岩石流变力学特性的研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石流变力学试验不仅是了解岩石流变力学特性的最重要手段,而且是构建岩石流变本构模型的重要基础。水利水电工程高坝坝基大多建于硬岩岩基上,高坝的建设往往伴随着岩石高陡边坡和大型地下洞室群的岩石工程问题,为了预测岩石工程的长期稳定性,有必要开展硬岩的流变力学特性研究尤其是三轴流变试验研究。岩石流变力学理论作为岩石力学中的前沿课题,近年来,研究工作进展较快,特别是利用实测试验资料反演流变模型参数、进而发展到对未知模型的辨识等。但岩石流变力学理论至今还不很成熟,许多重大岩石工程的建设为岩石流变力学理论研究带来了严峻的挑战,当前岩石流变力学特性和本构模型理论的研究仍是其难点和热点问题。有鉴于此,本文采用试验研究、理论分析和数值模拟相综合的研究方法,基于岩石的三轴流变试验,运用非线性力学与损伤力学理论探讨岩石流变力学特性,主要研究硬岩在不同围压作用下的流变力学特性,建立岩石非线性流变本构模型,并将岩石流变力学特性的研究成果应用到重大水利水电岩石工程实践中。
     本文的主要研究工作如下:
     (1)基于在伺服试验机上得到的不同尺寸岩石单轴压缩瞬时力学特性试验结果,分析了岩石材料力学参数与尺寸之间的关系,采用损伤力学理论,考虑微元体破坏以及弹性模量与尺寸之间的非线性关系,建立了考虑尺寸效应的岩石损伤统计本构模型。采用伺服试验机对岩石进行了三轴压缩试验,从强度、变形以及能量角度,研究了围压对岩石三轴压缩瞬时力学特性的影响规律,分析了岩石三轴压缩瞬时破坏机理。
     (2)采用岩石全自动三轴流变伺服仪,对坚硬大理岩与绿片岩进行了三轴流变试验,研究了岩石在不同围压作用下的轴向应变以及侧向应变随时间变化规律,探讨了不同应力水平下的轴向以及侧向流变速率变化趋势,分析了岩石三轴流变过程中的变形特性,讨论了岩石体积流变及流变速率规律,掌握了坚硬大理岩与绿片岩三轴流变特性的基本规律,为流变数值分析时参数的辨识提供了可靠试验依据。为了从机理和本质上对岩石流变力学特性有更清楚地认识,通过对瞬时加载和长期荷载作用下岩石破坏断口进行电镜扫描试验分析,考察岩石细观组构变化对三轴流变力学特性的影响,从岩石微细观角度来解释宏观流变力学特性,明确了复杂应力状态下岩石流变破裂机制。
     (3)基于岩石三轴流变试验研究结果,提出了一个新的非线性粘性元件,并
Rheological mechanical experiment of rock is not only the most important means to know about the rheological mechanical properties of rock, but also an important base to construct the rheological constitutive model of rock. Many high dam bases in hydraulic and hydropower engineering are constructed on the batholiths of hard rock. Moreover the construction of high dam accompanies often with some rock engineering problems of high sleep slope and huge underground caves. Therefore study on the rheological mechanical properties of rock, especially triaxial rheology experiments of rock, must be carried out in order to predict the long-term stability of rock engineering. Construction of rock rheology model is an important part of theoretical research on rock rhelogy. In recently several years, many important developments on rock rheology model have been impressive, especially in conversing rheological parameters according to field experimental data, and then developing the identification for unknown models. However, rheological model theory of rock material has not been very mature up to now. Many great rock engineering are being or will be designed or built in recent decade, which will bring severe challenge for theoretical research on rock rheology model. Research results that can reflect the accelerative rheological model of rock material are not very ideal. Nowadays, study on rheological properties of rock and constitutive model theory is still the difficult and hot problem. Therefore, the comprehensive method of experimental investigation, theoretical analysis and numerical simulation is adopted in this thesis. Based on the triaxial rheological experimental results of rock, rheological mechanical properties of rock are made a detailed discussion by non-linear and damage mechanics theory, which investigates mainly the rheological mechanical properties of hard rock with different confining pressures under saturated state. And then non-linear rheology constitutive model of rock is proposed. In the end, the investigation results on rheological mechanical properties of rock are applied to the practice of great hydropower rock project, which solves the practical problems.In this dissertation, the main investigation work focuses on the following.(1) With the servo-controlled testing machine, uniaxial compressive experiment is performed on the marble specimens with different length-to-diameter ratios. On
    basis of experimental results of marble specimens with different sizes, the relation between mechanical parameters of rock material and size is analyzed. A damage statistical constitutive model with considering size effect of rock, which considers the non-linear relation of unit volume failure or elastic modulus and the size, is established by adopting the damage constitutive theory of continuous medium. Triaxial compressive experiments of rock are carried out on the servo-controlling testing system. The effect law of confining pressure on the transient mechanical properties of rock under triaxial compression is investigated from the strength, deformation and energy view. At the same time, the transient failure mechanism of rock under triaxial compression is made a detailed analysis.(2) In order to know about the rheological properties of rock specimen in Jinping First Stage Hydropower Project, triaxial compression rheological experiments with rock specimens were carried out on the rock servo-controlling RHEOLOGY testing machine. Based on the triaxial rheological experimental results, the variance law of axial and lateral strains of greenschist specimens with the time under different confining pressures is investigated. The variance tendency of axial and lateral rheological rates under different deviatoric stresses is discussed in detail. The deformation property of rock during the course of triaxial rheology is also analyzed. At the same time, volume rheology and rheological rate law is made a discussion. The triaxial rheological law of hard rock specimen is mastered, which brings important reference for the identification of parameters when carrying out the rheological numerical finite element analysis. In order to have a more clear knowledge for the mechanical property of rock rheology from the mechanism and essence, the SEM experiments are carried out for fracture shaping of rock specimens under the action of short-term and long-term loading. Through investigating the effect of microscopic structure variance in rock specimen on triaxial rheological mechanical properties, macroscopic rheological mechanical properties of rock are explained from the microscopic viewpoint, which illustrates the rheological fracture mechanism of rock under complex stress states.(3) Based on the triaxial rheology curves on rock servo-controlling rheology equipment, a new non-linear viscous component is put forward. When non-linear viscous component is parallel connected with the plastic component, a new non-linear visco-plastic body (NVPB) can be gotten, which may reflect the accelerative rheological properties of rock. At the same time, by connecting NVPB model and
    five-component visco-elastic model in series, a new seven-component non-linear visco-elasto-plastic rheology model of rock(Hohai Rheology Model) can be proposed, which can describe better the three-stage creep deformation of rock, especially non-linear accelerative creep deformation of rock. Then using complete compressive and shear rheological curve gained on rock servo-controlling RHEOLOGY testing machine, the proposed seven-component non-linear visco- elasto-plastic rheology model of rock (Hohai Rheology model) is carried out the identification successfully. On basis of proposed Hohai Rheology Model, the rheological equations of rock at the constant stress and stress rate, constant strain and strain rate are deduced. The non-linear creep property and relaxation property of rock are carried out the analysis and investigation on the theory. At the same time, three-dimension creep equations of rock are deduced by adopting non-linear visco-elasto-plastic model theory. What's more, based on the Hohai Rheology Model, a new generalized non-linear visco-elasto-plastic rheology model of rock with considering the stress threshold by introducing a plastic component.(4) Shear rheology experiments were carried out for the shale in Longtan Hydropower Project by using a servo-controlled shear rheology testing machine. The variance law of shear displacement of shale with the time is analyzed. The variance tendency of shear rheological rates under different stress states is discussed. At the same time, the variance of shear strength of rock with the time is made a discussion. When the proposed nonlinear rheological component (NRC model) by the author is parallel connected with Kormanura model, a new nonlinear rheology model can be gained, which can describe the accelerating rheological properties. Using the shear rheological curves of shale, the proposed nonlinear viscoelastoplastic shear rheology model of rock is carried out the identification, which gets the viscoelastoplastic rheological parameters of the shale.(5) The cohesion and internal friction coefficient are important material parameters that decide the strength and deformation property of rock. By taking into account the variance law of cohesion and internal friction coefficient of rock with time, a new non-linear visco-plastic body of rock with considering the cohesion and internal friction coefficient (CF-NVPB model) is put forward. And then by connecting CF-NVPB model and generalized Kelvin visco-elastic model in series, a new non-linear visco-elasto-plastic rheology model of rock with taking into account the cohesion and internal friction coefficient is proposed, which can reflect fully the
    accelerative rheological property of rock. Based on proposed non-linear visco-elasto-plastic rheology model of rock with considering cohesion and internal friction coefficient, non-linear creep and relaxation property of rock are made a detailed analysis.(6) Based on the analysis of non-linear rheology damage mechanism, a non-linear creep damage model of rock, which can reflect the accelerative rheological property, is put forward by adopting time damage and energy damage theory. At the same time, proposed creep damage model is carried out to validate fully in accordance with complete experimental curves of rock rheology. On basis of proposed non-linear visco-elasto-plastic rheology model of rock, after damage variable is introduced in the proposed non-linear visco-elasto-plastic rheology model by adopting damage mechanics theory, a non-linear visco-elasto-plastic rheology damage constitutive model is constructed. Moreover, non-linear creep damage and relaxation damage equations of rock are deduced, and non-linear rheology damage properties are analyzed.(7) Experimental and theoretical investigation results on rheological mechanical properties of rock are applied to the engineering practice of rock mass engineering in the high dam base of Jinping First Stage Hydropower Project and high slope rock engineering in the right bank of Goupitan Hydropower Project. The long-term stability of rock engineering under complex stress state is predicted, which brings forward reasonable evaluation and suggestion for long-term stability and safety of rock engineering.
引文
[1] Sun Jun, Wang Sijing. Rock mechanics and rock engineering in China: developments and current state-of-the-art [J]. Int. J. Rock Mech. Min. Sei., 2000(37): 447~465
    [2] 孙钧.迎接新世纪的岩石力学若干进展[A].第五届全国岩石力学与工程大会论文集[C].上海:中国科学技术出版社,1998:1~10
    [3] 王思敬主编.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004,9
    [4] Griggs, D.T. Creep of rocks[J]. Journal of Geology, 1939, 47:225~251
    [5] Langer M. Rheological behaviour of rock mass[A]. Proc. 4th International Congress of Rock Mechanics, General Report[C]. Themel, Montreux, ISRM, 1979, 3:29~96
    [6] 周维垣.高等岩石力学[M].北京:水利电力出版社,1989,3
    [7] 金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998,10
    [8] 章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999,6
    [9] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999,12
    [10] 张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999,4
    [11] J.Slizowski, L. Lankof. Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems: rheological properties[J]. Applied Energy, 2003, 75(1/2): 137~144
    [12] Martin P.J. Sch6pfer, Gemold Zulauf. Strain-dependent rheology and the memory of plasticine[J]. Tectonophysics, 2002, 354(1/2): 85~99
    [13] Kazuhiko Miura, Yoshiaki Okui, Hideyuki Horii. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system[J]. Mechanics of Materials, 2003, 35(3/6): 587~601
    [14] Li Yongsheng, Xia Caichu. Time-dependent tests on intact rocks in uniaxial compression[J]. Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr., 2000, 37(3): 467~475
    [15] Chunhe Yang, J.J.K. Daemen, Jian-Hua Yin. Experimental investigation of creep behavior of salt rock[J]. Int. J. Rock. Mech. Min. Sci., 1999, 36(3): 233~242
    [16] Maranini E, Brignoli M. Creep behaviour of a weak rock: experimental characterization[J]. Int. J. Rock. Mech. Min. Sci., 1999, 36(1): 127~138
    [17] E. Boidy, A. Bouvard, F. Pellet. Back analysis of time-dependent behaviour of a test galley in claystone[J]. Tunnelling and Underground Space Technology, 2002, 17(4): 415~424
    [18] Boitnott G N. Experimental characterization of the nonlinear rheology of rock[J]. Int. J. Rock Mech. & Min. Sci., 1997, 34(3/4): 33~36
    [19] Enrico Maranini, Tsutomu Yamaguchi. A non-associated viscoplastic model for behaviour of granite in triaxial compression[J]. Mechanics of Materials, 2001, 33(5): 283~293
    [20] Shao JF, Zhu QZ, Su K. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003, 30(7): 549~555
    [21] F. Bourgeois, J.F. Shao, O. Ozanam. An elastoplastic model for unsaturated rocks and concrete[J]. Mechanics Research Communications, 2002, 29(5): 383~390
    [22] W.Z.Chen, W.S.Zhu, J.F.Shao. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation[J]. Int.J. Rock Mech. & Min. Sci., 2004, 41(4): 669~677
    [23] Yang Chunhe. Time-dependent behaviour of rock salt—Experimental investigation and theoretical analysis[D]. University of Nevada, Reno, 2000, 10
    [24] 何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002,5
    [25] 刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001,5
    [26] 郭志.软岩力学特性研究[J].工程地质学报,1996,4(3):79~84
    [27] 郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75~79
    [28] 王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55~60
    [29] 许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246~251
    [30] 赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报,2001,20(4):478~480
    [31] 赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527~1532
    [32] Liao Hongjian, Ning Chunming, Masaru Akaishi. Effect of the time-dependent behaviour on strain softening of diatomaceous soft rock[J]. Matals and Materials, 1998, 4(5):1093~1096
    [33] 廖红建,宁春明,俞茂宏等.软岩的强度—变形—时间之间关系的试验分析[J].岩土力学,1999,18(6):690~693
    [34] 廖红建,苏立君,殷建华.硅藻质软岩的三维粘弹塑性模型分析[J].岩土力学,2004,25(3):337~341
    [35] Sun Jun. A study on 3-D nonlinear rheological behaviour of soft rocks[A]. In: Edited by He-Hua Zhu, Jin-Chun Chai, Mao-Song Huang, Practice and advance in geotechnical engineering[C]. Shanghai: 2002, 10
    [36] 朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报.2002,24(5):77~79
    [37] 陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905~912
    [38] 刘光廷,胡昱,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237~1241
    [39] 唐礼忠,潘长良.岩石在峰值荷载变形条件下的松弛试验研究[J].岩土力学,2003,24(6):940~942
    [40] 何学秋,林柏泉.突出危险煤的流变性质及突出过程的能量耗散[A].见:中国煤炭学会首届青年科技工作者学术讨论会[C].1992:1~7
    [41] 吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报.1996,15(4):328~332
    [42] 曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362~365
    [43] 姚爱军,黄福昌,张宗社.宽厚煤柱煤岩体流变力学特性试验研究[J].中国矿业,2003,12(2):52~55
    [44] 梁卫国,赵阳升.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004,23(3):391~394
    [45] 梁卫国,赵阳升,徐素国.240℃内盐岩物理力学特性的试验研究[J].岩石力学与工程学报,2004,23(14):2365~2369
    [46] N.D.Cristescu, U.Hunsche. Time effects in rock mechanics[M]. New York: John Wiley and Sons, 1998
    [47] Munson D.E., Dawson R R. Salt constitutive model using mechanism maps[A]. In: Hardy H R Jr, Langer Med. The mechanical behaviour of salt[C]. Claustal-Zellerfeld: Trans Tech Publ., 1984:717~737
    [48] Lux K H, Heuserman S. Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws[A]. In: Schreiber B C, Harner H Led. Proc. 6th International Symp. on Salt. Alaxandria[C], U. S. A: The Salt Institute, 1983, 1: 417~435
    [49] Yang Chunhe, Daemen J J K, Yin Jianhua. Experimental investigation of creep behaviour of salt rock[J]. Int. J. Rock Mech. Mine Sei., 1998, 36(2): 233~242
    [50] Yang Chunhe, Bai Shiwei. Analysis of stress relaxiation behaviour of salt rock[A]. In: Proceedings of the 37th U.S. Rock Mechanics Symposium[C]. New York: John Willey & Sons, 1999, 935~938
    [51] 杨春和,殷建华,J.J.K.Daemen.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262~265
    [52] 杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270~275
    [53] 邱贤德.岩盐流变特性的研究[J].重庆大学学报(自然科学版),1995,18(4):96~103
    [54] 刘绘新,张鹏,盖峰.四川地区盐岩蠕变规律研究[J].岩石力学与工程学报,2002,21(9):1290~1294
    [55] 杨春和,曾义军,吴文等.深层盐岩本构关系及其在石油钻井工程中的应用研究[J].岩石力学与工程学报,2003,22(10):1678~1682
    [56] Haupt M. A constitutive law for rock salt based on creep and relaxation tests[J]. Rock Mechanics and Rock Engineering, 1991, 24:179~206
    [57] Matsushima S. On the flow and fracture of igneous rocks[J]. Bull: Disast. Pre. Res. Inst., KyotoUniv., 1960, 36:1~9
    [58] Jaeger JC, Cook NGW. Fundamentals of rock mechanics[M]. New York: Chapman & Hall, 1979
    [59] Ito H, Sasajima S. A ten-year creep experiment on small rock specimens[J]. Int. J. Rock Mech. Mine. Sci. and Geomech. Abstr., 1987, 24(2): 113~121
    [60] 陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991
    [61] 陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299~312
    [62] 扬建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77~80
    [63] Xu Ping, Yang Tingqing. A study of the creep of granite[A]. In: Proc. Of IMMM'95[C]. Bejing: International Academic Publishers, 1995, 245~249
    [64] 徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):246~251
    [65] 金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(2):31~33
    [66] Maranini E, Brignoli M. Creep behaviour of a weak rock: experimental characterization[J]. Int. J. Rock Mech. Mine. Sci., 1999, 36(1): 127~138
    [67] 张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(5):99~103
    [68] 王金星.单轴应力下花岗岩蠕变变形特征的试验研究[硕士论文D].焦作:焦作工学 院,2000,5
    [69] 赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583~586
    [70] 李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673~1677
    [71] Fujii Y, Kiyama T. Circumferential strain behaviour during creep tests of brittle rocks[J]. Int. J. Rock Mech. Mine Sci., 1999, 6:323~337
    [72] 李晓,何亚男.泥岩峰后蠕变特性的实验研究[A].见武汉:中国青年学者岩土工程力学及其应用讨论会论文集[C],1994,12:80~86
    [73] 李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[博士论文D].徐州:中国矿业大学出版社,1995
    [74] 彭苏萍,王希良,刘咸卫等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报,2001,26(2):149~152
    [75] 李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999,9
    [76] 杨圣奇.岩石材料的非均质性与力学特性的研究[硕士学位论文D].焦作:焦作工学院,2003,6
    [77] 杨圣奇,苏承东,徐卫亚.岩石材料尺寸效应的试验和理论研究[J].工程力学,2005,22(4):112~118
    [78] Bazant ZP, Chen EP. Scaling of structural failure[J]. Appl Mech Rev 1997, 50(10): 593~627
    [79] Da Cunha AP. Research on scale effects in the determination of rock mass mechanical properties—the Portuguese experiemce[A]. In: da Cunha AP, editor. Scale effects in rock masses[C]. Rotterdam: Balkema, 1993:285~292
    [80] Da Cunha AP. Scale effects in rock engineering—an overview of the Loen Workshop and other recent papers concerning scale effects[A]. In: da Cunha AP, editor. Scale effects in rock masses[C]. Rotterdam: Balkema, 1993:3~14
    [81] Hunsche U., Plischke I. In situ creep experiments under controlled stress in rock salt pillars-design, instrumentation and evaluation[A]. In: Eds.B.Come, P.Johnston and A Muller. Design and Instrumentaion of In Situ Experiments in Underground Laboratories for Radiocative Waste Disposal[C]. Proc.Joint CEC-NEA Workshop, Brussels. Balkema, Rotterdam, 1985:417~424
    [82] Hunsche U, Plischke I, Nipp H.K, etl. An in situ creep experiment using a large rock salt pillar[A]. Proc. 6th Int. Symp. on Salt, Toronto[C]. Eds. B.C. Schreiber and H.L. Hamer. The Salt Institute, Alexandris, USA, 1985, 1:437~454
    [83] Plischke L, Hunsche U. In Situ-Kriechversuche unter kontrollierten Spannungsbedingungen an grosse n Steinsalzpfeilern[A]. Rock at Great Depth. Proc. ISRM-SPE Int. Symp[C]. Eds. V. Maury and D. Fourmaintraux. Balkema, Rotterdam, 1989, 1:101~108
    [84] 夏才初,钟时猷.岩石流变性尺寸效应的探讨[A].中国岩石力学与工程学会主编,岩石地下工程论文集[C].1990:119~126
    [85] 徐平,夏熙伦.三峡枢纽岩石体结构面蠕变模型初步研究[J].长江科学院院报,1992,9(1):42~46
    [86] 徐平,甘军,丁秀丽.三峡工程船闸高边坡岩体长期变形及稳定有限元分析[J].长江科学院院报,1999,16(2):31~34
    [87] 夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312~322
    [88] 徐平,周火明.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481~485
    [89] 周火明.三峡船闸边坡卸荷带岩体力学性质试验研究[A].见:工程岩石力学[C].武汉:武汉工业大学出版社,1998,157~160
    [90] 周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882~1885
    [91] Sun Jun,Hu Y Y Time-dependent effects on the tensile strength of saturated granite at Three Georges Project China[J]. Int. J. Rock Mech. Mine Sci.,1997,34:323~337
    [92] 杨松林.不连续岩体弹粘性力学研究[博士后研究报告][R].南京:河海大学,2003,6
    [93] 沈明荣,朱银桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报, 2004,23(2):223~226
    [94] 黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学,1983,4(1):39~46
    [95] 许东俊,罗鸿禧.葛洲坝工程基岩稳定性的试验研究[J].岩土力学,1983,4(1):1~15
    [96] 吴玉山.不良岩体流变特性的现场试验及流变模拟分析[J].岩土力学,1986,7(2):45~52
    [97] 王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,1999,11
    [98] 刘家应.黄崖不稳定边坡的蠕变特征[J].岩石力学,1982,8:1~8
    [99] 雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989:1~11
    [100] 李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299~303
    [101] Malan D F, Vogler U W, Drescher K. Time-dependent behaviour of hard rock in deep level gold mines[J].Journal of the South African Institute 0f Mining and Metallurgy,1997,97:135~147
    [102] Remvik F. Shale-fluid interaction and its effect on creep[A]. In: Proc. ofth Int. Cong. on Rock Mechanics[C]. 1995, 1: 307~309
    [103] 陈沅江,潘长良,王文星. 软岩流变的一种新的试验研究方法[J].力学与实践,2002,24(4):42~45
    [104] 吴立新,王金庄,孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29~35
    [105] 金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):335~361
    [106] 邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780~784
    [107] 曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96~98
    [108] 曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632~634
    [109] 韦立德,徐卫亚,朱珍德等.岩石粘弹塑性模型的研究[J].岩土力学,2002,23(5):583~586
    [110] 陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209~214
    [111] 陈沅江,潘长良,曹平等.一种软岩流变模型[J].中南工业大学学报(自然科学版),2003,34(1):16~20
    [112] 张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635~1639
    [113] 王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640~1642
    [114] Sakural S, Takeuchi K. Back analysis of measured displacement of tunnel[J]. Rock Mech Rock Engng., 1983, 16(3):173~180
    [115] Wang Zhiyin, Liu Huaiheng. Back analysis of measured rheologic displacement of underground openings[A]. In: Proc. 6th conf. On Num Meth. In Geo. [C] Austria: [s.n.], 1988:2291~2297
    [116] Wang Zhiyin, Li Yunpeng. Back analysis of viscoparameters and strata stress in underground openings[A]. In: Proc. Int. Symp. On Underground Eng[C]. New Delhi: [s.n.], 1988:181~186
    [117] Li Yunpeng, Wang Zhiyin. Three-dimensional back analysis of viscoelastic creep displacement [A]. In: Proc. 3rd Int. Conf. On Underground Space and Earth Sheltered Buildings[C]. Shanghai: Tongji Press, 1988:383~387
    [118] 徐平.三峡枢纽试验洞围岩变形粘弹性反分析闭.人民长江,1992,23(6):48~52
    [119] 朱浮声,薛琳.粘弹性围岩力学参数反分析的一种数值法[J].岩石力学与工程学报,1997,16(5):478~482
    [120] 肖洪天,杨若琼,杜广林.三峡船闸高边坡反分析及变形趋势预测[J].岩石力学与工程学报,1998,17(增):863~867
    [121] 薛琳.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的辨识[J].岩石力学与工程学报,1993,12(4):24~30
    [122] 薛琳.岩体粘弹性力学模型的判定定量与应用[J].岩土工程学报,1994,16(5):1~10
    [123] 夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996(3):53~58
    [124] Zamam M, Hossain M, Faruque M. Creep constitutive modeling of rock shale and evaluation of model parameters using optimization[J]. Indian Geotechanical Journal, 1997, 27(3): 221~240
    [125] 刘保国,孙钧.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998,22(4):10~14
    [126] 刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学,1999,16(1):18~25
    [127] 袁勇,朱合华,孙钧.围岩粘弹性本构方程的反演识别[J].同济大学学报,1993,21(4):439~445
    [128] 徐日庆,龚晓南,王明洋.粘弹性本构模型的识别与变形预报[J].水利学报,1998(4):75~80
    [129] Yang Zhifa, Wang Zhiying. Back analysis of viscoelastic displacement in a soft rock road tunnel[J]. Int. J. of Rock Mechanics & Mining Sciences, 2001, 38:331~341
    [130] 刘世君,徐卫亚,邵建富.岩石粘弹性模型辨识及参数反演[J].水利学报,2002(6):10]~105
    [131] 朱珍德,徐卫亚.岩体粘弹性本构模型辨识及其工程应用[J].岩石力学与工程学报,2002,21(11):1605~1609
    [132] 巫德斌,徐卫亚,朱珍德等.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与 工程学报,2004,23(8):1242~1246
    [133] K.Mustsuto & K.Katsumi. Elastic-viscoplastic Finite Element Analysis by Perturbation Method[J]. Variational Method in Engineering, 1986(3): 78~89
    [134] 朱合华.摄动粘弹性模型的反演分析[A].全国首届青年岩石力学与工程会议论文集[C].1992
    [135] 许宏发,陈新万.多项式回归间接求解岩石流变力学参数的方法[J].有色金属,1994,46(4):19~22
    [136] 许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报,2003,25(3):365~367
    [137] 李青麟.软岩蠕变参数的曲线拟合方法[J].岩石力学与工程学报,1998,17(5):559~564
    [138] Feng Xiating, Wang Yongjia, Yao Jianguo. A neural network model on real-time prediction of roof pressure in coal mines[J]. Int. J. Rock Mech. Mine Sci., 1996, 33(6): 647~653
    [139] Feng Xiating, Zhang Zhiqiang, Xu Ping. Adaptive and intelligent prediction of deformation time series of high rock excavation slope[J]. Trans. Nonferrous Met. Soc. China, 1999, 9(4): 842~846
    [140] Feng Xiating, Katsuyama K. A new direction-intelligent rock mechanics and rock engineering[J]. Int. J. Rock Mech. Mine Sci., 1997, 34(1): 135~141
    [141] 陈沅江,潘长良,王文星等.用Hopfield神经网络辨识岩土流变本构模型[A].中国岩石力学与工程学会第七次学术大会论文集[C].西安,2002,9:240~244
    [142] 邹光华,朱建明.红板岩材料隐式本构模型的建立及其应用研究[J].工程地质学报,2003,11(3):258~262
    [143] Holland J H. Adaptation in natural and artificial system[M]. Michigan: University of Michigan Press, 1975.
    [144] 高玮,郑颖人.岩体参数的进化反演[J].水利学报,2000(8):1~5
    [145] 高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120~122
    [146] Valanis K C. A theory of viscoplasticity without a yield surface[J]. Archives of Mechanics, 1971, 23(5): 517~551
    [147] Valanis K C. On the substance of Rivlin's remarks on the end0chronic theory[J]. International Journal of Solids and Structures, 1981, 17(5): 249~265
    [148] Valanis K C, Read H E. A new plasticity model for soils[A]. In: Pande G N, Zienkiewiez O C, ed. Soil Mechanics-Transient and Cyclic Loads[C]. [s.l.]: [s.n.]. 1982
    [149] 陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):735~742
    [150] Chan K S, Bodner S R, Fossum A F, etal. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression[J]. Mech. of Math., 1992, (14): 1114
    [151] Chan K S, Brodsky N S, Fossum A F, etal. Damage-induced nonassociated inelastic flow in rock salt[J]. Int. J. Plasticity, 1994, (10): 623~642
    [152] Fossum A F, Brodsky N S, Chan K S, etal. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J]. Int. J. Rock Mech. Min. Sci. & Geom. Abst., 1993, 30:1341~1344
    [153] Chan K S, Munson D E, Fossum A F, etal. Inelastic flow behaviour of argillaceous salt[J]. Int. J. of Damage Mechanics, 1996, (5): 293~314
    [154] Chan K S, Bodner S R, Fossum A F, etal. A damage mechanics treatment of creep failure in rock salt[J]. Int. J. of Damage Mechanics, 1996, (6): 121~152
    [155] Chan K S, Munson D E, Bodner S R. Creep deformation and fracture in rock salt[A]. Aliabadi M H. Fracture of Rock[C]. Boston: Southampton WIT press, 1999.
    [156] Lux K H, Hou Z. New developments in mechanical safety analysis of repositories in rock salt[A]. Pro. Int. Conf. On Radioactive Waste Disposal, Disposal Technologies & Concepts[C]. Berlin: Springer Verlag, 2000, 281~286
    [157] Aubertin M, Gill D E, Ladayi B. An internal variable model for the creep of rock salt[J]. Rock Mech. and Rock Engin., 1991, 24:81~97
    [158] Aubertin M, Sgaoula J, Gill D E. A viscoplastic-damage model for soft rocks with low porosity[A]. In: Proc. of 8th Int. Cong. on Rock Mechanics[C]. 1995, 1:283~289
    [159] Yahya O M L, Aubertin M, Julien M R. A unified representation of plasticity, creep and relaxation behaviour of rock salt[J]. Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr., 2000, 37:787~800
    [160] 杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602~1604
    [161] 谢和平.岩石蠕变损伤非线性大变形分析及微观断裂的FRACZAL模型[博士论文D).徐州:中国矿业大学,1987
    [162] 陈智纯,缪协兴,茅献彪.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术,1994,22(8):34~36
    [163] 缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报.1995,16(4):343~346
    [164] 曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报,2001,22(6):817~821
    [165] 肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报,1999,18(5):497~502
    [166] 肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,33(6):94~98
    [167] 任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002(1):10~15
    [168] 张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994
    [169] 刘文珽,郑旻中等.概率断裂力学与概率损伤容限/耐久性[M].北京:北京航空航天大学出版社,1998
    [170] 方华灿,陈国民.模糊概率断裂力学[M].东营:石油大学出版社,1999
    [171] Kranz R L. Crack growth and development during creep of Barre granite[J]. Int. J. Rock Mech. Min. Sci & Geomech. Abstract, 1979, 16(1): 23~35
    [172] Kranz R L. Crack-crack and crack-pore interactions in stressed granite[J]. Int. J. Rock Mech. Min. Sci & Geomech.Abstract, 1979, 16(1): 37~47
    [173] Korezniowski. W. Rheological model of llard rock pillave[J]. Rock Mech. Rock Eng., 1991(24): 155~166
    [174] 凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304~312
    [175] 凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2):141~146
    [176] 杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81~90
    [177] 邓广哲,朱维申等.裂隙岩体卸荷过程及裂隙蠕滑机制模拟研究[R].武汉:中国科学院武汉岩土力学研究所研究报告,1996
    [178] 陈有亮.岩石流变实验系统及岩石蠕变时效断裂特性的研究[博士论文D].上海:同济大学,1994,3
    [179] 陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报,1996,24(5):504~508
    [180] 陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报,2000,6(6):491~496
    [181] 陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480~483
    [182] 杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423~427
    [183] 徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295~298
    [184] 徐卫亚,杨松林.断续结构岩体流变力学分析[A].首届全球华人岩土工程论坛论文集[C].上海,2003:71~82
    [185] Costin. L.S. Time-dependent damage and creep of brittle rock [A]. Damage Mechanics and Continuum Modeling [C]. ASCE, New York, 1985:25~38
    [186] 陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999(12):33~37
    [187] 卫管一,张长俊.岩石学简明教程(第二版)[M].北京:地质出版社,2000,5
    [188] 尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391~395
    [189] 刘宝琛,张寄生,杜奇中等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998.17(6):611~614
    [190] Hudson JA, Crouch S, et al. Soft, Stiffand Servo-controlled Testing Machines[J]. Eng. Geol., 1972, 6(3): 155~189
    [191] 尤明庆,华安增.岩样单轴压缩下的尺度效应和矿柱支承性能[J].煤炭学报,1997,22(1):37~41
    [192] 徐卫亚,陈丹妮.岩体力学性质尺寸效应研究一现状、进展及方向[A].中国青年学者岩土工程力学及其应用讨论会论文集[C].武汉:科学出版社,1994:256~262
    [193] 周火明,盛谦,邬爱清.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661~664
    [194] 潘一山,魏建明.岩石材料应变软化尺寸效应的实验和理论研究[J].岩石力学与工程学报,2002,21(2);215~218
    [195] 李建林,王乐华.卸荷岩体的尺寸效应研究[J].岩石力学与工程学报,2003,22(12):2032~2036
    [196] 朱珍德,张爱军,邢福东等.岩石抗压强度与试件尺寸相关性试验研究[J].河海大学学报(自然版),2004,32(1):42~45
    [197] 朱珍德,邢福东,王军等.基于灰色理论的脆性岩石抗压强度尺寸效应的试验研究[J].岩土力学,2004,25(8):1234~1238
    [198] 王学滨,潘一山,杨小彬.准脆性材料试件应变软化尺度效应理论研究[J].岩石力学与工程学报,2003,22(2):188~191
    [199] 杨圣奇,徐卫亚.不同围压下岩石材料强度尺寸效应的数值模拟[J].河海大学学报(自然版),2004,32(5):578~582
    [200] 杨圣奇,徐卫亚.岩石尺寸效应及其机理的研究[A].见任青文主编:岩土力学前沿[C].南京:河海大学出版社,2004:179~193
    [201] 杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484~490
    [202] 杨圣奇,张学民,苏承东.岩块声学特性的试验研究[J].辽宁工程技术大学学报,2003,22(6):772~775
    [203] 长江水利委员会长江科学院主编.水利水电工程岩石试验规程[S].北京:中国水利水电出版社,2001
    [204] Labuz J.F., BioLzi L. Class ⅠVs Class ⅡStability: a demonstration of size effect[J]. Int.J.Rock Mech. Min & Geomech. Abstr., 1991, 28(2/3): 199~205
    [205] Obert L., Windes S.L., Duvall W.I. Standardized test for determining the physical properties of mine rock[J]. U.S. Bur. Mines Rept. Invest., 1946:3891
    [206] Jahns H. Measuring the strength of rock in-situ at an increasing scale[A]. Proc. of Ist ISRM Congress[C]. 1966:457~463
    [207] Bieniawski Z.T. The effect of specimen size on compressive strength of coal[J]. Int. J. Rock Mech. Min. Sci., 1968(5): 325~335
    [208] Bazant Z P., Kazemi M T. et al. Size effect in Brazilian split-cylinder test[J]. ACI Mat.J, 1991, 88:325
    [209] Pratt H R, Black A D, Brown W S. The effect of specimen size on the mechanical properties of unjointed diorite[J]. Int. J. Rock Mech. Min. Sci., 1972 (9): 513~529
    [210] Brown E T. Gonano L P. Improved compression test technique for soft rock[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1974, 100:197-199
    [211] Bieniawski, Z.T., Van Heerden W.L. The signficanee of in-situ tests on large rock specimens[J]. Int. J. Rock Mech. Min. Sci., 1975(12): 811~820
    [212] 郭志.实用岩体力学[M].北京:地震出版社,1996:21~25
    [213] Ian Farmer. Engineering behavior of rocks (second edition)[M]. London, New York, Chapman and hall, 1983
    [214] 曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628~633
    [215] 吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55~61
    [216]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [217] 徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002, 21(6):787~791
    [218] 杨圣奇,徐卫亚,韦立德等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然版),2004,32(2):200~203
    [219] 尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000,9
    [220] 尤明庆.复杂路径下岩样的强度和变形特性[J].岩石力学与工程学报,2002,21(1):23~28
    [221] 苏承东,尤明庆.单一试样确定大理岩和砂岩强度准则的方法[J].岩石力学与工程学报,2004,23(18):3055~3058
    [222] 杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2005,26(3):475~478
    [223] YOU Mingqing, YANG Shengqi, SU Chengdong. Relation between Young's modulus and strength of weak rock[A]. In: The Proceedings of the 2nd International Conference on the New Development in Rock Mechanics and Rock Engineering[C]. Rinton Press, 2002, 10: 201~206
    [224] 尤明庆.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778~781
    [225] 苏承东.大理岩颗粒及试样尺寸对冲击倾向影响的试验研究[J].岩石力学与工程学报,2004,23(22):3750~3753
    [226] 尤明庆,苏承东.大理岩试样的长度对单轴压缩试验的影响[J].岩石力学与工程学报,2004,23(22):3754~3760
    [227] 尤明庆.两种晶粒大理岩的力学性质研究[J].岩土力学,2005,26(1):91~96
    [228] 余启华.岩石的流变破坏过程及有限元分析[J].水利学报,1985,(1);55~61
    [229] 徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(Supp2):5536~5542
    [230] 徐卫亚,杨松林,朱珍德等.龙滩水电站地下洞室群围岩流变研究报告[R].南京: 河海大学,2003
    [231]徐 涛.煤岩破裂过程固气耦合数值试验[博士论文D].沈阳:东北大学,2004
    [232] 凌建明,蒋爵光,傅永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报,1992,11(4):373~383
    [233] 楼志文.损伤力学基础[M].西安:西安交通大学出版社,1990
    [234] 金丰年,范华林,浦奎源.岩石蠕变损伤模型研究[J].工程力学,2001(增刊):227~231
    [235] 谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [236] 徐卫亚,杨圣奇,褚卫江.岩石非线性粘弹塑性流变模型(河海模型)及其应用研究[J].岩石力学与工程学报,2006,25(3):433~447
    [237] 徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531~537
    [238] 徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693~698
    [239] 杨圣奇,徐卫亚,谢守益等.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):待刊
    [240] 杨圣奇,徐卫亚,褚卫江.岩石高边坡工程非线性流变数值分析[J].岩土工程学报,2006:已经录用
    [241] 杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2005:已经录用

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700