高温液态金属粘度仪的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘度是表征流体性质的一项重要参数,能直接反映不同流体的特性。粘度及其测量在国民经济许多领域有着广泛的应用,许多工程技术应用都需要流体粘度参数。随着工业现代化的发展及科学技术的进步,相关领域里的粘度测量越来越得到重视,粘度测量方法与测量技术也有很多新的发展。目前粘度测量正在向高精度、自动化、实时在线的方向发展,国内现有的测量仪器已远远不能满足科学实验及国民经济发展的要求。
     本文以低粘度的高温液态金属为主要测量对象,辅以高粘度的物质测量为补充,在以振荡杯式测量方法的基础上,同时引入振动式测量方法,并结合两种测量方法的优点设计了一款粘度仪。该粘度仪由上位机系统和下位系统组成,其中下位机系统是粘度仪的硬件部分,上位机系统是粘度仪软件部分。针对该台粘度仪的设计,本文包括以下内容:
     首先阐述了粘度测量方法的特点并给出了粘度仪的两种测量方案。在详细讲解振荡杯的运动模态的基础上,分别介绍了振荡杯式求解粘度的两种方法:解析粘度算法和Shvidkovskiy粘度算法,指出了两种算法的优点及其存在的缺点,论证两种算法设计的可行性。在分析振动式粘度计的原理基础上,改良了粘度计算方法,使新方法可以在不改变振荡杯式粘度法硬件基础上实现高粘度大范围测量。
     其次给出了粘度仪的硬件结构和下位机软件系统的总体设计方案。阐明了粘度仪的整体设计结构及其机械结构的同时,对粘度仪组成部分进行了简要说明。下位机电路设计主要包括:粘度仪以16位单片机MC9S12DG128为主控芯片,外围电路包括利用ZLG7289的按键显示电路、脉冲时间检测电路及利用单片机中ETC模块的时间测量电路等,最后介绍了单片机的软件结构及具体设计。
     最后给出了以C++ Builder6.0为工具的粘度仪软件设计方案。主要介绍粘度仪软件的结构和功能,并重点阐述其中的串行通信、电机控制、粘度计算和数据图表模块,最后给出了软件操作的流程。
     本课题所研制设计高温粘度仪,经实验验证,测量精度高,测量范围广,可靠性、重复性好,较好的满足了设计任务书的要求。该粘度仪可实现工业环境下的实时、全自动在线检测,最大限度的满足了生产的需求,具有广阔的应用前景。同时,对于所做的硬件电路设计工作和所涉及的软件开发进行了总结,指出了其存在的不足并提出了展望。
Viscosity, an important parameter of indicating fluid's property, is of physical of fluid which can directly reflect the properties of different fluids. Thus viscosity measurement has been widely applied to a great number of manufacturing fields of society. For example, some relevant knowledge and data are used in many engineering technologies. With the development of industrial modernization and the advance of scientific technology, more importance is attached to viscosity measurement in related, which contributes to the emergence of newly-development of viscosity measurement. At present the development of viscosity measurement is orientated towards being highly precise, automatic and along on-line due to the inefficiency of instruments and the development of national economy.
     In this paper we designed a new viscometer, which contain two methods to measure viscosity. The one is oscillating-vessel method, which is used to measure the high-temperature low viscosity liquid metal as the main measured objects, and the another is oscillating method, which is used to measure high viscosity objects. The viscometer combined the advantages of two measurement methods. The viscometer is made up of two components, which are PC host computer system and MCU computer system. The PC host computer system is software parts of the viscometer and the MCU computer system is hardware part of the viscometer. For designing of the viscometer, this paper include the following .
     Firstly, this paper describes the characteristics of methods for measuring viscosity and presents two schemes of the viscometer. It analyzes the dynamic mode of the oscillating-vessel and two algorithms for the solution of viscosity which are analytical viscosity algorithm and shvidkovskiy viscosity algorithm. The advantages and disadvantages of the two algorithms are presented, and the feasibility of them is explained. It analyzes the theory of the oscillating viscometer, and improves the viscosity calculation method. The new method can achieve high viscosity large scale measurement without changing the hardware of the oscillating-vessel viscometer.
     Next the hardware structure and SCM software design of the viscometer are presented. It analyzes the whole structure and mechanism of viscometer, and explains the viscometer component briefly. The SCM circuit is designed as follows: MCU is MC9S12DG128 with 16 bit. External circuit contains the key and LED circuit with ZLG7289, laser pulse time detecting circuit, time measurement circuit with ETC module of the SCM, etc. Also the software structure and design is presented.
     Finally, the software design scheme of viscometer using C++ Builder6.0 is presented. The structure and function of the software, especially the serial communication module, motor control module, viscosity calculation module and chart module of the software are described in detail. Also it presents the software operation flow.
     Experiments show that the viscometer we designed has high accuracy, wide measurement range and reliability reproducible, and better meet the requirements of the design task. The viscometer can meet as much demand of production as possible and have a promising future by operating all the time and on-line testing automatically. Then summarizes the designing of hardware circuit and software development involved , points out the weak points there are, and prospects for the future.
引文
[1] 陈惠钊编著.粘度测量[M].北京:中国计量出版社.2003.2
    [2] 川田裕郎著,陈惠钊译.粘度[M].北京:中国计量出版社.1987
    [3] ISO 3104, 3105[S].
    [4] Deming Wang and R.A.Overflet. Oscillating Cup Viscosity Measurements of Aluminum[R]. Presented at the Fourteenth Symposium on Thermophysical Properties. June 25-30, 2000.
    [5] 章梓雄,董曾南著.流体力学[M].北京:清华大学出版社.1998
    [6] 日本东京工业株式会社振荡杯式粘度计手册.
    [7] Shvidkovskiy, Ye. G. Certain Problems Related to the Viscostiy of Fused Metals[J]. Translation for "Netotoryye voprosy vyazkosti rasplavlennykh metallow. Published by State Publishing House for Technical and Theoretical Literature(Moscow). NASA,1955.Technical Translation F-88,1962.
    [8] R. F Brooks,A T Dinsdale and P N Quested. The Measurement of Viscosity of alloys-a rivew of methods,data and models[J]. Measurement Science and Technology.UK.2004.
    [9] Iida,T and Guthrie,RLL. The Physical Properties of Liquid Metals[M].Claren Press.Oxford. 1988.
    [10] Joseph Kestin and Geodon Frank Neweil,Providence,R.I.Z. Angew.Math.Phys. 1957
    [11] K.Torklep and H.A.Oye.Phys. E Sci.Instrum.12:875.1979.
    [12] 高丽爽.基于LabVIEW的粘度仪的研究设计[D].硕士论文.山东大学.2004.
    [13] 石义情,张雯等.高温熔体粘度仪在半导体熔体研究中的应用[J].现代仪器,2000年第3期:34-34页.
    [14] 吴德志,徐东亮,吴耀楚.粘度测定原理与应用[J].中国仪器仪表,2002年第6期:42-44页.
    [15] 邵贝贝著.单片机嵌入式应用的在线开发方法[M].北京.清华大学出版 社.2004.
    [16] MC9SDT128 Device User Guide V02.09
    [17] HCS 12 Inter-Integrated Circuit Block Guide V02.05 S12SCIV2/D
    [18] SPI Block User Guide V01.09 S12SPIV2/D
    [19] 孙同景,陈桂友等编著.Freescale 9S12十六位单片机原理及嵌入式开发技术[M].2006.9.
    [20] 周立功单片机.ZLG7289B串行接口LED数码管及键盘管理器件数据手册.
    [21] 李适民,黄维玲编著.激光器件原理与设计[M].北京:国防工业出版社.2001.01
    [22] 陈理壁.步进电动机及其应用[M].上海:上海科学技术出版社.1985.6
    [23] 刘宝廷,程树康编著.步进电动机及其驱动控制系统[M].哈尔滨工业大学出版社.1997.11
    [24] 戴梅萼,史嘉权.微型计算机技术及应用[M].北京:清华大学出版社.1996
    [25] 薛均义,张彦斌编.MCS-51系列微型单片计算机及其应用[M].西安:西安交通大学
    [26] 谭浩强.C程序设计(第二版)[M].北京:清华大学出版社.
    [27] 王显巍.Freescale 16位微控制器的BDM调试器设计及实现[D].硕士论文.东北大学.2005.12
    [28] 白日光.燃料电池控制器及其故障诊断方法研究[D].硕士论文.同济大学.2005.3.
    [29] 刘永.汽车线控转向系统的研究.硕士论文[D].武汉理工大学。2005.6.
    [30] 梁恩主,梁恩维编著.Protel 99 SE电路设计与仿真应用[M].北京:清华大学出版社,2000.
    [31] 肖玲妮,袁增贵编著.Protel 99 SE印刷电路板设计教程[M].北京:清华大学出版社.2003
    [32] 童诗白,华成英主编.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2001.
    [33] Stanley B. Lippman, Josee Lajoie. C++ primer[M]. 北京:Posts & Telecom Press, 2005.
    [34] 陈维兴,林小茶编著.C++面向对象程序设计教程[M].北京:清华大学出版社 2004
    [35] 刘超,唐彬编著.C++ Builder案例开发集锦[M].北京:电子工业出版.2005
    [36] 吴逸贤 吴目诚编著.C++ Builder 6程序设计[M].北京:科学出版社 2003.8
    [37] 曹岩 王海宇主编.C++ Builder应用程序开发实力与技巧(上册)[M].西安:西安交通大学出版社.2005.9
    [38] 王钧 李红玲编写.C++ Builder经典范例50讲[M].北京:科学出版社.2003.12
    [39] 钱栩 保春艳 康祥顺编著.白领就业指南:C++ Builder6.0设计师之路[M].北京:电子工业出版社.2005.11
    [40] 蒋国平.火电厂优化运行指导及生产管理系统的研究与开发[D].硕士论文.华中科技大学.2006.5
    [41] 王伟.基于通讯的上下位机测控系统[D].硕士论文.北京交通大学.2004.12
    [42] 国家质量技术计量司.通用计量述评及定义解释[S].北京:中国计量出版社.2001.
    [43] 徐学林 吕仲兰.粘度国家标准装置测量结果的不确定度[J].化学分析计量.2002年11卷5期,7-9页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700