非局部扩散方程的单稳行波解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在材料科学、生态学、流行病学、神经网络等学科的研究中导出了许多非局部扩散方程,并已得到了许多学者的关注.我们知道,用积分算子所表示的非局部扩散能够更加准确地描述所考虑的实际问题.然而,由于非局部项的出现导致方程的性质和动力学行为发生了改变,例如,方程的解半流不再是紧的以及解的正则性降低等.这给数学理论的研究带来了新的困难.在非局部扩散方程的研究中,行波解是一个重要分支.行波解可以很好地描述自然界中大量有限速度传播问题及振荡现象.
     本文首先研究了退化单稳非局部扩散方程的行波解的单调性、唯一性、稳定性以及初值问题的解的传播速度.通过考虑原方程所对应的线性方程,我们讨论了行波解在实轴两端的指数渐近行为.然后利用滑动平面技术证明了行波解的单调性和唯一性.接着利用基于比较原理的挤压技术,证明了最小波速行波解的渐近稳定性.最后,借助于比较原理和上下解方法,得出紧初值问题解的传播速度与行波解的最小波速相一致的结论.
     其次,研究了具有年龄结构的时滞单稳非局部扩散方程的行波解的渐近稳定性.通过加权能量方法结合比较原理的方法,证明了大波速行波解的稳定性.这个稳定性结果表明初值问题的解以时间指数衰减收敛到行波解.特别地,在该类方程中,时滞对行波解的稳定性没有影响.
     最后,研究了具有阶段结构的捕食者-食饵系统的行波解的存在性.通过引入部分拟单调条件(PQM)和部分指数拟单调条件(PEQM),利用上下解方法、交错迭代技巧和Schauder不动点定理,对一类抽象的非局部扩散系统建立了行波解的存在性.然后把这些结果运用到所考虑的捕食者-食饵系统,得到了连接平凡平衡态和共存平衡态的行波解的存在性.
In recent years, a lot, of nonlocal dispersal equations have been derived from the research in many disciplines, such as material science, biology, epidemiology and neural network. Although the nonlocal dispersal represented by the integral operator is closer to the reality, it leads to the many new mathematical difficulties and the essential change of dynamics. For example, the solution semi-flows are not usually compact. And the solutions do not have a priori regularity. In the study of nonlocal dispersal equations, one important topic is their traveling wave solutions, which can well model the oscillatory phenomenon and the propagation with finite speed of nature.
     Firstly, we study the monotonicity, uniqueness and stability of traveling wave solutions, and spreading speed for a nonlocal dispersal equation with degenerate monostable nonlinearity. By considering the corresponding linear equation, we dis-cuss the exactly exponentially asymptotic behavior of traveling wave solutions at infinity. We then apply the sliding method to obtain the monotonicity and unique-ness of traveling wave solutions. By the squeezing technique, the asymptotic stability of traveling wave solutions with minimal speed is established. Furthermore, we con-sider the spreading speed of the solution of the initial problem with the compact initial value. The result implies that the spreading speed is coincident with the minimal wave speed.
     Secondly, we investigate the asymptotic stability of traveling wave solutions for a delayed nonlocal dispersal equation with age structure. By appealing to the weighted energy method together with the comparison principle, we prove the stabil-ity of traveling wave solutions with large speed. The result shows that the solution of the initial problem converges to the corresponding traveling wave solution with an exponential decay in time. In particular, the time delay does not affect the stability of traveling wave solutions.
     Finally, we consider the traveling wave solutions for a predator-prey system with nonlocal dispersal and stage structure. By introducing partially quasi-monotone conditions and partially exponentially quasi-monotone conditions for the nonlinear-ity, we establish the existence for a general nonlocal dispersal system. Our methods are to use the cross-iteration scheme together with upper and lower solutions and the Schauder's fixed point theorem. Then we apply the results to the predator-prey system and obtain the existence of traveling wave solutions connecting 0 with coexistence equilibrium.
引文
[1]Aiello, W.G., Freedman, H.I. A time-delay model of single species growth with stage structure[J]. Math. Biosci.1990,101:139-153.
    [2]Al-Omari. J., Gourley, S.A. Monotone traveling fronts in an age-structured reaction-diffusion model of a single species[J]. J. Math. Biol.2002,45:294-312.
    [3]Aronson, D.G. The asymptotic speed of propagation of a simple epidemic[J], in: Fitzgibbon, W.E., Walker, H.F. (Eds.), Nonlinear Diffusion, Pitman, London, 1977, pp.1-23.
    [4]Aronson, D.G., Weinberger, H.F. Nonlinear diffusion in population genetics, combustion. and nerve pulse propagation [J], in:Goldstein, J. (Ed.), Partial Differential Equations, Related Topics, in:Lecture Notes in Math., vol.466, Springer-Verlag, New York,1975, pp.5-49.
    [5]Aronson, D.G., Weinberger. H.F. Multidimensional nonlinear diffusions arising in population geneties[.J]. Adv. Math.1978,30:33-76.
    [6]Bates, P.W., Chen, F. Spectral analysis and multidimensional stability of travel-ing waves for nonlocal Allen-Cahn equation[J]. J. Math. Anal. Appl.2002,273: 45-57.
    [7]Bates, P.W. On some nonlocal evolution equations arising in materials science[J], in:H. Brunner, X.Q. Zhao and X. Zou (Eds.), Nonlinear dynamies and evolution equations, in:Fields Inst. Commun., vol.48, Amer. Math. Soc., Providence, RI, 2006, pp.13-52.
    [8]Bates, P.W., Fife, P.C., Ren, X., Wang, X. Traveling waves in a convolution model for phase transitions[J]. Arch. Rational Mech. Anal.1997,138:105-136.
    [9]Bates, P.W., Zhao, G. Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J]. J. Math. Anal. Appl.2007,332:428-440.
    [10]Bebernes, J.W., Li, C., Li, Y. Travelling fronts in cylinders and their stability[J]. Rocky Mountain J. Math.1997,27:123-150.
    [11]Berestycki. H., Larrouturou, B., Roquejoffre, J.M. Stability of travelling fronts in a model for flame propagation. Part I:Linear analysis[J]. Arch. Ration. Mech. Anal.1992.117:97-117.
    [12]Berestycki. H., Nirenberg, L. On the method of moving planes and the sliding method[J]. Biol. Soc. Brasil. Mat.1991,22:1-37.
    [13]Berestycki, H., Nirenberg, L. Travelling fronts in cylinders[J]. Ann. Inst. H. Poincare Anal. Nun Lineaire.1992.9:497-572.
    [14]Berestycki. H., Hamel. F., Nadirashvili. N. The speed of propagation for KPP type problems. Ⅰ. Periodie framework[J]. J. Eur. Math. Soc.2005,7:173-213.
    [15]Berestycki. H., Hamel. F., Nadirashvili. N. The speed of propagation for KPP type problems, Ⅱ. General domains[J]. J. Amer. Math. Soc.2010,23 (1):1-34.
    [16]Billingham. J., Needham. D. J. A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis[J]. Dynamical Systems.1991,6: 33-49.
    [17]Bodnar, M., Velazquez. J.J.L. An integro-differential equation arising as a limit of individual cell-based models[J]. J. Differential Equations.2006.222:341-380.
    [18]Brauer, F., Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology[M]. New-York:Springer-Verlag.2001.
    [19]Carr, J., Chmaj, A. Uniqueness of travelling waves for nonlocal monostable equations [J]. Proe. Amer. Math. Soc.2004,132:2433-2439.
    [20]Chasseigne, E., Chaves, M., Rossi, J.D. Asymptotic behavior for nonlocal diffu-sion equations [J]. J. Math. Pure Appl.2006.86:271-291.
    [21]Chen, X. Existence, Uniqueness and asymptotic stability of traveling waves in non-local evolution equations[J]. Adv. Differential Equations.1997,2:125-160.
    [22]Chen, X., Guo, J.S. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[J]. J. Differential Equations.2002,184: 549-569.
    [23]Chen, X., Guo, J.S. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Math. Ann.2003,326:123-146.
    [24]Chen,X., Fu, S.C., Guo, J.S. Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices[J]. SIAM J. Math. Anal.2006.38:23-258.
    [25]Chen, C.P., Li, W.T., Wang, Z.C. Asymptotic stability of traveling wavefronts in a delayed population model with age structure on a two-dimensinal spatial lattice[J]. Discrete, Contin. Dyn. Syst. B.2010,13:550-575.
    [26]Conway. E., Hoff. D., Smoller. J. Large time behaviour of solutions of systems of non-linear reaction-diffusion equations[J]. SIAM J. Appl. Math.1978.35:1-16.
    [27]Coville, J. Travelling waves in a nonlocal reaction diffusion equation with ignition nonlinearity[Ph.D. Thesis]. Paris:Universit'e Pierre et Marie Curie.2003.
    [28]Coville,J. On uniqueness and monotonicity of solutions of non-local reaction diffusion equation[J]. Annali di Matematica.2006,185(3):461-485.
    [29]Coville, J. Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case. Preprint,2006.
    [30]Coville, J., Dupaigne, L. Propagation speed of travelling fronts in nonlocal reaction-diffusion equations[J]. Nonlinear Anal.2005.60:797-819.
    [31]Coville, J., Dupaigne, L. On a nonlocal reaction diffusion equation arising in population dynamics[J]. Proc. Roy. Soc. Edinburgh Sect.2007.137A:1-29.
    [32]Coville, J., Davila, J., Martinez, S., Nonlocal anisotropic dispersal with monos-table nonlinearity[J]. J. Differential Equations.2008,244:3080-3118.
    [33]Coville, J., Davila, J., Martinez, S. Existence and uniqueness of solutions to nonlocal equation with monostable nonlinearity[J]. SIAM J. Math. Anal.2008, 39:1693-1709.
    [34]Diekmann, O. Thresholds and traveling waves for the geographical spread of infect ion [J]. J. Math. Biol.1978,6:109-130.
    [35]Diekmann, O. Run for your life, a note on the asymptotic speed of propagation of an epidemic[J]. J. Differential Equations.1979,33:58-73.
    [36]Duncan, D.B., Grinfeld, M., Stoleriu, I. Coarsening in an integro-differential model of phase transitions [J]. Euro, J. Appl. Math.2000,11:561-572.
    [37]Durrett, R., Levin, S. The importance of being discrete (and spatial) [J]. Theoret. Pop. Biol.1994.46:363-394.
    [38]Durrett. R., Levin. S. Spatial aspects of interspecifie competition[J]. Theoret. Pop. Biol.1998.53:30-43.
    [39]Dunbar. S, Traveling waves in diffusive predator-prey equations:periodie or-bits and point-to-periodic heteroelinie orbits[J]. SIAM. J. Appl. Math.1986.46: 1057-1078.
    [40]Fife, P. Some nonclassical trends in parabolic and parabolic-like evolutions[J]. in:Trends in nonlinear analysis, Springer, Berlin,2003, pp.153-191.
    [41]Fife. P.C., Meleod.J.B. The approach of solutions of nonlinear diffusion equa-tions to travelling front solutions[J]. Arch. Rational Mech. Anal.1977. 65:335-361.
    [42]Fisher, R.A. The wave of advance of advantageous genes [J]. Ann. of Eugenies. 1937,7:335-369.
    [43]Fournier. N., Laurencot. P. Well-poseedness of Smoluchowskis coagulation equa-tion for a elass of homogeneous kernels [J]. J. Funct. Anal.2006.233:351-379.
    [44]Garcia-Melian, J., Rossi, J.D. On the principal eigenvalue of some nonlocal diffusion operators[J]. J. Differential Equations.2009.246:21-38.
    [45]Garcia-Melian. J., Rossi. J.D. A logisitie equation with refuge and nonlocal diffusion[J]. Comniun. Pure Appl. Anal.2009.8:2037-2053.
    [46]Gardner, R. Existence of travelling wave solutions of predator-prey system via the connection index[J]. SIAM. J. Appl. Math.1984,44:56-79.
    [47]Georgi, M. Structural stability of travelling waves in an integrodifferential equa-tion[J]. Dynamical Systems.2008,23:109-135.
    [48]Gibbs, R.G. Traveling waves in the Belousov-Zhabotinskii reaction [J]. SIAM J. Appl. Math.1980,38:422-444.
    [49]Gilboa, G., Osher, S. Nonlocal linear image regularization and supervised seg-mentation[J]. SIAM Multiscale Modeling and Simulation.2007,6:595-630.
    [50]Grinfeld, M., Hines. G., Hutson, V., Mischaikow, K., Vickers, G. Non-local dispersal[J]. Diff. Integral Eq.2005.11:1299-1320.
    [51]Gonrley, S.A., Kuang, Y. Wavefronts and global stability in a time-delayed popu-lation model with stage structure[J]. Proc. R. Soe. Lond.2003.459A:1563-1579.
    [52]Gouley, S.A., Kuang, Y. A stage structured predator-prey model and its de-pendence on through stage delay and death rate[J]. J. Math. Biol.2004,49: 188-200.
    [53]Gourley, S.A. Linear stability of traveling fronts in an age-structured reaction-diffusion population model[J]. Q. J. Meeh. Appl. Math.2005.58:257-268.
    [54]Quo,T.S., Wu. C.C. Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system [J]. J. Differential Equations.2009,246: 3818-3833.
    [55]Hamel, F. Qualitative properties of monostable pulsating fronts:Exponential decay and monotonicity[J]. J. Math. Pures Appl.2008.89:355-399.
    [56]Hamel, F., Roques. L. Uniqueness and stability properties of monostable pul-sating fronts[J]. J. European Math. Soc. to appear.
    [57]Huang, J., Zou, X. Traveling wave solutions in delayed reacton diffusion systems with partial monotonicity[J]. Acta. Math. Appl. Sin.2006.22:243-256.
    [58]Huang, R., Mei, M., Wang, Y. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. arXiv:1103.2498vl.
    [59]Hutson, V., Grinfeld, M. Non-local dispersal and Instability[J]. Euro. J. Appl. Math.2006,17:221-232.
    [60]Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T. The evolution of dis-persal[J]. J. Math. Biol.2003,47:483-517.
    [61]Hutson, V., Shen. W., Vickers, G.T. Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence [J]. Rocky Mountain J. Math.2008, 38(4):1147-1175.
    [62]Hou, X.J., Li, Y. Local stability of traveling wave solutions of nonlinear reaction-diffusion equations [J]. Discrete Contin. Dyn. Syst.2006,15:681-701.
    [63]Hou. X.J., Li, Y., Meyer. K.R. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities[J]. Discrete Contin. Dyn. Syst. 2010,26:265-290.
    [64]Jin. Y., Zhao, X.Q. Spatial dynamics of a periodie population model with dis-persal[J]. Nonlinearity.2009,22:1167-1189.
    [65]Jones, D.S., Sleeman. B.D. Differential Equations and Mathematical Biology[M]. London:Champan & Hall/CRC.2003.
    [66]Kao. C.Y., Lou. Y., Shen, W. Random dispersal vs nonlocal dispersal[J]. Diserete Contin. Dyn. Syst.2010,26(2):551-596.
    [67]Keener, J.P. Propagation and its failure to coupled systems of discrete excitable cells[J]. SIAM J. Appl. Math.1987.47:556-572.
    [68]Kindermann, S., Osher. S., Jones. P.W. Deblurring and denoising of images by non-local functionals[J]. SIAM Multiscale Model. Siinul.2005,4:1091-1115
    [69]Kolmogorov, A.N., Petrovsky, I.G. and N.S. Piskunov, Etude de l'equation de la diffusion avec croissanc:e de la quantite de niatiere et son application a uu probleme biologique[J]. Bull. Univ. Etat Moscou. Ser. Int. A.1937,1:1-26.
    [70]Kuang, Y. Delay Differential Equations with Applications in Population Dy-namies[M]. Boston:Academic Press.1993.
    [71]Landahl. H.D., Hanson, B.D. A three stage population model with cannibal-ism [J]. Bull Math. Biol.1975,37:11-17.
    [72]Li, B.T., Weinberger, H.F., Lewis, M.A. Spreading speeds as slowest wave speeds for cooperative systems [J]. Math. Biosci.2005,196:82-98.
    [73]Li, X.S., Lin, G. Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays [J]. Appl. Math. Comput.2008,204:738-744.
    [74]Li, X.S., Lin, G. Traveling wavefronts in a single species model with nonlocal diffusion and age-structure[J]. Turk. J. Math.2010,34:377-384.
    [75]Li, W.T., Wu, S.L. Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response[J]. Chaos Solitons & Fractals.2008.37: 476-486.
    [76]Li, W.T., Lin. G., Rua.n, S. Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems[J]. Nonlinearity.2006.19:1253-1273.
    [77]Li, W.T., Sun, Y.J., Wang. Z.C. Entire solutions in the Fisher-KPP equation with nonlocal dispersal[J]. Nonlinear Anal. RWA.2010,11:2302-2313.
    [78]Li, G., Mei, M., Wong. Y.S. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model[J]. Math. Biosci. Engin.2008.5: 85-100.
    [79]Liang, X., Yi, Y.. Zhao, X.Q. Spreading speeds and traveling waves for periodic evolution systems[J]. J. Differential Equations.2006.231:57-77.
    [80]Liang, X., Zhao, X.Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J]. Comm. Pure Appl. Math.2007,60 (1):1-40.
    [81]Liang, X., Zhao, X.Q. Spreading speeds and traveling waves for abstract monos-table evolution systcms[J]. J. Functional Analysis.2010,25!):857-903.
    [82]Lin. C.K., Mei, M. On traveling wavefronts of the Nicholson's blowflies equation with diffusion[J]. Proc. Royal Soc. Edinburgh. Series A.2010.140:135-152.
    [83]Lin. G., Li, W.T. Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays[J]. J. Differential Equations.2008, 244:487-513.
    [84]Lin. G., Li, W.T., Ma, M. Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models[J]. Discrete Contin. Dyn. Syst. B.2010,13:393-414.
    [85]Lv, G., Wang, M. Asymptotic behavior of traveling fronts and entire solutions for a nonlocal monostable equation[J]. Nonlinear Anal. RWA.2010,72:3659-3668.
    [86]Lv, G., Wang, M. Nonlinear stability of travelling wave fronts for delayed reac-tion diffusion equations [J]. Nonlinearity.2010,23:845-873.
    [87]Lutscher, F., Pachepsky, E., Lewis, M.A. The effect of dispersal patterns on stream populations [J]. SIAM.1. Appl. Math.2005,65:1305-1327.
    [88]Ma, S. Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem[J]. J. Differential Equations.2001.171:294-314.
    [89]Ma, S. Traveling waves for non-local delayed diffusion equation via auxiliary equations[J]. J. Differential Equations.2007.237:259-277.
    [90]Ma, S., Duan, Y. Asymptotie stability of traveling waves in a diserete convolution model for phase transitions[J]. J. Math. Anal. Appl.2005.308:240-256.
    [91]Ma, S., Wu, J. Existence, uniqueness and asymptotic stability of traveling wave-fronts in non-local delayed diffusion equation[J]. J. Dynam. Differential Equa-tions.2007,19:391-436.
    [92]Ma, S., Zhao, X.Q. Global asymptotie stability of minimal fronts in monostable lattice equations [J]. Discrete Contin. Dyn. Syst.2008,21:259-275.
    [93]Medlock. J., Kot, M. Spreading disease:integro-differential equations old and new[J]. Math. Biosci.2003,184:201-222.
    [94]Mei, M. Stability of traveling wavefronts for time-delayed reaction-diffusion equations[J]. Discrete Contin. Dyn. Syst.2009, Supplement.52(i-535.
    [95]Mei, M., Lin, C.K., Lin, C.T., So, J.W.H. Traveling wavefronts for time-delayed reaction-diffusion equation:(I) local nonlinearity[J]. J. Differential Equations. 2009,247:495-510.
    [96]Mei, M., Lin, C.K., Lin. C.T., So. J.W.H. Traveling wavefronts for time-delayed reaction-diffusion equation:(Ⅱ) nonlocal nonlinearity[J]. J. Differential Equa-tions.2009,247:511-529.
    [97]Mei, M., So, J.W.H. Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation[J]. Proc. Royal Soc. Edinburgh.2008,138A: 551-568.
    [98]Mei, M., So, J.W.H., Li, M.Y., Shen, S.S.P. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion [J]. Proc. Royal Soc. Edinbourgh.2004,134A:579-594.
    [99]Mei, M., Wong, Y.S. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation[J]. Math. Biosci. Engin.2009,6:743-752.
    [100]Mei, M.,Ou. C., Zhao. X. Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations[J]. SIAM J. Math. Anal.2010, 42(6):2762-2790.
    [101]Mischaikow. K., Hutson. V. Traveling waves for mutualist species[J]. SIAM J. Math. Appl.1993.24:987-1008.
    [102]Mogilner, A., Edelstein-Keshet, L. A non-local model for a swarm [J]. J. Math. Biol.1999,38:534-570.
    [103]Murray. J. Mathematical Biology[M].2nd ed. New York:Springer-verlag.1998.
    [104]On, C., Wu, J. Persistence of wavefronts in delayed nonlocal reaction diffusion equations[J]. J. Differential Equations.2007,235:219-261.
    [105]Pan, S. Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity[J]. J. Math. Anal. Appl.2008,346:415-424.
    [106]Pan. S., Li. W.T., Lin. G. Travelling wave fronts in nonlocal reaction-diffusion systems and applications[J]. Z. Angew. Math. Phys.2009,60:377-392.
    [107]Pan, S., Li. W.T., Lin, G. Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay[J]. Nonlinear Anal. TMA.2010,72: 3150-3158.
    [108]Pao, C.V. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion [J]. Nonlinear Anal. RWA.2005,60:1197-1217.
    [109]Sattinger, D.H. Stability of waves of nonlinear parabolic systems[J]. Adv. Math 1976,22:312-355.
    [110]Schaaf, K.W. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations[J]. Trans. Amer. Math. Soc.1987,302:587 615.
    [111]Schumacher, K. Travelling-front solutions for integro-differential equations, Ⅰ[J]. J. Reine Angew. Math.1980,316:54-70.
    [112]Schumacher, K. Traveling-front solutions for integrodifferential equations:Ⅱ Proc. Conf. on Biological. Growth and Spread:Mathematical Theories and Ap-plications (Heidelberg, Germany) ed W. Jaeger et al. (Lecture Notes in Biomath-ematics vol 38) (Berlin:Springer),1980, pp.296-309.
    [113]Shen, W., Zhang, A.J. Spreading speedy for monostable equations with nonlocal dispersal in space periodic habitats[J]. J. Differential Equations.2010,249:747-795.
    [114]Shen, W., Zhang. A.J. Traveling wave solutions of spatially periodic:nonlocal monostable equations. Preprint.2011.
    [115]Smith, H.L., Zhao, X.Q. Global asymptotical stability of traveling waves in delayed reaction-diffusion eqimtions[J]. SIAM.J. Math. Anal.2000.31:514-531.
    [116]Smoller. J. Shock Waves and Reaetion-Diffusion Equations[M]. New York: Springer-Verlag.1994.
    [117]So, J.W.H., Wu.,J., Zou, X. A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains[J]. Proc. R. Soc. Lond. Ser. A.2001,457:1841-1853.
    [118]Song, X., Chen, L. Optimal harvesting and stability for a predator-prey system with stage structure[J]. Acta. Math. Appl. Sin.2002.18:307-314.
    [119]Sun. Y.J., Li, W.T., Wang. Z.C. Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlineariry[J]. Nonlinear Anal. TMA.2011. 74:814-820.
    [120]Thieme, H.R., Zhao, X.Q. Asymptotie speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models[J]. J. Differential Equations.2003,195:430-470.
    [121]Tognetti, K. The two stage stochastic model[J]. Math. Biosci.1975.25:195-204.
    [122]Volpert, A.I., Volpert, V.A., Volpert, V.A. Traveling Wave Solutions of Parabolic Systems[M]. Transl. Math. Monogr., vol.140, Amer. Math. Soc., Providence, RI. 1994.
    [123]Volterra, V. Fluctuations in the abundance of a species considered mathemati-cally [J]. Nature.1926,118:558-560.
    [124]王明新.非线性抛物型方程[M].北京:科学出版社.1993.
    [125]Wang, H. On the existence of traveling waves for delayed reaction-diffusion equa-tions[J]. J. Differential Equations.2009,247:887-905.
    [126]Wang. X. Metastability and stability of patterns in a convolution model for phase transitions[J]. J. Differential Equations.2002.183:434-461.
    [127]Wang, Z.C., Li, W.T., Ruan. S. Travelling wave fronts of reaction-diffusion sys-tems with spatio-temporal delays [J]. J. Differential Equations.2006.222:185-232.
    [128]Wang, Z.C., Li, W.T., Ruan, S. Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay [J]. J. Differential Equations.2007,238:153-200.
    [129]Wang, Z.C., Li, W.T., Ruan, S. Travelling fronts in monostable equations with nonlocal delayed effects[J].J. Dynam. Differential Equations.2008,20:503-607.
    [130]Weinberger, H.F. Long-time behavior of a class of biology models[J]. SIAM.J. Math. Anal.1982,13:353-396.
    [131]Weinberger, H.F. On spreading speeds and traveling waves for growth and mi-gration models in a periodic habitat [J]. J. Math. Biol.2002,45:511-548.
    [132]Weinberger, H.F., Lewis. M.A., Li, B. Analysis of linear determinacy for spread in cooperative models [J]. J. Math. Biol.2002,45:183-218.
    [133]Weng, P., Huang, H., Wu, J. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction[J]. IMA J. Appl. Math.2003,68:409-439.
    [134]Wu, J. Theory and Applications of Partial Functional Differential Equations[M]. New York:Springer-Verlag.1996.
    [135]Wu, J., Zou, X. Traveling wave fronts of reaction-diffusion systems with delay [J]. J. Dynam. Differential Equations.2001,13:651-687.
    [136]Wu, Y., Xing, X., Ye, Q. Stability of travelling waves with algebraic decay for n-degree Fisher-type equations [J]. Discrete Contin. Dyn. Syst.2006,16:47-66.
    [137]Wu, Y., Xing, X. Stability of traveling waves with critical speeds for p-degree Fisher-type equations [J]. Discrete Contin. Dyn. Syst.2008,20:1123-1139.
    [138]Wu, S.L., Li, W.T., Liu, S.Y. Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability[J]. Nonlinear Anal. RWA.2009, 10:3141-3151.
    [139]Wu, S.L., Liu, S.Y. Traveling waves for delayed non-local diffusion equations with crossing-monostability[J]. Appl. Math. Cornput. 2010. 217: 1435-1444.
    [140]Wu. S.L., Li, W.T.. Liu, S.Y. Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay[J]. J. Math. Anal. Appl. 2009. 360: 439-458.
    [141]Xin, J. Front propagation in heterogeneous media[.T]. SIAM Rev. 2000. 42: 161-230.
    [142]Xu, D.. Zhao. X.Q. Bistable waves in an epidemic model[J]. J. Dynam. Differ-ential Equations. 2004, 16: 679-707.
    [143]Xu, Z.Q., Weng, P. Traveling waves in a convolution model with infinite dis-tributed delay and non-monotonicity[J]. Nonlinear Anal. EYVA. 2011, 12: 633-647.
    [144]Yagisita, H. Existence of traveling waves for a nonlocal monostable equation: an abstract approach [J]. Preprint. 200cS.
    [145]Yagisita, IT. Existence and nonexistence of traveling waves for a nonlocal monos-table equation[.l]. Publ. RIMS. Kyoto Univ. 2009, 45: 925-953.
    [146]Yagisita, H. Existence of traveling wave solutions for a nonlocal bistable equa-tion: an abstract approach [J]. Publ. RIMS'. Kyoto Univ. 2009, 45: 955-979.
    [147]叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社.1999.
    [148]Yu, Z.X., Yuan. R. Travelling wave solutions in nonlocal reaction-diffusion sys-tem with delays and applications[J]. ANZIAM J. 2009, 51: 49-66.
    [149]Yu, Z.X.. Yuan, R. Traveling wave solutions in nonlocal convolution diffusive competitive-cooperative systems[J]. IMA J. Appl. Math. 2010. 1-21.
    [150]Zhang, G.B., Li, W.T., Lin, G. Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure[J]. Math. Comput. Model. 2009, 49: 1021-1029.
    [151]Zhang, G.B., Li, W.T., Sun, Y.J. Asymptotic behavior for nonlocal dispersal equations[J]. Nonlinear Anal. TMA. 2010, 72: 4466-4474.
    [152]Zhang, G.B. Traveling waves in a population model with nonlocal dispersal and age-structure[J]. Nonlinear Anal. TMA.2011. in press.
    [153]Zhang, L. Existence, uniqueness and exponential stability of traveling wave so-lutions of some integral differential equations arising from neuronal networks[J]. J. Differential Equations.2004,197:162-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700