适用于全光开关的具有三阶非线性光学效应的dmit材料聚合物复合薄膜的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光开关可以突破限制电、声、热、机械等光开关单通道传输速率的瓶颈,实现数据从源节点到目的节点的传输过程都在光域内进行。因而,研究解决可实现全光开关的关键材料与器件是当今国际光电科学技术发展的前沿问题,受到了人们高度关注。
     全光开关的类型有多种,其中最具代表性的Mach-Zehnder干涉型全光开关主要利用了材料的三阶非线性光学效应。用一束控制光引起材料的折射率变化,信号光在其中通过时就会带来相位的变化,从而实现光开关的开关动作。其非线性相移与2πn2IL/λ成正比,其中I是光强,L是光波相互作用长度,n2是非线性折射率。全光开关的交换速度、能耗、对偏振态的敏感性、插入损耗等性能,均取决于用于器件制备的三阶非线性光学材料。
     长期以来,国际上对三阶非线性光学材料的研究主要集中在基于分子取向的铁电液晶、基于带隙共振吸收的半导体、金属氧化物类、硫系玻璃、有机染料、富勒烯衍生物及以聚乙二炔、聚乙炔、聚苯乙炔为代表的聚合物等材料上。其中,液晶的响应速度偏慢,有机染料和聚乙二炔等导电聚合物的非线性折射率较小,半导体材料由于其带隙共振作用导致非线性吸收较大、响应速度也变慢,总之,以上几类材料都难以满足全光开关器件化的要求。
     本论文基于全光开关应用的需要,致力于探索集高三阶非线性光学效应和高迁移率性能于一体的配合物型材料,即从有机配合物超导体、导体和半导体一类材料中探索高迁移率的材料,从而避开线性吸收区域工作并响应速度极快。特别是当配合物型材料在有机共轭体系中引入金属离子以后,金属与有机体系之间的电荷转移使得整个共轭体系的电子离域性更强,可以进一步增强有机化合物的三阶非线性光学特性并提高迁移率,产生具有快速响应的非共振三阶非线性光学效应。早期,1,3-二硫杂环戊烯-2-硫酮-4,5-二巯基(简称dmit)类有机配合物材料导电特性被人们广泛关注,对它们的三阶非线性光学特性以及其它相关性能进行深入研究。近年来,人们渐渐发现这类材料的分子具有优良的π电子共轭体系,离域π电子很容易带来大的三阶非线性光学效应。本文将研究对象集中于dmit这一类有机/无机配合物型半导体材料,对它们的三阶非线性光学特性以及其它相关性能进行深入研究。
     在前期工作中,本课题组已经对dmit类材料在溶液中的三阶非线性光学特性做了较为深入地研究,筛选出了几种具有较大非线性折射和较小非线性吸收的材料。本论文在前人工作基础上,有针对性的对几种dmit类材料在薄膜中的三阶非线性光学特性做了系统性的研究,从内部机理探讨了影响材料非线性光学特性的各项因素,并对影响薄膜非线性响应和光学质量的热致损耗和光传输损耗性质做了初步探索。目的是为了探索到适用于全光开关器件应用的非线性光学材料和提高材料三阶非线性折射,降低线性和非线性吸收的理想途径,为材料的最终器件化提供实验和理论依据。本论文的研究工作主要体现在以下几个方面:
     1、Dmit/PMMA聚合物复合薄膜三阶非线性光学特性研究。
     筛选出了几种具有较大非线性折射和较小非线性吸收,能够被考虑用在全光开关器件制作上的候选材料,并发现了其三阶非线性光学性质与中心金属离子及结构密切相关的规律。
     全光开关器件要求材料不仅具有大的非线性折射率,而且需要具有小的线性和非线性吸收。对于采用Z-扫描方法得到的材料非线性折射率、非线性吸收以及二阶分子超极化率等光学参量,我们用两个品质因子W=n2I/α0λ和T=βλ/n2来分析dmit材料是否适合于全光开关器件的研制,当|W|>>1而且|T|<<1时,就认为这种材料符合全光开关器件研制要求。
     对金属离子分别为Au和Cu的dmit类材料的三阶非线性光学特性研究发现,两类材料都具有较大的非线性折射效应,而Cu(dmit)2类材料相对于Au(dmit)2类材料则具有更大的非线性吸收。得到的两种Au(dmit)2类材料[C16H33(CH3)3N][Au(dmit)2] (CTAu)和[(CH3)4N][Au(dmit)2] (MeAu)的品质因子W和T都满足|W|>>1而且|T|<<1的要求,而Cu(dmit)2材料的|T|>>1。由此可断定,CTAu和MeAu两种材料满足全光开关器件对非线性光学材料的要求,在全光开关器件化方面具有较好的应用前景,而Cu(dmit)2类材料则不适合用在全光开关应用上。
     通过提高BFDT/PMMA聚合物复合薄膜中非线性基元的掺入量,薄膜的非线性光学响应得到显著提高,其中非线性折射增强的同时非线性吸收的变化很小。并且该类材料除了表现出较强的非线性折射效应以外,它们的非线性吸收效应很小以致于可以忽略不计,其品质因子W的值在1.05~3.87之间,而T≈0,基本满足|W|>>1和|t|<<1的要求,所以该类材料也是将来可以用在全光开关器件制作上的良好候选材料。
     2、dmit类材料的超快时间响应特性研究。
     采用飞秒时间分辨光克尔技术得到了dmit类材料的光克尔信号的响应时间都在200 fS左右,其响应速度比当前通用的电光开关的响应速度约快4~6个数量级。其中一些材料的响应时间是首次报道。以dmit类材料作为研究对象,除了由于它们具有较大的由π共轭结构引起的三阶非线性光学效应之外,更多的是因为其相对于其它材料具有超快响应速度的特性。
     3、Dmit/PMMA聚合物复合薄膜热效应因素研究。
     得出了随着薄膜体系内非线性基元掺入量的增加,薄膜非线性光学效应增强的同时,热效应影响也相应增大的规律。利用带有温度控制装置的棱镜耦合系统得到的dmit/PMMA薄膜的热光系数在10-5/℃量级。由热效应引起的热致折射率变化是阻碍全光开关器件实现开关状态和超快响应速度的主要因素。通过降低薄膜体系的线性吸收和非线性吸收,可以有效减小热效应的影响。
     4、BFDT/PMMA聚合物复合薄膜的光传输损耗研究。
     降低波导薄膜中的光传输损耗,可以提高薄膜光学稳定性和实用性,进而优化波导器件开关性能。通过比较不同掺杂浓度下BFDT/PMMA聚合物复合薄膜的光传输损耗系数,得出随着掺入量的增加,薄膜的传输损耗也呈近似线性增加的趋势。改善薄膜的制备工艺和表面处理技术,减少薄膜中的散射点,是有效降低光传输损耗的途径之一。
     采用聚合物包覆法制备的dmit/PMMA聚合物复合薄膜,以表面活性剂作为包覆剂,所制备的薄膜在扫描探针显微镜的观察下发现其表面均匀分布着dmit材料析出的纳米晶颗粒,颗粒的尺度约在20~50 nm之间。Dmit材料被均匀地掺入进了聚合物PMMA基质中去。用此种方法制备的BFDT/PMMA聚合物复合薄膜的光传输特性得到明显改善。
     5、Cu(dmit)2类材料在纳秒脉冲激发条件下的光限幅特性研究。
     通过一个五能级模型分析,得到Cu(dmit)2类材料在18ns脉冲激发条件下会发生反饱和吸收的结论,然后对其由反饱和吸收引起的光限幅特性做了详细研究。获得了的丙酮溶液样品在纳秒激光通过三个不同光学厚度后的光限幅阈值,其高的线性透过率和低的非线性透过率性质揭示了Cu(dmit)2类材料在激光防护等光限幅领域良好的应用前景。并对这两种材料之间光限幅效应的差异从其内部分子不同阳离子结构的角度做了阐述,明确了阳离子半径更小是导致EtCu的光限幅特性强于BuCu的原因。
     综上所述,本论文对dmit类材料的三阶非线性光学特性以及时间响应特性做了分析,研究了含金属离子和不含金属离子材料、具有同种金属离子和不同阳离子的材料、不同金属离子的材料在不同脉宽和波长下的非线性光学现象,揭示了阳离子和金属离子对材料非线性光学响应的影响和非线性吸收与不同脉宽之间的关系。另外,通过对不同掺杂浓度的dmit/PMMA聚合物复合薄膜的热效应和光传输损耗的研究,揭示了薄膜中非线性基元的掺入量对其热致损耗和光传输损耗的影响。通过对材料的筛选,获得了一些可以在全光开关及光限幅等领域有着良好应用前景的非线性光学材料。在现有材料的探索和性能研究的基础上,通过揭示材料分子结构以及外部因素与材料功能特性之间的内在联系,找到了一些解决问题的有效方法和途径,重要的是为将来进一步的深入研究指明了方向。本论文的工作将为下一步的波导器件制作与研究工作,提供重要的实验基础。
All-optical switching can break through the bottleneck of single-channel transmission velocity of other switching such as electro-optical switching, acousto-optical switching, thermal-optical switching and mechanical-optical switching and make the data transmit from source node to aim node within optics field. Therefore, research of key materials and devices which can achieve all-optical switching is a frontier issue of the development of international photoelectric science and technology in today and to be paid high attention by people.
     There are various type of all-optical switchings, in which the most representative Mach-Zehnder interferometric all-optical switching makes use of the third-order nonlinear optical (NLO) effect of materials. A controlled beam is irradiated into material resulting in variety of refractive index. When a signal beam is irradiated to the material, its phase changes, then achieve the "on" and "off" of switching. The change of phase is proportional with 2πn2IL/λ, where I is intensity of irradiance, L is the interaction length of light and n2 is the nonlinear refractive index. The properties of all-optical switching, such as switch velocity, energy loss, sensitivity for polarization, insert loss and so on, are all determined by third-order NLO materials which are used in fabrication of devices.
     For a long time, the research about third-order NLO materials both at home and abroad are almost focused on ferroelectric liquid crystal basing on molecular orientation, semiconductor based on band gap resonance absorption, metallic oxide, chalcogenide glass, organic dye, fullerene derivative and polymers such as PDA, PA, PPV and the like. Among above-mentioned materials, the response velocity of liquid crystal is too slow, the nonlinear refractive indices of organic dye and polymers are too small, the nonlinear absorption of semiconductor is too large because of the action of resonance absorption in band gap as well as its slower response velocity. In a word, all above-mentioned materials are not suitable for the demand of all-optical switching device.
     In the dissertation, basing on the demand of all-optical switching application, we devote ourselves to explore a series of complexes which have properties of larger third-order NLO effects and higher mobility. Especially when metal ion is introducted into the conjugated system of complex, the charge transfer between metal and organic system makes the electron delocalization property of total conjugated system stronger, then further enhances the third-order NLO response and electron mobility, and induce off-resonant third-order NLO effects with ultrafast response time. In the earlier works, the conductive properties of 4,5-dithiolato-1,3-dithiole-2-thione (abbreviated as dmit) complexes were widely concerned. Recently, It has been gradually found that the molecules of these materials have excellentπelectron conjugated system, and thus the beginning of their third-order NLO properties. In this dissertation, we will make investigations focused on these classes of organic/inorganic complex semiconductors and study their third-order NLO properties as well as other relative characteristics.
     In previous works, our group has done in-depth studies on the third-order NLO properties of dmit complex in solution and had selected several materials which have larger nonlinear refraction and smaller nonlinear absorption. In this paper, we aimed at several typical dmit complex and did some systemic studies for their third-order NLO properties in PMMA film. The factors that impact the NLO properties of materials were discussed from their inherent mechanism. The thermal-induced loss and light transmission loss which can affect the NLO response and optical quality of the film were also explored preliminarily. The purpose is to get NLO materials which are applicable for all-optical switching device and ideal methods that can enhance nonlinear refraction and weaken nonlinear absorption, and provide experimental and theoretical evidence for the final device of the materials. The works of the dissertation are mainly reflected in the following aspects:
     1. Investigations of third-order NLO properties of dmit/PMMA polymeric complex films.
     Screened out several candidate materials which have properties of larger nonlinear refraction and smaller nonlinear absorption and can be used in all-optical switching device. Discovered the laws which the third-order NLO properties are closely related to central metal ion and structure.
     All-optical switching device demands materials have properties of not only larger nonlinear refraction but also smaller linear and nonlinear absorption. For the parameters obtained by Z-scan method such as nonlinear refractive indices, nonlinear absorptive coefficients and so on, two figures of merit W=n2I/α0λ和T=βλ/n2 were used to analyze the suitability of a material for application in all-optical switching devices. For the application purpose, it is necessary to achieve (?)>>1 and (?)<<1.
     For the research of the dmit comploexes with the metal ions are Au and Cu we found the two types of materials both show larger nonlinear refraction. Cu(dmit)2 compounds show larger nonlinear absorption compared with Au(dmit)2 compounds. The obtained figures of merit of two Au(dmit)2 compounds: [C16H33(CH3)3N][Au(dmit)2] (CTAu) and [(CH3)4N][Au(dmit)2] (MeAu) both satisfy the demands of (?)>>1and (?)<<1 . However, the values T of Cu(dmit)2 compounds are much larger than 1. We can conclude from those results that the two materials: CTAu and MeAu both satisfy the demands of all-optical switching devices for the NLO materials and have a promising prospect in the field of all-optical switching device. While for Cu(dmit)2 compounds are not suitable for use in all-optical switching applications.
     By increasing the doping concentration of nonlinear elements into the BFDT/PMMA polymeric complex films, the nonlinear responses of the films were enhanced obviously. With the nonlinear refraction enhanced, the change of nonlinear absorption was tiny. Otherwise, besides the larger nonlinear refraction effect, the BFDT/PMMA films showed tiny nonlinear absorption so that it can be ignored. The values that W were about at between 1.05~3.87 and T≈0) is up to the demand of (?)>>1 and (?)<<1. Therefore, BFDT is also a better candidate material which may be applied in fabrication of all-optical switching device in the future.
     2. Investigations of ultrafast time response properties of dmit complexes.
     Using femtosecond optical Kerr technology, the response time of OKE signal of dmit materials were all about 200 fs. Which were faster than that of current popular electro-optic switching about 4~6 orders of magnitude. The response time of some materials were first reported in this dissertation. Besides the third-order NLO effect induced by largerπ-conjugated structure, the ultrafast response velocity properties of dmit materials compared with other materials is the main reason that we select the type of materials as our study subject.
     3. Investigations of thermal effects of dmit/PMMA polymeric complex films.
     Obtained the law that, with the increase of the nonlinear elements in the film system, the influence of thermal effect is accordingly enhanced as well as the NLO effect. The thermo-optic coefficients of dmit/PMMA films were calculated to be at 10-5/℃magnitude by using a prism-coupler system attached temperature-controlled apparatus. The change of refractive index induced by thermal effect is the major factor that disturb the implementation of switch and response velocity. The influence of thermal effect can be depressed effectively by reducing the linear and nonlinear absorption of film systems.
     4. Investigations of light transmission loss of BFDT/PMMA polymeric complex films.
     Reducing the light transmission loss of waveguide film can improve the optical stability and practicality, then optimize the switching performance of waveguide device. By comparing the light transmission loss coefficients of BFDT/PMMA films at different doping concentrations, we obtained the tendency that the transmission loss of the film increases approximate linearly with the increase of doping concentration. Improving the fabrication technique and surface treatment technology of film and reduce scattering points in film is one of the effective methods to reduce the light transmission loss.
     Dmit/PMMA polymeric complex films were prepared using polymer coated method. We used surfactant as the coating agent. The films were observed using a scanning probe microscopy (SPM) and it was found that nanocrystalline particles separated out from PMMA matrix were distributed uniformly on the surface of the films. The particle scales were about within 20~50 nm. Dmit complex were doped into the polymeric PMMA matrix uniformly. The light transmission properties of BFDT/PMMA polymeric complex film which is prepared by polymer coated method were improved obviously.
     5. Investigations of optical limiting properties of Cu(dmit)2 compounds at the excitation of nanosecond pulse laser.
     Analyzed using a five-level mode, the conclusion that Cu(dmit)2 compounds shows the property of reverse saturable absorption at the excitation of 18 ns pulse was obtained. Then the optical limiting induced by reverse saturable absorption was studied in detail. We obtained the limiting thresholds of [(C2H5)4N]2[Cu(dmit)2] (EtCu) and [(C4H9)4N]2[Cu(dmit)2] (BuCu) in acetone solution in three different thicknesses by 18 ns pulse excitation. The larger linear transmittance and lower nonlinear transmittance of Cu(dmit)2 complexes indicated their promising prospects in the field of optical limiting such as laser protection. The difference of the two materials was expatiated from the perspective of different cations in molecular structure. It was confirmed that the smaller cation radius is the reason that the optical limiting effect of EtCu is stronger than that of BuCu.
     In conclusion, in the dissertation we analyze the third-order NLO and time response properties. The NLO responses of dmit materials which have metal ion and no metal ion, have same metal ion but different cation, have different metal ion were investigated at conditions of different pulse width and wavelength. The influence of cations and metal ions for NLO response of materials and relationship between nonlinear absorption and different pulse width were also indicated in the dissertation. In addition, by investigation on thermal effect and light transmission loss of dmit/PMMA polymeric complex films with different doping concentrations, we indicated the influence of doping concentration of nonlinear elements for the thermal-induced loss and light transmission loss. By screening materials, we obtained some NLO materials which would be promising materials at fields of all-optical switching or optical limiting. Basing on exploration and characterization of current materials, through indicating the internal relationship between molecular structures, external factors and functional features of materials, we found some effective methods of solving problems, and what is important, pointed the way for the further in-depth investigation in the future. The works of the dissertation will provide important experimental foundations for the further fabrication and investigation of waveguide devices.
引文
[1]T.H. Maiman. Stimulated optical radiation in Ruby. Nature,1960,187:493-494.
    [2]C.K. Kao, GA. Hockham. Dielectric-fibre surface waveguides for optical frequencies. Proc. IEE,1966, July:1151-1158
    [3].李淳飞.“非线性光学”电子工业出版社,2009.
    [4]郑洁,周日凯,马洪勇,胡强高,江山.光开关综述.烽火科技报,2008,8.
    [5]何剑锋,黄德修,林守锋,吴砺.一种基于反射镜的2×2机械式光开关.激光与光电子学进展,2002,39(7):12-15.
    [6]Li Fan, S. Gloekner, P. D. Dobblelaere et al, Digital MEMS switch for planar photonic crossconnects. Optical Fiber Communication Conference. Technical Digest,2002,93~94.
    [7]M. Harjanne, M. Kapulainen, T. Aalto, P. Heimala. Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch. IEEE Photonics Technol. Lett.,2004,16:2039-2041.
    [8]闫欣,马春生,王现银,张大明,刘式墉.聚合物微环电光开关的模拟和优化.光子学报,37(12):2374-2378.
    [9]叶小华,叶会亮,黄旭光.偏振保持型磁光开关的设计方案.激光与红外,2008,38(10):1011-1014.
    [10]H. Herrmann, K. Schafer, W. Sohler. Polarization independent, integrated optical, acoustically tunable wavelength filters/switches with tapered acoustical directional coupler. IEEE Photonics Technol. Lett.,1994,6:1335-1337.
    [11]J. Skinner, C. H. R. Lane. A low crosstalk microop tic liquid crystal switch. IEEE
    Journal on Selected Areas in Communications,1988,6:1178-1185.
    [12]W. A. Crossland, I. G. Manolis, M. M. Redmond, et al. Holographic optical switching:the "ROSES" demonstrator. Journal of Lightwave Technology,2000, 18:1845-1854.
    [13]A. M. Makihara, F. Shimokawa, K. Kaneko. Strictly nonblocking N×N thermo-capillarity optical matrix switch using silica-based waveguide [C]/ /OFC2000. Baltimore:,2000, TuM 2:1-3.
    [14]隋志成,姜希军,吴志坚.光开关及其在全光网中的应用.光通信技术,2002,26:27-32.
    [15]S. Nakamura, Y. Ueno, K. Tajima.168-Gb/s all-optical wavelength conversion with a Symmetric-Mach-Xehnder-type switch. IEEE Photonics Technol. Lett., 2001,13:1091-1093.
    [16]O, Boyraz, P. Koonath, V. Raghunathan, B. Jalali. All optical switching and continuum generation in silicon waveguides. Opt. Express.,2004,12:4094-4102.
    [17]Fumihiro Ebisawa, Mitsutoshi Hoshino, Ken Sukegawa. Self-holding photochromic polymer Mach-Zehnder optical switch, Appl. Phys. Lett.,1994, 65(23):2919-2921.
    [18]李少晖,杨爱英,崔健民,孙雨南.基于光子晶体光纤非线性环路镜光开关的研究.北京理工大学学报,29:137-141.
    [19]N. J. Doran, D. Wood. Nonlinear-optical loop mirror. Opt. Lett.,1988,13(1): 56-58.
    [20]K. J. Blow, N. J. Doran, B. K. Nayar, et al. Two-wavelength operation of the nonlinear fiber loop mirror. Opt. Lett.,1990,15(4):248-250.
    [21]M. Jinno, T. Matsumoto. Ultrafast all-optical logic operations in a nonlinear sagnac interferometer with two control beams. Opt. Lett.,1991,16(4):220-222.
    [22]Wensheng Shi, Zhenghao Chen, Ningning Liu, Huibin Lu, Yueliang Zhou, Dafu Cui, Guozhen Yang. Nonlinear optical properties of self-organized complex oxide Ce:BaTiO3 quantum dots grown by pulsed laser deposition. Appl. Phys. Lett., 1999,75(11):1547-1549
    [23]J. Adam. Non-oxide glasses and their application in optics. J. Non-crystal Solids, 2001,287:401-404.
    [24]A. Zakery, S.R. Elliott. Optical properties and applications of chalcogenide glasses. J.-Non-Crystal Solids,2003,330:1-12.
    [25]C. Sauteret, J.P. Herman, R. Frey, F. Pradere, J. Ducuing, R.H. Baughman, R.R. Chance. Optical nonlinearities in one-dimensional-conjugated polymer crystals. Phys. Rev. Lett.,1976,36:956-959.
    [26]G. P. Agrawal, C. Cojan, C. Flytzanis. Nonlinear optical properties of one-dimentional semiconductors and conjugated polymers. Phys. Rev., B,1978, 17:776-789.
    [27]M. Cha, W. E. Torruellas, S. H. Yuan. Third-order optical spectroscopy of polythiophene. J. Opt. Soc. Am., B,1995,12:882-888.
    [28]W. E. Tomrellas, D. Neher, R. Zanoni. Dispersion measurements of the third-order nonlinear susceptibility of polythiophene. Chem. Phys. Lett.,1990, 175:11-16.
    [29]N. S. Saricifici, L. Smilow, Y. Cao, A. J. Heeger. Absorption spectroscopy of nonliear excitations in polyaniline. J. Chem. Phys.,1993,98:2664-2668.
    [30]P. Wang, H. Ming, J. Xie, W. Zhang, X. Gao, Z. Xu., and X. Wei. Substituents effect on the nonlinear optical properties of C60 derivatives. Opt. Commun.,2001, 192 (7):387-391.
    [31]Q. H. Gong, P. Yuan, Z. J. Xia, Y. H. Zou, J. L. Li, H. Yang, H. Hong, F. Y. Yu, S. J. Chen, Z. G Wu, X. H. Zhou and F. M. Li. Two-photon resonance enhanced nonlinear optical response in C60-copolymer charge transfer complex. Solid State Commun.,1997,103(7):403-405.
    [32]P. F. Wu, D. V. G L. N. Rao. Spatial light modulation with an azobenzene-doped polymer by use of biphotonic holography. Opt. Lett.,1999,24:841-844.
    [33]傅正生,王长青,薛华丽,刘茂栋.含偶氮苯光学活性侧基聚合物研究进展.高分子通报,2004(4):10-23.
    [34]B. Xiao, H. Y. Han, X. R. Meng, Y. L. Song, Y. T. Fan, H. W. Hou, Y. Zhu. A helical chain coordination polymer{[Zn(Ac)2(bbbm)](CH3OH)2}n (bbbm= 1,1-(1,4-butanediyl)bis-1H-benzimidazole):synthesis, crystal structure and the third-order nonlinear optical property. Inorg. Chem. Commun.,2004,7: 378-381.
    [35]汪敏强,李静,李广社,杨合情,张良莹,姚熹.偶氮苯聚合物5-NO_2-PADAT及其与Pd(Ⅱ)的螯合物光存储特性.光子学报,1999,28(4):322-325.
    [36]G Moscardi, L. Resconi, L. Cavallo. Propene polymerization with the isospecific, highly regioselective rac-Me2C(3-t-Bu-1-Ind)2ZrCl2/MAO catalyst.2. Combined DFT/MM analysis of chain propagation and chain release reactions. Organometallics,2001,20:1918-1931.
    [37]P. K. Das, L. A. Belfiore. Nonlinear stress relaxation in palladium(II) complexes with triblock copolymers of styrene and butadiene. J. Appl. Polymer Sci.,2004, 93:1329-1336.
    [38]X. Y. Su, H. Y. Xu, Q. Z. Guo, G Shi, J. Y. Yang, Y. L. Song, X. Y. Liu. Stilbene-containing polyactylenes:Molecular design, synthesis, and relationship between molecular structure and NLO properties. J. Polymer Sci. A,2008,46: 4529-4541.
    [39]L. K. Li, Y. L. Song, H. W. Hou, Y. T. Fan, Y. Zhu, Syntheses, structures, and optical properties of beta-ferrocenylacrylate metal polymers. Eur. J. Inorg. Chem., 2005,16:3238-3249.
    [40]N. Venkatram, D. Narayana Rao, L. Giribabu, S. Venugopal Rao. Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532 nm with nanosecond pulse excitation. Appl. Phys. B,2008,91:149-156.
    [41]S. J. Mathews, S. C. Kumar, L. Giribabu, S. V. Rao. Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan. Opt. Commun.,2007,280:206-212.
    [42]M. Terazima, H. Shimizu, A. Osuka. The third-order nonlinear optical properties of porphyrin oligomers. J. Appl. Phys.,1997,81:2946-2951.
    [43]G. J. Zhou, S. Zhang, P. J. Wu, C. Ye. Optical limiting properties of a zinc porphyrin polymer and its dimer and monomer model compounds. Chem. Phys., 1998,231:87-94.
    [44]L. Brossard, M. Ribault, L. Valade, P. Cassoux. The first 3D molecular superconductor under pressure:TTF[Ni(dmit2)]2. Physica B+C,1986,143: 378-380.
    [45]P. Cassoux. Molecular (super) conductors derived from bis-dithiolate metal complexes. Coord. Chem. Rev.,1999,185-186:213-232.
    [46]M. R. Bryce. Recent Progress on Conducting Organic Charge-Transfer Salts. Chem. Soc. Rev.,1991,20:355-390.
    [47]张其春,吴培基,朱道本.有机导体及超导体的回顾与展望.功能材料,2000,31(3):225-229.
    [48]K. H. Drexhage, U. T. Mueller-Westerhof. New Q-switch compounds for infrared lasers., IEEE J Quantum. Electron.,1972,8:759-759.
    [49]C. S. Winter, C. A. S. Hill, and A. E. Underhilla. Near resonance optical nonlinearities in nickel dithiolene complexes. Appl. Phys. Lett.,1991,58: 107-109.
    [50]C. S. Winter, S. N. Oliver, R. J. Manning, J. D. Rush, C. A. S. Hill, A. E. Underhill. Nonlinear optical studies of nickel dithiolene complexes. J. Mater. Chem.1992,2:443-447.
    [51]C. S. Winter, S. N. Oliver, J. D. Rush, C. A. S. Hill, A. E Underhill. Third-order Optical Nonlinearities in Metal Dithiolate Complexes. In Organic Molecules for Nonlinear Optics and Photonics. J. Messier, F. Kajzar, P. Prasad, Eds. NATO ASI Series E,194. Boston:Kluwer,1991,383-390.
    [52]C. A. S. Hill, A. E. Underhill, C. S. Winter, S. N. Oliver, J. D. Rush. Resonance Enhanced Third-order Nonlinearities in Metal Dithiolenes. In Organic Materials for Nonlinear Optics II. R. A. Hann, D. Bloor, Eds. London:Royal Society of Chemistry,1991,217-222.
    [53]杨楚罗,秦金贵,刘道玉,王友贵,司金海,赵江,叶佩弦.金属有机电荷转移盐(CpFeBz)n[M(L)2](L=mnt或dmit)的合成及其三阶非线性光学性质.化学学报,1997,55(8):846-852.
    [54]C. L. Yang, Q. G Yang, J. H. Si, S. B. Wang, P. X. Ye, J. G Qin. Synthesis and third-order nonlinear optical properties of square planar complexes with donor-metal-acceptor structure. Electro-optic and second harmonic generation materials, devices, and applications II, SPIE,1998,3556:102-107.
    [55]Shufeng Wang, Wentao Huang, Tieqiao Zhang, Hong Yang, Qihuang Gong, et al. Third-order nonlinear optical properties of didodecyldimethylammonium-Au(dmit)2. Appl. Phys. Lett.,1999,75(13):1845-1847.
    [56]Jie Dai, Guo-Qing Bian, Xin Wang, Qing-Feng Xu, Min-Yan Zhou, et al. A New Method to Synthesize Unsymmetrical Dithiolene Metal Complexes of 1,3-Dithiole-2-thione-4,5-dithiolate for Third-Order Nonlinear Optical Applications. J. Am. Chem. Soc.,2000,122:11007-11008.
    [57]Z. R. Sun, M. H. Tong, H. P. Zeng, L. G Ding, Z. G Wang, Z. Z. Xu, J. Dai, G Q. Bian. Optical limiting response in a unsymmetrical dithiolene metal complex (Me4N)2[Zn(dmit)(Sph)2], Chem. Phys. Lett.,2001,342(3-4):323-327.
    [58]C. L. Zhan, W.Xu, D. Q. Zhang, D. H. Li, Z. Z. Lu, Y. X. Nie, D. B. Zhu. Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2:application for optical limiting, J. of Mate. Chem.,2002, 12(14):2945-2948.
    [59]P. Aloukos, S. Couris, J. B. Koutselas, G. C. Anyfantis, G C. Papavassiliou. Transient nonlinear optical response of novel neutral unsymmetrical nickel dithiolene complexes, Chem. Phys. Lett.,2006; 428(1-3):109-113.
    [60]H. L. Yang, X. Q. Wang, Q. Ren, G H. Zhang, X. B. Sun, L. Feng, S. F. Wang, Z. W. Wang. Study on the third-order nonlinear optical properties of bis(tetrabutylammonium)bis(1,3-dithiole-2-thione-4,5-dithiolato)cadium. Opt. commun.,2005,256:256-260.
    [61]X. B. Sun, Q. Ren, X. Q. Wang, G H. Zhang, H. L. Yang, L. Feng, D. Xu, Z. B. Liu. Nonlinear optical properties of [(CH3)4N]Au(dmit)2 using Z-scan technique. Chin. Phys.,2006,15:1-5.
    [62]W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, D. Xu. Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths. Chem. Phys. Lett.,2007,435:65-68.
    [63]X. B. Sun, X. Q. Wang, Q. Ren, G H. Zhang, H. L. Yang, L. Feng. Third-order nonlinear optical properties of bis(tetrabutylammonium)bis(4,5-dithiolato-1,3-dithiole-2-thione)copper. Mater. Res. Bull.,2006,41:177-182.
    [1]P. A. Franken, A. E. Hill, C. W. Peters, G Weinreich. Generation of optical harmonics. Phys. Rev. Lett.,1961,7:118-120.
    [2]N. Bloembergen. Nonlinear optics.1965, NY:Benjamin.
    [3]石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科技大学出版社,2003.
    [4]叶佩弦.非线性光学原理.北京大学出版社,2007.
    [5]李淳飞.非线性光学.电子工业出版社,2009.
    [6]Y. J. Li, D. Dini, M. J. F. Calvete, M. Hanack, W. F. Sun. Photophysics and nonlinear optical properties of tetra-and octabrominated silicon naphthalocyanines. J. Phys. Chem. A,2008,112:472-480.
    [7]C. Gayathri, A. Ramalingam. Single-beam Z-scan measurement of the third-order optical nonlinearities of azo dyes. Spectrochimica Acta Part A,2007, 68:578-582.
    [8]C. L. Zhan, D. Q. Zhang, D. B. Zhu, D. Y. Wang, Y. J. Li, D. H. Li, Z. Z. Lu, L. Z. Zhao, Y. X. Nie. Third-and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B,2002,19:369-375.
    [9]Kyoichi Sasaki, Toshihiko Nagamura. Ultrafast all-optical switch using complex refractive index changes of thin films containing photocharomic dye. Applied Physics Letters,1997,71(4):434-436.
    [10]Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, et al.. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Applied Physics Letters,2002,81(6):975-977.
    [11]Marco Peccianti, Claudio Conti, Gaetano Assanto, Antonio De Luca, Cesare Umeton. All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters,2002,81(18):3335-3337.
    [12]Lyong Sun Pu. Femtosecond optical switches by squarylium dye J-aggregates films. Optical Materials,2002,21:489-493.
    [13]Shuizhu Wu, Shaojing Luo, Weilong She, Duanbin Luo, Hai Wang. All-optical switching effects in poly (methyl methacrylate) composites. Reactive & Functional polymers,2003,56:83-88.
    [14]P. J. Bennett, S. Dhanial, P. Petropoulos, D. J. Richardson, et al.. A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. Applied Physics Letters,1998,73(13):1787-1789.
    [15]H. J. S. Dorren, G. D. Khoe, D. Lenstra. All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement. Optics Communications,2002,205:247-252.
    [16]F. M. Castro, M. I. Molina, W. D. Deering. Controlling all-optical switching in multicore nonlinear couplers. Optics communications,2003,226:199-204.
    [17]Pengfei Wu, D. V. G. L. N. Rao, B. R. Kimball, et al.. Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films. Applied Physics Letters,2002,81(20):3888-3890.
    [18]M. Hercher, W. Chu, D. L. Stockman. An experimental study of saturable absorbers for Ruby Lasers. IEEE J. Quantum Electronics,1968, QE-4:954-968.
    [19]K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun.,1979,30:257-261.
    [20]E. Arimondo, F. Casagrande, L. A. Lugiato, P. Glorieux. Repetitive passive Q-switching and bistability in lasers with saturable absorbers. Appl. Phys. B, 1983, B30:57-77.
    [21]T. H. Wei, T. H. Huang, H. D. Lin. Lifetime determination for high-lying excited states using Z-scan. Appl. Phys. Lett.,1995,67:2266-2268.
    [22]C. P. Singh, K. S. Bindra and S. M. Oak. Analysis of effect of excitation pulse characteristics on numerical simulation of reverse saturable absorption. Optics Communications,2007,269(1):223-229.
    [23]Y. L. Song, G Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li. Optical limiting properties of fullerene derivatives. Appl. Phys. Lett.,1999,74:332-334.
    [24]J. S. Shirk, R. G S. Pong, S. R. Flom, H. Heckmann, M. Hanack. Effect of axial substitution on the optical limiting properties of indium phthalocyanines. J. Phys. Chem.A,2000,104:1438-1449.
    [25]D. D. Dominguez, A. W. Snow, J. S. Shirk, R. G S. Pong. Polyethyleneoxide-capped phthalocyanines:limiting phthalocyanine aggregation to dimer formation. J. Porphyr. Phthalocya.,2001,5:582-592.
    [26]W. Kaiser, C. G B. Garrett. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett.,1961,7:229-231.
    [27]J. H. Si, M. Yang, Y. X. Wang, L. Zhang, C. F. Li. Nonlinear absorption in metallo-porphyrin-like. Opt. Commun.,1994,109:487-491.
    [28]N. K. M. N. Srinivas, S. V. Rao, D. N. Rao. Saturable and reverse saturable absorption of rhodamine B in methanol and water. J. Opt. Soc. Am. B,2003,20: 2470-2479.
    [29]M. J. Moran, C. Y. Carman. Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials. IEEE J. Quantum Electronics,1975, QE-11:259-263.
    [30]E. S. Bliss, D. R. Speck, W. W. Simmons. Direct interferometeric measurements of the nonlinear index coefficient in laser materials. Appl. Phys. Lett.,1974,25: 728-730.
    [31]A. Owyoung. Ellipse rotation studies in laser host materials. IEEE J. Quantum Electronics,1973, QE-9:1064-1069.
    [32]W. E. Williams, M. J. Soileau, E. W. Van Stryland. Optical switching and n2 measurements in CS2. Opt. Commun.,1984,50:256-260.
    [33]S. R. Friberg, P. W. Smith. Nonlinear optical glass for ultrafast switches. IEEE J. Quantum Electronics,1987, QE-23:2089-2094.
    [34]N. Morita, T. Tokizaki, T. Yajima. Time-delayed four-wave mixing using incoherent light for observation of ultrafast population relaxation. J. Opt. Soc. Am. B,1987,4:1269-1275.
    [35]P. Ewait, S. V. O'Leary. Detection of OH in a flame by degenerate four-wave mixing. Opt. Lett.,1986,11:279-281
    [36]M. Sheik-bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single beam n2 measurements. Opt. Lett.,1989,14:955-957.
    [37]M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electronics,1990, QE-26:760-769.
    [38]P. A. M. Aguilar, J. J. S. Mondragon, S. Stepanov, et al., Z-scan experiments with cubic photorefractive crystal Bi12TiO20. Opt. Commun.,1995,118: 165-174.
    [39]A. Agnesi, G C. Reali, A. Tomaselli. Beam quality measurement of laser pulse by nonlinear optical technique. Opt. Lett.,1992,17:1764-1766.
    [40]毛艳丽,邢前,顾玉宗,高卫东,符瑞生,余保龙.单光束Z-扫描技术.河南大学学报(自然科学版),2000,30:10-13.
    [41]D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith. Effect of low-power nonlinear refraction on laser beam propagation in InSb. Opt. Lett.,1974,4: 331-333.
    [42]J. D. Gaskill. Linear systems, Fourier Transforms, and Optics. New York:John Wiley,1978,416.
    [43]M. Sheik-bahae, J. Wang, R. Desalvo. Measurement of nondegenerate nonlinearities using a two-colour Z-scan. Opt. Lett.,1992,17:258-260.
    [44]J Wang, M. Sheik-bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland. Time-resolved Z-scan measurements of optical nonlinearities. J. Opt. Soc. Am. B,1994,11:1009-1017.
    [45]P. Chen, I. V. Tomov, P. M. Rentzepis, et al. A two dimensional Z-scan method for the measurement of optical nonlinear effects. SPIE,1997,3146:160-169.
    [46]倪永锋,泷口义浩,青岛绅一郎,鲍超,杨国光.无透镜Z-扫描测量系统及其在高阶非线性研究中的应用.光电子·激光,2001,12:1253-1257.
    [47]S. M. Mian, B. Taheri, J. P. Wicksted. Effects of beam ellipticity on Z-scan measurements. J. Opt. Soc. Am. B,1996,13:856-863.
    [48]W. Zhao, P. Palffy-murthory. Z-scan technique using top-hat beams. Appl. Phys. Lett.,1993,63:1613-1615.
    [49]杨新江,臧维平,田建国,等.近top-hat光束Z扫描理论分析.物理学报,2005,54:2735-2738.
    [50]顾玉宗,毛艳丽,邢前,等.高斯-贝塞尔光束的Z-扫描技术.河南大学学报,2000.30:10-13.
    [51]S. V. Kershaw. Analysis of the EZ-scan measurement technique. J. Mod. Opt., 1995,42:1361-1366.
    [52]M. Martinelli, S. Bian, R. J. Horowicz. Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam. Appl. Phys. Lett.,1998,72: 1427-1429.
    [53]C. R. Mendonca, L. Misoguti, S. C. Zilio. Z-scan measurements with Fourier analysis in ion-doped solids. Appl. Phys. Lett.,1997,71:2094-2096.
    [54]S. Hughes, J. M. Burzler, G. Spruce, B. S. Wherrett. Fast fourier transform techniques for efficient simulation of Z-scan measurements. J. Opt. Soc. Am. B, 1995,12:1888-1893.
    [55]姚保利,任立勇,侯洵.基于衍射模型的Z扫描理论.光学学报,2002,22:19-23.
    [56]臧维平,田建国,刘智波,等.利用级数展开的Z扫描理论分析.光学学报,2003,23:1451-1455.
    [57]陈树琪,刘智波,臧维平,等.大非线性相移下光学非线性Z扫描特性的研究.物理学报,2006,55:1211-1217.
    [58]刘智波,臧维平,田建国,等.厚高阶光学非线性介质Z扫描的变分法分析.光学学报,2003,23:641-645.
    [59]李霞,姚保利,侯洵.以衍射理论为基础考虑双光子吸收的Z扫描理论.光子学报,2005,34:1010-1014.
    [1]P. Cassoux, L. Valade, H. Kobayashi, R. A. Clark, A. E. Underhill. "Molecular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-4,5-dithiolate(dmit)", Coord. Chem. Rev.1991; 110(2):115-160.
    [2]K. Kajita, Y. Nishio, S. Moriyama, R. Kato, H. Kobayashi, W. Sasaki, A. Kobayashi, H. Kim, Y. Sasaki. Transport properties of ((CH3)4N) (Ni(dmit)2)2:A new organic superconductor. Solid State Commun.,1988,65:361-363.
    [3]L. Brossard, M. Ribault, L. Valade, P. Cassoux. Simultaneous competition and coexistence between charge-density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor TTF[Ni(dmit)2]2 (where TTF is tetrathiafulvalene and dmit is the 1,3-dithia-2-thione-4,5-dithiolato group). Phys. Rev. B,1990,42:3935-3943.
    [4]Y.F. Miura, Y. Okuma, H. Ohnishi, T. Kawasaki, M. Sugi. Metallic conductivity of Langmuir-Blodgett films based on ditetradecyldimethylammonium-Au(dmit)(2), where dmit is 1,3 dithiol-2-thione-4,5-dithiolate. Jpn. J. Appl. Phys. Part 2,1998,37: L1481-L1483.
    [5]T. Nakamura, R. Azumi, H. Tachibana and M. Matsumoto. Electroabsorption of amphiphilic tetrathiafulvalene derivatives 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane systems in Langmuir-Blodgett films. Chem. Lett.,1996,3:189-190.
    [6]S. Morita, A. Ikehata, Y.F. Miura, M. Sugi and Y. Ozaki. Premelting behavior of a Langnmir-Blodgett film of dioctadecyldimethylammonium-Au(dmit)(2) salt. J. Phys. Chem. B,2004,108:19354-19360.
    [7]C. M. Liu, D. Q. Zhang, Y. L. Song, C. L. Zhan, Y. L. Li, D. B. Zhu. Synthesis, crystal structure and third-order nonlinear optical behavior of a novel dimeric mixed-ligand zinc(II) complex of 1,3-dithiole-2-thione-4,5-dithiolate. Eur. J. Inorg. Chem.,2002,7:1591-1594.
    [8]T. Geisler, K. Pedersen, A. E. Underhill, A. S. Dhindsa, D. R. Greve, T. Bjornholm, J. C. Ptersen. Spectral dispersion of third-harmonic generation in thin films containing transition metal complexes. J. P hys. Chem. B,1997,101: 10625-10630.
    [9]G. Q. Bian, Q. Y. Zhu, J. Dai, X. Wang, W. Yang, Z. M. Yan, Z. R. Sun, M. Munakata, M. Maekawa. Cluster-cracking reaction, a new method to synthesize unsymmetrical dithiolate complexes for the study of third-order nonlinear optical properties. Chines. J. Chem.,2003,21:537-543.
    [10]L. Feng, Y. L. Wang, Q. Ren, G H. Zhang, H. L. Yang, X. B. Sun. Third-order optical nonlinearity of a novel material: (Tetramethylammonium)bis(1,3-dithiole-2-thione-4,5-dithiolato) copper. Chines. Phys. Lett.,2005,22:2834-2836.
    [11]Tai-Huei Wei, Tzer-Hsiang Huang, Mu-Shin Lin. Signs of nonlinear refraction in chloroaluminum phthalocyanine solution, Appl. Phys. Lett.,1998,72(20): 2505-2507.
    [12]Tai-Huei Wei, Tzer-Hsiang Huang, Tsai-Chuan Wen. Mechanism of reverse saturable absorption in chloro-aluminum phthalocyanine solution studied with Z-scan, Chem. Phys. Lett.,1999,314(5-6):403-410.
    [13]Tai-Huei Wei, Tzer-Hsiang Huang, Tzung-Tao Wu, Pei-Chuang Tsai, Mu-Shin Lin. Studies of nonlinear absorption and refraction in C60/toluene solution, Chem. Phys. Lett.,2000,318(1):53-57.
    [14]Wenfang Sun, Chiris M. Lawson, Gary M. Gray. Third-order nonlinearity and optical limiting of dichloromethane solutions of cis-Mo(Co)4(PPh3)2, Opt. Commun.,2000,180(4-6):361-366.
    [15]M. Sheik-Bahae, A. A. Said, Tai-Hui Wei, et al. Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quant. Electr.,1990, QE-26(4):760-769.
    [16]R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda. Nonlinear refraction in CS2. Appl. Phys. B,2004,78: 433-438.
    [17]M. J. Moran, C. Y. She, R. L. Carman. Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser-system-related materials. J. Quant. Electron.1975, QE-11(6):259-263.
    [18]P. P. Ho, R. R. Alfano. Optical Kerr effect in liquids. Phys. Rev. A,1979.20(8): 2170-2175.
    [19]Shufeng Wang, Wentao Huang, Tieqiao Zhang, Hong Yang, Qihuang Gong, et al. Third-order nonlinear optical properties of didodecyldimethylammonium-Au(dmit)2. Applied Physics Letters,1999,75(13):1845-1847.
    [20]X. B. Sun, Q. Ren, X. Q. Wang, G. H. Zhang, H. L. Yang, L. Feng, D. Xu, Z. B. Liu. Nonlinear optical properties of [(CH3)4N]Au(dmit)2 using Z-scan technique. Chin. Phys.,2006,15:1-5.
    [21]G. C. Papavassiliou, G. C. Anyfantis, A. Terzis, V. Psycharis, P. Kyritsis, P. Paraskeyopoulou. Some Unsymmetrical Metal 1,2-Dithiolenes Based on Palladium, Platinum and Gold. Zeitschrift Fur Naturforschung Section B,2008, 63:1377-1382.
    [22]Q.Y. Chen, E.H. Sargent, N. Leclerc, A.J. Attias. Ultrafast nonresonant third-order optical nonlinearity of a conjugated 3,3'-ipyridine derivative from 1150 to 1600 nm. Appl. Phys. Lett.,2003,82:4420-4422.
    [23]G.I. Stegeman, E.M. Wright, N.Finlayson, R. Seaton, C.T. Seaton. Third Order Nonlinear Integrated Optics. J. Lightwave Technol.,1988,6:953-970.
    [24]J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, I. D. Aggarwal. Highly nonlinear As-S-Se glasses for all-optical switching. Opt. Lett.,2002,27:119-121.
    [25]Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, J. J. Ren. Linear and nonlinear optical properties of Ag nanowire polarizing glass. Adv. Fun. Mater.,2006,16:2405-2408.
    [1]H. L. Yang, X. Q. Wang, Q. Ren, G. H. Zhang, X. B. Sun, L. Feng, S. F. Wang, Z. W. Wang. Study on the third-order nonlinear optical properties of bis(tetrabutylammonium)bis(1,3-dithiole-2-thione-4,5-dithiolato)cadium. Opt. commun.,2005,256:256-260.
    [2]W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, D. Xu. Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths. Chem. Phys. Lett.,2007,435: 65-68.
    [3]X. B. Sun, X. Q. Wang, Q. Ren, G. H. Zhang, H. L. Yang, L. Feng. Third-order nonlinear optical properties of bis(tetrabutylammonium)bis(4,5-dithiolato-1,3-dithiole-2-thione)copper. Mater. Res. Bull.,2006,41:177-182.
    [4]L. Feng, Y. L. Wang, Q. Ren, G H. Zhang, H. L. Yang, X. B. Sun. Third-order optical nonlinearity of a novel material: (Tetramethylammonium)bis(1,3-dithiole-2-thione-4,5-dithiolato) copper. Chines. Phys. Lett.,2005,22:2834-2836.
    [5]J. Sun, W. F. Guo, X. Q. Wang, G H. Zhang, X. B. Sun, L. Y. Zhu, Q. Ren, D. Xu. Nonlinear optical absorption studies of an organo-metallic complex by Z-scan techniques. Opt. Commun.,2007,280:183-187.
    [6]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003.
    [7]M. Shtein, P. Peumans, J. B. Benziger, S. R. Forrest. Direct mask-free patterning of molecular organic semiconductors using organic vapor jet printing. J. Appl. Phys.,2004,96:4500-4507.
    [8]M. Shtein, P. Peumans, J. B. Benziger, S. R. Forrest. Direct, mask-and solvent-free printing of molecular organic semiconductors. Adv. Mater.,2004,16: 1615-1620.
    [9]Y. R. Sun, M. Shtein, S. R. Forrest. Direct patterning of organic light-emitting devices by organic-vapor jet printing. Appl. Phys. Lett.,2005,86:113504.
    [10]M. Deutsch, M. C. Gerstenberg, H. F. Gossenberger, V. S. Ban, S. R. Forrest. Macroscopically ordered thin films of an organic salt grown by low-pressure rganic vapor-phase deposition. J. Cryst. Growth,1999,203:412-420.
    [11]M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, S. Forrest. Organic vapor phase deposition. Adv. Mater.,1998,10:1505-1514.
    [12]V. G. Kozlov, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, M. E. Thompson. Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys., 1998,84:4096-4108.
    [13]D. A. Pardo, G. E. Jabbour, N. Peyghambarian. Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices. Adv. Mater.,2000,12: 1249-1252.
    [14]J. Birnstock, J. Blassing, A. Hunze, M. Scheffel, M. Stossel, K. Heuser, G. Wittmann, J. Worle, A. Winnacker. Screen-printed passive matrix displays based on light-emitting polymers. Appl. Phys. Lett.,2001,78:3905-3907.
    [15]G. E. Jabbour, R. Radspinner, N. Peyhambarian. Screen-printing for the fabrication of organic lightOemitting devices. Org. Field Eff. Transis.,2001, 4466:72-79.
    [16]J. Bharathan, Y. Yang. Polymer electrominescent devices processed by inkjet printing:I polymer light-emitting logo. Appl. Phys. Lett.,1998,72:2660-2662.
    [17]T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend. Inkjet printing of polymer thin film transistors. Thin Solid Films,2003,438:279-287.
    [18]B. Ballarin, A. Fraleoni-Morgera, S. Marazzita, C. Piana, L. Setti. Thermal inkjet microdeposition of PEDOT:PSS on ITO-coated glass and characterization of the obtained film. Synthetic Metals,2004,146:201-205.
    [19]王力恒,黄运天,郑海涛.薄膜技术.北京:清华大学出版社,1991:1.
    [20]郑伟涛,等.薄膜材料与薄膜技术.北京:化学工业出版社,2004:47.
    [21]黄春辉,李富友,黄维.有机电致发光材料与器件.上海:复旦大学出版社,2005:57-61.
    [22]M. Pannek, T. Dunkel, D. W. Schubert. Effect of bell-shaped cover in spin coating process on final film thickness. Mat. Res. Innovat.,2001,4:340-343.
    [23]D. W. Schubert, T. Dunkel. Spin coating from a molecular point of view:its concentration regimes, influence of molar mass and distribution. Mat. Res. Innovat.,2003,7:314-321.
    [24]张新稳,吴朝新,任兆玉,侯洵.有机电致发光器件中有机薄膜的制备方法.现代显示,2007,74:40-47.
    [25]M. Amiotti, G Landgren. Ellipsometric determination of thickness and refractive index at 1.3,1.55, and 1.7 μ m for In(1-X)GaxAsyP(1-y) films on InP. J. Appl. Phys., 1993,73:2965-2971.
    [26]R. Ulrich. Theory of the prism-film coupler by plane-wave analysis. J. Opt. Soc. Am.,1970,60:1337-1350.
    [27]R. Ulrich, R. Terge. Measurement of thin film parameters with a prism coupler. Appl. Opt.,1973,12:2901-2908.
    [28]Q. Ren, Y. T. Chow, H. P. Chan, et al. Refractive index dispersion measurement on nano-crystal and polymer composite Bi4Ti3O12/PEX-c film. J. Mater. Sci. Lett.,2002,21:677-678.
    [29]J. C. Manifacier, J. Gasiot, J. P. Fillard. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E.,1976,9:1002-1004.
    [30]孙香冰,任诠,杨洪亮,冯林,Y T.Chow.测量薄膜折射率的几种方法.量子电子学报,2005,22:13-18.
    [31]B. P. Singh, P. N. Prasad. Optical bistable behavior of a planar quasi-waveguide interferometer made with a conjugated organic polymer film. J. Opt. Soc. Am. B, 1988,5:453-456.
    [32]R. T. Kersten. A new method for measuring refractive index and thickness of liquid and deposited solid thin films. Opt. Commun.,1975,13:327-329.
    [33]李玉权,崔敏.光波导理论与技术.北京:人民邮电出版社,2002.
    [34]N. Uchida. Optical properties of single-crystal paratellurite (TeO2). Phys. Rev. B, 1971,4:3736-3745.
    [35]D. L. Wood, K. Nassau, D. L. Chadwick. Optical properties of new oxide glasses with potential for long-wavelength optical fibers. Appl. Opt.,1982,21: 4276-4279.
    [36]Q. Ren, X. B. Sun, X. Q. Wang, G H. Zhang, X. D. Yang, F. J. Zhang, H. L. Yang, Y. T. Chow, D. Xu. Short pulse Z-scan investigations of optical nonlinearities of a novel organometallic complex:[(C2H5)4N]2[Cu(dmit)2] at 532 and 1064nm. Appl. Phys. A,2008,90:685-688.
    [37]F. J. Zhang, W. F. Guo, X. B. Sun, Q. Ren, Y. Gao, H. L. Yang, G H. Zhang, Y. T. Chow, D. Xu. Nonlinear optical absorption of [(C2H5)4N]2Cu(dmit)2 irradiated by picosecond and nanosecond laser pulses. Laser. Phys. Lett.,2007,4:230-233.
    [38]W. F. Guo, X. B. Sun, J. Sun, W. T. Yu, X. Q. Wang, G H. Zhang, D. Xu. Synthesis, crystal structure and third order nonlinear optical properties of bis(tetra-n-propylammonium)bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(II). Cryst. Res. Tech.,2007,42:522-528.
    [39]孙晶,范贺良,王新强,任诠,陈经纬,孙强,张光辉,许东.一种金属有机配合物的光限幅性质研究.中国激光,2009,36:2417-2421.
    [40]N. K. M. Naga Srinivas, S. Venugopal Rao, D. Narayana Rao. Saturable and reverse saturable absorption of Rhodamine B in methanol and water. J. Opt. Soc. Am. B,2003,20:2470-2479.
    [41]S. V. Rao, D. N. Rao, J. A. Akkara, B. S. DeCristofano, D. V. G. L. N. Rao. Dispersion studies of non-linear absorption in C using Z-scan. Chem. Phys. Lett., 1998,297:491-498.
    [42]X. Q. Wang, W. T. Yu, D. Xu, Y. L. Wang, T. B. Li, W. F. Guo. 4,5-bis(furoylsulfanyl)-1,3-dithiole-2-thione. Acta Cryst. C,2005,61:583-585.
    [43]H. L. Fan, X. Q. Wang, Q. Ren, T. B. Li, J. Sun, G H. Zhang, D. Xu, Z. H. Sun, G Yu. Investigation of third-order nonlinear optical properties of BFDT-doped PMMA thin films using Z-scan technique. Mod. Phys. Lett.,2009,23: 3361-3368.
    [44]E. S. Kang, T. H. Lee, B. S. Bae. Measurement of the thermal-optic coefficients in sol-gel derived inorganic-organic hybrid material films. Appl. Phys. Lett., 2002,81:1438-1440.
    [45]J. F. Zhai, L. Qiu, J. Y. Zhou, Y. X. Zhao, Y. Q. Shen, Q. D. Ling, M. J. Yang. Study on the thermal properties of doped PMMA systems. Adv. Mater. Opt. Electron.,2000,10:3-7.
    [46]Y. Okamura, S. Yoshinaka, S. Yamamoto. Measuring mode propagation losses of integrated optical waveguides:a simple method. Appl. Opt.,1983,22: 3892-3894.
    [1]查子忠,王骐.激光防护技术新进展.激光技术,1997,21:246-250.
    [2]徐洪耀,周剑平,光善仪,李村,尹守春.聚合物光限幅材料的研究.功能材料,2006,37:1362-1365.
    [3]R. C. C. Leite, S. P. S. Porto, T. C. Damen. The thermal lens effect as a power-limiting device. Appl. Phys. Lett.,1967,10:100-101.
    [4]E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, K. Mansour. Optical limiting with semiconductors. J. Opt. Soc. Am. B,1988,5:1980-1989.
    [5]M. Babiker. Longitudinal polar optical modes in semiconductor quantum wells. J. Phys.C,1986,19:683-697.
    [6]R. F. Davis. III-V nitrides for electronic and optoelectronic applications. Pro. IEEE,1991,79:702-712.
    [7]G. F. Feng, R. Zallen. Optical properties of ion-implanted GaAs:the observation of finite-size effects in GaAs microcrystals. Phys. Rev. B,1989,40:1064-1073.
    [8]L. W. Tutt, T. F. Boggess. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Pro. Quant. Electron.,1993,17:299-338.
    [9]C. Zhang, Y. L. Song, F. E. Kuhn, Y. X. Wang, X. Q. Xin, W. A. Hermann. Ultrafast response and superior optical limiting effects of planar "Open" heterothiometallic clusters. Adv. Mater.,2002,14:818-822.
    [10]T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, E. W. Van Stryland. Optimization of optical limiting devices based on excited-state absorption. Appl. Opt.,1997,36: 4110-4122.
    [11]R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G Scorrano, M. Prato, G Brusatin, P. Innocenzi, M. Guglielmi. Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol-gel glasses. Carbon., 2000,38:1653-1662.
    [12]F. M. Qureshi, S. J. Martin, X. Long, D. D. C. Bradley, F. Z. Henari, W. J. Blau, E. C. Smith, C. H. Wang, A. K. Kar, H. L. Anderson. Optical limiting properties of a zinc porphyrin polymer and its dimer and monomer model compounds. Chem. Phys.,1998,231:87-94.
    [13]J. Staromlynska, T. J. Mckay, P. Wilson. Broadband optical limiting based on excited state absorption in Pt:ethynyl. J. Appl. Phys.,2000,88:1726-1732.
    [14]X. Q. Wang, Q. Ren, F. J. Zhang, W. F. Guo, X. B. Sun, J. Sun, H. L. Yang, G H. Zhang, X. Q. Hou, D. Xu. Preparation, characterization, thermal and third-order nonlinear optical properties of bis(tetraethylammonium)bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(II). Mater. Res. Bull.,2008,43:2342-2353.
    [15]C. M. Liu, D. Q. Zhang, Y. L. Song, C. L. Zhan, Y. L. Li, D. B. Zhu. Synthesis, crystal structure and third-order nonlinear optical behavior of a novel dimeric mixed-ligand Zinc(II) complex of 1,3-dithiole-2-thione-4,5-dithiolate. Eur. J. Inorg. Chem.,2002,7.1591-1594.
    [16]M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron.,1990,26:760-769.
    [17]P. Poornesh, G Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, A. V. Adhikari. Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiophene/poly(methylmethacrylate) composites. Appl. Phys. B,2009,97:117-124.
    [18]S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, C. P. G. Vallabhan. Optical limiting and thermal lensing studies in C60. J. Appl. Phys.,1999,86:1388-1392.
    [19]M. K. M. Low, H. W. Hou, H. G. Zheng, W. T. Wong, G. X. Jin, X. Q. Xin, W. Ji. Large optical limiting properties of the pentanuclear'open'structural cluster compound [WS4Cu4(SCN)(2)(py)(6)]. Chem. Commun.,1998,4:505-506.
    [20]H. L. Fan, X. Q. Wang, Q. Ren, X. Zhao, G H. Zhang, J. W. Chen, D. Xu, G Yu, Z. H. Sun. Investigation on nonlinear absorption and optical limiting properties of two [Q]2[Cu(C3S5)2] compounds. Opt. Las. Technol.,2010,42:732-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700