]刘梁栋等,卫星控制系统仿真技术,宇航出版社,2003年12月第一版
    [4]SMITHERS M E, ZISSA D E. Solar X2ray imager (SXI) optical performance analysis [C], MSFC Document, SXIO22,1994.
    [5]BORNMANN P L, SPEICH D, HIRMAN J, et al. The GOES solar X-ray imager:overview and operationalgoals [C] NOAA/ Space Environment Center 325 Broad-way, Boulder, CO 80303.
    [6]章仁为,卫星轨道姿态动力学与控制,北京航空航天大学出版社,1998
    [7]董川圭,航天器姿态动力学,国防科技大学出版社,长沙,1997
    [8]李太玉.微小卫星姿态磁控制及三轴被动稳定研究[D].国防科技大学研究生院,2003,56-78.
    [9]梁思礼,中国大百科全书航空航天卷,大百科全书出版社,1995
    [10]高星,陈日敏,张康华,詹盛能.国外卫星执行机构.北京:航天工业总公司五零二所,1996
    [11]EI-Sharkawi M. A., Development and Implementation of High Performance Variable Structure Tracking control for Brushless Motors. IEEE Transactions on Energy Conversion.1995
    [12]唐留根.现代小卫星发展概述.上海航天,1999年第6期
    [13]NS-2总体设计报告,清华大学微小卫星联合实验室,2006
    [14]龙驹,永磁无刷直流电机转速控制系统优化设计,西南交通大学出版社,2006年12月第一版
    [15]董川圭,航天器姿态动力学,国防科技大学出版社,长沙,1997
    [16]Craig Clark. Tsinghua Reaction Wheel Mechanical Description. Surrey Satellite Technology, Ltd, Center for Satellite Engineering Research,1999
    [17]屠善澄.卫星姿态动力学与控制(2)[M].宇航出版社,1999
    [18]胡双,马志云,周理兵.永磁无刷直流电机系统建模与仿真[J],微特电机, 2005
    [19]夏长亮,无刷直流电机控制系统,科学出版社,2009.02第一版
    [20]徐邦荃等,直流调速系统与交流调速系统,华中科技大学出版社,2000.08
    [21]王鉴光.电动机控制系统[M].北京:北京机械工业出版社.1994
    [22]张琛.直流无刷电动机原理及应用.北京:机械工业出版社,1996
    [23]Craig Clark. Tsinghua Reaction Wheel Mechanical Description. Surrey Satellite Technology, Ltd, Center for Satellite Engineering Research, 1999
    [24]高钟毓.机电控制工程[M]北京:清华大学出版社.201
    [25]王希季,李大耀.空间技术,上海:上海科技出版社,1994
    [26]倪忠远,直流调速系统,北京:机械工业出版社,1996
    [27]吴守箴,电气传动的脉宽调制控制技术,北京:机械工业出版社,1995
    [28]顾滨等,微型计算机组成,原理,及接口,北京:机械工业出版社,2003.08
    [29]绪云胜彦,现代控制工程,卢伯英等译,北京:科学出版社,1987
    [30]王振永等主编,电机的数学模型和参数辨识,北京:机械工业出版社,1991
    [31]陶永华等,新型PID控制及其应用,北京;北京:机械工业出版社,2000
    [32]刘君华,现代检测技术与测试系统设计,西安:西安交通大学出版社,1999
    [33]Depenbrok M. Direet Self-Control (DSC) of invert Fed Induction Machine. IEEE Conf. Record of PESC,1987
    [34]Plunkett A B. Direct and Torque Regulation in a PWM Inverter-Induction Motor Drive. IEEE Trans. I.A,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700