用户名: 密码: 验证码:
贵金属纳米颗粒阵列的三阶非线性光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪以来,随着信息化社会的发展,光纤通讯技术的广泛应用在一定程度上满足了人们对高传输速率、高信噪比的要求。但是,在光纤通讯系统里面常见的光电转换器件会导致响应时间慢、噪声增大等缺陷,直接制约着光通讯技术的发展。因此,人们试图直接用光来对光进行控制和处理,即“以光控光”。目前,主要是通过较强的控制激光激发传输介质中的三阶非线性光学特性,使介质的吸收系数,折射率或偏振等光学参数发生改变,从而实现对信号光的间接控制。其中,较为主流的干涉型全光开光器件是利用控制激光引起其中一束光的传输介质的折射率发生改变,从而改变其中信号光的相位,来实现全光开关的目的。这就要求人们找到一种同时具有高的非线性折射率和较低的非线性吸收系数的非线性光学材料。此外,在器件微型化、集成化的发展趋势下,对各种微纳光源的研究也引起人们广泛的兴趣,其中基于材料非线性特性的光泵浦式纳米激光器需要材料具有很高的非线性光学吸收特性。所以,各种纳米微结构的制备及其三阶非线性光学特性,是目前光学材料领域中的研究热点之一。
     研究材料非线性光学特性的一个重要手段就是对光学材料的三阶光学非线性特性进行测试,它不仅可以评估材料非线性光学特性的强弱和种类,还能揭示不同非线性过程的产生机理,从而为找到性能优异、符合新型微纳光器件要求的非线性材料提供重要的实验依据。本文对贵金属纳米颗粒阵列以及和ZnO纳米线中的三阶非线性光学特性进行了系统地研究:
     (1)采用脉冲激光沉积技术结合纳米球蚀刻技术,在石英基片上制备了一系列不同尺寸的贵金属(金和银)纳米颗粒阵列,利用扫描电子显微镜观测了纳米球掩膜板和贵金属纳米颗粒阵列的表面形貌。其中,纳米球掩膜板呈大面积、无缺陷的密排;三角形的贵金属纳米颗粒呈周期性排布。另外,采用气相传输法制备了高质量的单晶ZnO纳米线。通过扫描电子显微镜的观测,ZnO纳米线呈高质量的六棱柱结构,并将单根ZnO纳米线转移到空白石英基片上。
     (2)通过紫外-可见吸收光谱仪在200nm到900nm波长范围内对贵金属纳米颗粒的线性光吸收特性进行了测量,分别观测到了金、银纳米颗粒的表面等离子体共振吸收峰。研究了尺寸为70 nm的金纳米颗粒阵列在不同的激发光强度下的非线性光学特性:随着激发光强度的增大,其非线性吸收特性由双光子吸收转变为饱和吸收,并且其非线性折射特性由自散焦效应转变为自聚焦效应。
     (3)研究了一系列不同尺寸的金纳米颗粒阵列的三阶非线性光学特性,讨化了纳米颗粒的尺寸对其非线性光学特性的影响:随着纳米颗粒尺寸不断变大,其非线性吸收特性由双光子吸收占据主导变为饱和吸收,还观测到双光子吸收和饱和吸收效应竞争的现象。
     (4)研究了尺寸为60 nm的银纳米颗粒阵列在四种不同激发光波长(400 nm,600 nm,650 nm和800 nm)激发下的非线性光学特性:随着激发光光强增大,在共振区域(400 nm),其非线性吸收特性由饱和吸收转变为反饱和吸收;非共振区域(800nm),其非线性光学吸收则由双光子吸收转变为饱和吸收;在共振区的边缘(600 nm,650 nml,发现即使在很高的激发光强下,其非线性吸收效应也很不明显。在共振区的非线性光学效应比非共振区的有两个数量级的提高。
     (5)研究了单根ZnO纳米线的三阶非线性光学效应对激发光偏振特性的依赖关系:其双光子吸收和非线性折射特性的强度随着入射光偏振角呈周期为π/2的振动。还研究了ZnO纳米线入射面对其非线性光学特性的影响。结果表明,单根ZnO纳米线具有良好的非线性光学各向异性,在具有特定偏振特性的激光激发下,其非线性光学特性会有明显地提高。
In the 21st century, in the development of information society, the widely application of the fibre communication fits the requirement of a high speed transmission and high signal noise ratio. However, the optical-electronic conversation devices in the fibre communication system lead to a slow response time and a high noise, which significantly limits the development of the optical communications. Thus, people try to control and process the optical signal by light directly. Presently, it often uses an intensive laser to induce the third-optical nonlinearities in the medium of the signal, resulting in the changing of the refraction, absorption or the polarization properties of the medium to realize the all-optical switching. Such demands of the all-optical devices have driven people to search for a nonlinear material with a high nonlinear refraction index but a low nonlinear absorption. Furthermore, in the development of micromation and integration of the modern optical devices, kinds of the light resource in the micro-nano meter scales have drawn a lot of attentions. Especially, the optical pumped nanowire laser based on the optical nonlinearity of the materials demands for a high nonlinear absorption coefficient. Therefore, the study of the fabrication and the optical nonlinearity in nanostructures is one of the most interesting areas in studies of optical materials.
     The measurement of the third-order optical nonlinearity in optical materials is an important method in the investigation of the optical nonlinearity. It is not only able to estimate the value and style of the nonlinear materials but also indicate the original mechanisms of the nonlinearity. It provides important experimental supports in order to find the nonlinear materials, meeting the requirement of new micro-nano optical devices with a high performance. In this dissertation, systematical investigations on the optical nonlinearity of the noble metals and ZnO in micro-nano scales are presented:
     (1) Combined pulsed laser deposition technique with nanosphere lithography method, a serial of noble metals (Au and Ag) nanoparticle arrays with different size have been fabricated on quartz substrates. From scanning electron microscopy images, the well closed-packed nanosphere mask and periodical array of noble metals nanoprisms are observed. Besides, ZnO nanowires are synthesized by a high temperature thermal evaporation process, which has a hexagonal cross section in scanning electron microscopy images. And then, an individual ZnO nanowire is transferred to a quartz substrate for optical measurements.
     (2) By measuring UV-visible absorption spectroscopy, the strong absorption band in the visible range caused by surface plasmon resonance of Ag and Au particles can be observed. The intensity-dependent optical nonlinearities in an Au nanoparticle array with a size of 60 nm are investigated. The results exhibit a sign reversal process in the nonlinear absorption and the nonlinear refraction properties as the intensity increases.
     (3) The size effects on the optical nonlinearities of the Au nanoparticles are also investigated in a serial of Au nanoparticle arrays with four sizes (37 nm,70 nm,140 nm and 190 nm). It shows a reversal process from the two-photon absorption to the saturated absorption as the size of the nanoparticles increase. The competition of these two different mechanisms is also observed.
     (4) The optical nonlinearities of an Ag nanoparticle array are investigated using the selected wavelengths (400 nm,600 nm,650 nm and 800 nm):as the intensities increase, the nonlinear absorption change over from the saturated absorption to the reversed saturated absorption process in the resonant region (400 nm); In the off-resonant region (800 nm), it is observed that optical nonlinearities change over from the two-photon absorption to the saturated absorption as the intensity increases; In the edge of the absorption band (600 nm and 650 nm), low nonlinear absorptions are observed even under high intensities. Furthermore, the nonlinear refraction index in the resonant region exhibits a large enhancement of the 2 orders larger than that in the off-resonant region.
     (5) The anisotropy of the third-order optical nonlinearity of an individual ZnO nanowire is studied systematically. The two-photon absorption coefficient and the nonlinear refraction index exhibit oscillations with a period of n/2, the influence of the different incident crystal planes is also presented. The results indicate a highly polarized optical nonlinearity of the ZnO nanowire that a high nonlinear absorption property can be obtained under excitation laser with a proper polarization property.
引文
[1]P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of opticalHarmonies. Phys. Rev. Lett.,1961,7:118-119
    [2]E. Devaux, A. Dereux, J. Goudonnet, et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B,2000,62:10504-10514
    [3]W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature,2003,424:824-830
    [4]M. Salerno, J. R. Krenn, A. Hohenau, et al. The opticalnear-field of gold nanoparticle chains. Opt. Comm,2005,248:543-549
    [5]J. C. Weeber, J. R. Krenn, A. Dereux, et al. Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B,2001,64:045411
    [6]J. C. Weeber, Y. Lacroute, A. Dereux. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B,2003,68:115401
    [7]M. Faraday, Philos. Trans. R. Soc.,1857,147:145
    [8]J. T. Seo, Q. G. Yang, et al. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Optics Letters,2009,34(3):307-309
    [9]J. Turkevich, P. C. Stevenson, J. Hilier. Disc. Farad. Soc.,1951,11:55
    [10]W. Wei, S. Z. Li, et al. Surface Plasmon-Mediated Energy Transfer in Heterogap Au-Ag Nanowires. Nano Letters,2008,8(10):3446-3449
    [11]H. Chen, X. Kou, Z. Yang, et al. Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir,2008,24:5233-5237
    [12]W. Rechberger, A. Hohenau, A. Leitner, et al. Opt. Commun. Optical properties of two interacting gold nanoparticles,2003,220:137-141
    [13]V. Malyarchuk, F. Hua, N. H. Mack, et al. High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Optics Express,2005,13: 5669-5675
    [14]M. E. Stewart, N. H. Mack, V. Malyarchuk, et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. PNAS,2006,103: 17143-17148
    [15]U. C. Fischer, H. P. Zingsheim. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol,1981,19(4):881-885
    [16]H. W. Deckman, J. H. Dunsmuir. Applications of surface textures produced with natural lithography. J. Vac. Sci. Technol. B,1983,1(4):1109-1112
    [17]J. C. Hulteen, R. P. Van Duyne. Nanosphere lithography:A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A, 1995,13(3):1553-1558
    [18]S. Y. Chou, P. R. Krauss, L. Zhuang. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B,1995,15(6):2897-2904
    [19]L. S. Sapochak. Flat Panel Displays. Advanced Organic Materials. J. Am. Chem. Soc.,2001,123(27):6744-6745
    [20]J. Kim, O. Benson, Y. Yamamoto, et al. A single-photon turnstile device. Natrue, 1999,397:500-503
    [21]J. M. Weissman, H. B. Sunkara, A. S. Tse, et al. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science,1996,274: 959-963
    [22]K. Kurihara, H. Namatsu, T. Makino, et al. Room temperature operated single electron transistor fabricated by electron beam nanolithography. Microelectron. Eng.,1997,35:261-264
    [23]C. J. Murphy, T. K. Sau, A. M. Gole, et al. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B,2005,109: 13857
    [24]C. L. Haynes, R. P. Van Duyne. Nanosphere Lithography A Versatile Nano-fabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B,2001,105(24):5599-5611
    [25]F. Rober. Will UV lasers beat the blues. Science,1997,276(6):895
    [26]M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292:1897-1899
    [27]J. C. Johnson, H. Q. Yan, P. D. Yang, et al. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B,2003,107:8816-8828
    [28]H. Q. Yan, R. R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc.,2003,125:4728-4729
    [29]Y. F. Zhang, R. E. Russo, S. S. Mao. Quantum efficiency of ZnO nanowire nanolasers. Appl. Phys. Lett.,2005,87:043106-043106-3
    [30]J. K. Song, U. Willer, J. M. Szarko, et al. Ultrafast upconversion probing of lasing dynamics in single ZnO nanowire lasers. J. Phys. Chem. C,2008,112:1679-1684
    [31]M. A. Zimmler, F. Capasso, S. Muller, et al. Optically pumped nanowire lasers: invited review. Semicond. Sci. Technol.,2010,25:024001-024001-12
    [32]E. V. Chelnokov, N. Bityurin, I. Ozerov, et al. Two-photon pumped random laser in nanocrystalline ZnO. Appl. Phys. Lett.,2006,89:171119-171119-3
    [33]C. F. Zhang, Z. W. Dong, G. J. You, et al. Multiphoton route to ZnO nanowire lasers. Opt. Lett.,2006,31:3345-3347
    [34]石顺祥.非线性光学.西安:电子科技大学出版社,2003.3
    [35]L. De Boni, E. L. Wood. Optical Saturable Absorption in Gold Nanoparticles. Plasmonics,2008,3(4):171-176
    [36]Y. C. Gao, X. R. Zhang. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Optics Communications,2005,251(4-6):429-433
    [37]N. Kamaraju, S. Kumar. Double walled carbon nanotubes as ultrafast optical switches. Applied Physics Letters,2009,95(8):081106-081109
    [38]T. Y. Ning, C. C. Chen. Third-order optical nonlinearity of gold nanoparticle arrays embedded in a BaTiO3 matrix. Applied Optics,2009,48(2):375-379
    [39]E. M. Purcell, C. R. Pennypacker. Scattering and Absorption of Light By Nonspherical Dielectric Grains. Astrophys. J.,1973,186:705-714
    [40]S. L. Cheng, S. W. Lu, H. Chen, et al. Growth of size-tunable periodic Ni silicide nanodot arrays on silicon substrates. Appl. Sur. Sci.,2006,253:2071-2077
    [41]Q. Q. Wang, J. B. Han. Linear and nonlinear optical properties of Ag nanowire polarizing glass. Advanced Functional Materials,2006,16(18):2405-2408
    [42]U. Gurudas, E. Brooks. Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses. Journal of Applied Physics, 2008,104(7):073107
    [43]Y. P. Han, J. L. Sun. Nonlinear refraction of silver nanowires from nanosecond to femtosecond laser excitation. Applied Physics B-Lasers and Optics,2009,94(2): 233-237
    [44]S. Porel, N. Venkatram. Optical power limiting in the femtosecond regime by silver nanoparticle-embedded polymer film. Journal of Applied Physics,2007,102(3)
    [45]H. Pan, W. Z. Chen. Optical limiting properties of metal nanowires. Applied Physics Letters,2006,88(22)
    [46]R. Lopez, R. F. Haglund. Optical nonlinearities in VO2 nanoparticles and thin films. Applied Physics Letters,2004,85(22):5191-5193
    [47]A. Patra, N. Venkatram. Optical Limiting in Organic Molecular Nano/ Microcrystals:Nonlinear Optical Effects Dependent on Size Distribution. Journal of Physical Chemistry C,2008,112(42):16269-16274
    [48]M. S. Neo, N. Venkatram. Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles. Journal of Physical Chemistry C,2009,113(44): 19055-19060
    [49]D. R. Larson, W. R. Zipfel. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science,2003,300(5624):1434-1436
    [50]He J., J. Mi. Observation of interband two-photon absorption saturation in CdS nanocrystals. Journal of Physical Chemistry B,2005,109(41):19184-19187
    [51]N. Fang, H. Lee, X. Zhang, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science,2005,308(5721):534-537
    [52]W. Y. Huang, W. Qian, M. A. El-Sayed. Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. J. Appl. Phys.,2005,98:114301-114308
    [53]Q. Darugar, W. Qian, M. A. El-Sayed. Size-Dependent Ultrafast Electronic Energy Relaxation and Enhanced Fluorescence of Copper Nanoparticles. J. Phys. Chem. B, 2006,110(1):143-149
    [54]R. P. de Melo, B. J. P. da Silva, et al. Nonlinear refraction properties of nickel oxide thin films at 800 nm. Journal of Applied Physics,2009,106(9):093517-093517-6
    [55]W. C. Hurlbut, Y. S. Lee. Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared. Optics Letters,2007,32(6):668-670
    [56]M. Chattopadhyay, P. Kumbhakar. Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots. Optics Letters 2009,34(23): 3644-3646
    [57]D. C. Kohlgraf-Owens, P. G. Kik. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays. Optics Express 2009,17(17): 15032-15042
    [58]Y. P. Han, J. L. Sun. Nonlinear refraction of silver nanowires from nanosecond to femtosecond laser excitation. Applied Physics B-Lasers and Optics,2009,94(2): 233-237
    [59]S. Medhekar, P. P. Paltani. Proposal for optical switch using nonlinear refraction. Ieee Photonics Technology Letters,2006,18:1579-1581
    [60]X. D. Liu, S. L. Guo. Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption. Optics Communications,2001,197(4-6):431-437
    [61]隋志成,姜希军,吴志坚.光开关及其在全光网中的应用.光通信技术,2001,26(3):27-32
    [62]李苹,王俊华,万红.光开关技术研究.光通信技术,2004(4):15-17
    [63]张宁,纪越峰.光通信网络中的光开关技术.2004:47-10
    [64]H. Abdeldayem, D. O. Frazier, M. S. Paley. An all-optical picosecond switch in polydiacetylene. Applied Physics Letters,2003,82(7):1120-1122
    [65]J. W. Kang, E. Kim, J. J. Kim. All-optical switch and modulator using photochromic dye doped polymer waveguides. Optical Materials,2002,21: 543-548
    [66]F. Ebisawa, M. Hoshino, K. Sukegawa. Self-holding photochromic polymer Mach-Zehnder optical switch. Applied Physics Letters,1994,65(23) 2919-2921
    [67]G. I. Stegeman, E. M. Wright, N. Finlayson, et al. Third-order nonliear integrated optics. Journal of Lightwave Technology,1988,6(6) 953-970
    [68]Q. Chen, E. H. Sargent, N. Leclerc, et al. Ultrafast nonresonant third-order optical nonlinearity of a conjugated 3,3-bipyridine derivative from 1150 to 1600 nm. Appl. Phys. Lett.,2003,82:4420
    [69]H. S. Nalwa. Organic Materials for 3rd-Order Nonlinear Optics. Advanced Materials,1993,5(5):341-358
    [70]D. F. Eaton. Nonlinear Optical-Materials. Science,1991,253:281-287
    [71]S. Schmittrink, D. S. Chemla, D. A. B. Miller. Linear Nonlinear Optical-Properties Of Semiconductor Quantum Wells. Advances in Physics,1989,38(2):89-188
    [72]R. H. Magruder, L. Yang, R. F. Haglund, et al. Optical-Properties of Gold Nanocluster Composites Formed By Deep Ion-Implantation In Silica. Applied Physics Letters,1993,62 (15):1730-1732
    [73]D. Ricard, P. Roussignol, C. Flytzanis. Surface-Mediated Enhancement of Optical-Phase Conjugation in Metal Colloids. Optics Letters,1985,10(10): 511-513
    [74]H. B. Liao, R. F. Xiao, H. Wang, et al. Large Third-Order Optical Nonlinearity In Au:TiO2 Composite Films Measured On a Femtosecond Time Scale. Applied Physics Letters,1998,72(15):1817-1819
    [75]T. Yonezawa, H. Matsune, T. Kunitake. Layered Nanocomposite Of Close-Packed Gold Nanoparticles And TiO2 Gel Layers. Chemistry of Materials,1999,11(1): 33-35
    [76]J. M. Ballesteros, J. Solis, R. Serna. Nanocrystal Size Dependence of the Third-Order Nonlinear Optical Response of Cu:A12O3 Thin Films. Applied Physics Letters,1999,74(19):2791-2793
    [77]W. T. Wang, Z. H. Chen, G. Yang, et al. Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters. Applied Physics Letters,2003,83(10):1983-1985
    [78]V. P. Drachev, A. K. Buin, H. Nakotte, et al. Size dependent chi((3)) for conduction electrons in Ag nanoparticles. Nano Letters,2004,4(8):1535-1539
    [79]V. V. Kruglyak, R. J. Hicken, M. AH, et al. Ultrafast third-order optical nonlinearity of noble and transition metal thin films. Journal of Optics A-Pure and Applied Optics,2005,7 (2):S235-S240
    [80]J. Jayabalan, A. Singh, R. Chari, et al. Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs. Nanotechnology,2007,18:315704
    [81]E. Xenogiannopoulou, P. Aloukos, S. Couris, et al. Third-order nonlinear optical properties of thin sputtered gold films. Optics Communications,2007,275(1): 217-222
    [82]K. P. Yuen, M. F. Law, K. W. Yu, et al. Optical nonlinearity enhancement via geometric anisotropy. Physical Review E,1997,56(2):R1322-R1325
    [83]L. Gao, K. W. Yu, Z. Y. Li, et al. Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Physical Review E,2001, 64:036615
    [84]D. Y. Guan, Z. H. Chen, Y. L. Zhou, et al. Peaks separation of the nonlinear refraction and nonlinear absorption induced by external electric field. Applied Physics Letters,2006,88:111911
    [85]H. Shen, B. L. Cheng, G W. Lu, et al. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology,2006,17(16):4274-4277
    [86]J. H. Zhang, H. Y. Liu, Z. L. Wang, et al. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters,2007,91:133112
    [87]Y. H. Wang, C. Z. Jiang, F. Ren, et al. Effect of thermal treatments on third-order nonlinear optical properties of hollow Cu nanoclusters. Physica E-Low-Dimensional Systems & Nanostructures,2006,33(1):244-248
    [88]Y. Deng, Y. Y. Sun, P. Wang, et al. Nonlinear optical properties of silver colloidal solution by in situ synthesis technique. Current Applied Physics,2008,8(1):13-17
    [89]G. Yang, H. H. Wang, G T. Tan, et al. Rh:BaTiO3 thin films with large nonlinear optical properties. Applied Optics,2002,41(9):1729-1732
    [90]G. Yang, W. T. Wang, Y. L. Zhou, et al. Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films. Applied Physics Letters,2002,81(21): 3969-3971
    [91]W. T. Wang, G Yang, Z. H. Chen, et al. Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films. Applied Optics,2003,42(27): 5591-5595
    [92]G Yang, D. Y. Guan, W. T. Wang, et al. The inherent optical nonlinearities of thin silver films. Optical Materials,2004,25(4):439-443
    [93]E. M. Hicks, O. Lyandres, W. P. Hall, et al. Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography. J. Phys. Chem. C,2007,111(11):4116-4124
    [94]Kai Wang, Hua Long, Ming Fu, et al. Intensity-dependent reversal of nonlineartiy sign in a gold nanoparticle array. Opt. Lett.,2010,35:1560-1562
    [95]Kai Wang, Hua Long, Ming Fu, et al. Size-related third-order optical nonlinearities of Au nanoparticle arrays. Opt. Express,2010,18:13874-13879
    [96]D. Adam, M. Farland, R. P. Van Duyne. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters,2003,3(8):1057-1062
    [97]A. J. Haes, R. P. Van Duyne. A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc.,2002,124(35): 10596-10604
    [98]A. J. Haes, S. L. Zou, G. C. Schatz, et al. Nanoscale Optical Biosensor:Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles J. Phys. Chem. B,2004,108(22):6961-6968
    [99]A. J. Haes, S. L. Zou, G. C. Schatz, et al. A Nanoscale Optical Biosensor:The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B,2004,108(1):109-116
    [100]R. Micheletto, H. Fukuda, M. Ohtsut. A Simple Method for the Production of a Two Dimensional Ordered Array of Small Latex Particles. Langmuir,1996,11(9): 3333-3336
    [101]J. C. Hulteen, D. A. Treichel, R. P. Van Duyne, et al. Nanosphere Lithography Size-Tunable Silver Nanoparticle and Surface Cluster Arrays. J. Phys. Chem. B, 1999,103(13):3854-3863
    [102]J. Rybczynski, U. Ebels, M. Giersig. Large-scale,2D Arrays of Magnetic Nanoparticles. Colloids and Surfaces,2003,219:1-6
    [103]G. R. Olbright, N. Peyghambarian. Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSel-x-doped glasses. Appl. Phys. Lett.,1986,48: 1184
    [104]R. Adair, L. L. Chase, S. A. Payne. Nonlinear refractive index measurement of glass using three-wave frequency mixing. J. Opt. Soc. Am. B,1987,4:875-881
    [105]N. Morita, T. Tokizaki, T. Yajima. Time-delayed four-wave mixing using incoherent light for observation of ultrafast population relaxation. J. Opt. Soc. Am. B,1987,4:1269-1275
    [106]S. R. Friberg, P. W. Smith. Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quant. Electr.,1987, QE-23:2089-2094
    [107]A. Owyoung. Ellipse rotations studies in laser host materials. IEEE J. Quant. Electr.,1973, QE-9:1064-1069
    [108]W. E. Williams, M. J. Soileau, E. W. Van Stryland. Optical switching and n2 measurements in CS2. Opt. Commun.,1984,50:256-260
    [109]M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High sensitivity single n2 measurement. Opt. Lett.,1989,14:955-957
    [110]M. Sheik-Bahae, A. A. Said, Tai-Hui Wei, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electr.,1990, QE-26:760-769
    [111]X. Hong, D. D. Du, Z. R. Qiu, et al. Acta Phys. Sin.,2007,56:7219
    [112]B. H. Zhu, F. F. Wang, S. X. Qian. Acta Phys. Sin.,2008,57:3085
    [113]Z. Q. Gong, J. Q. Liu. Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures. Chin. Phys. B,2010,19: 067303
    [114]L. Polavarapu, Q. H. Xu, W. Ji. Optical limiting properties of silver nanoprisms. Appli. Phys. Lett.,2008,92:263110
    [115]J. T. Seo, Q. G. Yang, D. Temple. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Opt. Lett.,2009,34:307
    [116]D. R. Larson, W. R. Zipfel, W. W. Webb. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science,2003,300:1434
    [117]A. Samoc, M. Samoc, B. Luther-Davies. Tuning the properties of poly (p-phenylenevinylene) for use in all-optical switching Opt. Lett.,1995,20: 1241-1243
    [118]Q. Q. Wang, J. B. Han, J. J. Ren. Linear and Nonlinear optical properties of Ag nanowire polarizing glass. Adv. Func. Mat.,2006,16:2405
    [119]N. Kamaraju, S. Kumar, A. K. Sood. Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanorubes. Appl. Phys. Lett.,2008,93:091903-091903-3
    [120]N. Kamaraju, S. Kumar, A. K. Sood. Double walled carbon nanotubes as ultrafast optical switches. Appl. Phys. Lett.,2009,95:081106-081106-3
    [121]H. Pan, W. Z. Chen, W. Ji. Optical limiting properties of metal nanowires. Appl. Phys. Lett.,2006,88:223106-223106-3
    [122]Y. H. Lee, Y. L. Yan, Q. H. Xu Formation of InAs/InGaAsP quantum-dashes on InP(001). Appli. Phys. Lett.,2009,95:203105
    [123]K. Wang, H. Long, P. X. Lu. Intensity-dependent reversal of nonlineartiy sign in a gold nanoparticle array. Opt. Lett.,2010,35:1560
    [124]E. Xenogiannopoulou, K. Iliopoulos, S. Couris. Third-Order Nonlinear Optical Response of Gold-Island Films. Adv. Func. Mater.,2008,18:1281-1289
    [125]L. D. Boni, E. L. Wood, F. E. Hernandez. Optical Saturable Absorption in Gold Nanoparticles Plasmonics,2008,3:171-176
    [126]G. Yang, W. T. Wang, Z. H. Chen. Linear and nonlinear optical properties of Ag nanocluster BaTiO3 composite films. Appl. Phys. Lett.,2002,81:3969-3971
    [127]W. H. Yang, G. C. Schatz, R. P. Van Duyne. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape. J. Chem. Phys.,1995,103:869-875
    [128]T. R. Jensen, G. C. Schatz, R. P. Van Duyne. Nanosphere Lithography:Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet-Visible Extinction Spectroscopy and Electrodynamic Modeling. J. Phys. Chem. B,1999,103:2394-2401
    [129]G Yang, Z. H. Chen. Acta Phys. Sin.,2006,55:4342
    [130]U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters,1995,25
    [131]T. R. Jensen, M. L. Duval, R. P. Van Duyne. Nanosphere Lithography:Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. J. Phys. Chem. B,1999,103:9846-9853
    [132]T. Jensen, L. Kelly, A. Lazarides, et al. J. Cluster Sci.,1999,10:295
    [133]M. D. Malinsky, K. L. Kelly, G. C. Schatz, et al. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. J. Am. Chem. Soc.,2001,123:1471-1482
    [134]B. Gu, Y. Wang, J. Wang, W. Ji. Femtosecond third-order optical nonlinearity of BiFeO3. Opt. Express,2009,17:10970-10975
    [135]D. Rativa, R. E. Araujo, C. B. Araujo, et al. Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films. Appl. Phys. Lett.,2007,90: 231906
    [136]M. Samoc, M. Woodruff, B. Luther-Davies. Tuning the properties of poly (p-phenylenevinylene) for use in all-optical switching, Opt. Lett.,1995,20: 1241-1243
    [137]R. W. Boyd, R. J. Gehr, G. L. Fischer, et al. Nonlinear optical of properties of nanocomposite materials. Pure Appl. Opt.,1996,5:505
    [138]J. E. Sipe, R. W. Boyd. Nonlinear suseptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A.,1992,46:1614
    [139]D. Ricard, Ph. Roussignol, Chr. Flytzanis. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett.,1985,10:511
    [140]D. R. Lide. Handbook of Chemistry and Physics. Florida:CRC,2001
    [141]X. Deng, X. R. Zhang, Y. X. Wang, et al. Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting. Opt. Commun.,1999,168:207
    [142]S. Hughes. A novel computational technique for propagating picosecond, intense laser pulses through a multilevel system, Opt. Commun.,1996,132:236
    [143]J. K. Anthony, H. C. Kim, H. W. Lee, et al. Particle size-dependent giant nonlinear absorption in nanostructured Ni-Ti alloys, Optics Express,2008,16:11193
    [144]L. De Boni, A. A. Andrade, D. S. Correa, et al. Nonlinear absorption spectrum in MEH-PPV/chloroform solution:A competition between two-photon and saturated absorption processes J. Phys. Chem. B,2004,108:5221-5224
    [145]M. G. Vivas, T. Shih, T. Voss, et al. Nonlinear spectra of ZnO:reverse saturable, twoand three-photon absorption. Optics Express,2010,18:9628
    [146]X. F. Duan, Y. Huang, R. Agarwal, et al. Single-nanowire electrically driven lasers. Nature,2003,421:241-245
    [147]S. Gradecak, F. Qian, C. M. Lieber, et al. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett.,2005,87:173111-173111-3
    [148]B. L. Cao, Y. Jiang, C. Wang, et al. Synthesis and lasing properties of highly ordered CdS nanowire arrays. Adv. Func. Mater.,2007,17:1501-1506
    [150]B. Hua, J. Motohisa, Y. Kobayashi, et al. Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers. Nano Lett.,2009,9:112-116
    [151]T. Wang, F. Ranalli, P. J. Parbrook, et al. Fabrication and optical investigation of a high-density GaN nanowire array. Appl. Phys. Lett.,2005,86:103103-103103-3
    [152]J. F. Wang, M. S. Gudiksen, X. F. Duan, et al. Science.2001,293:1455
    [153]R. DeSalvo, M. Sheik-Bahae, E. W. Stryland. Opt. Lett.,1993,18:194
    [154]U. Neumann, R. Grunwald, U. Griebner, et al. Appl. Phys. Lett.,2005,87:171108
    [155]W. C. Hurlbut, Y. S. Lee, M. M. Fejer. Opt. Lett.,2007,32:668
    [156]J. Zhang, Q. Lin, P. M. Fauchet. Appl. Phys. Lett.,2007,91:071113
    [157]A. Ganany-Padowicz, I. Juwiler, O. Gayer, et al. Appl. Phys. Lett.,2009,94: 091108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700