跌坎消力池水动力荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国社会经济的发展,人们的环保意识和对生态环境的要求也随之提高,水电工程建设对生态环境的影响成为工程可行性的制约条件之一。人们对水电工程建设的认识和关注发生了改变,不再是仅仅停留在巨大的经济效益上,而是综合考虑了项目建设对生态环境的影响。在此基础上,提出了一种应用于高水头、大单宽流量工程的新型的消能工跌坎消力池。跌坎消力池作为高坝泄洪时的消能建筑物,其自身的稳定性不论对消能防冲还是整体水工结构的安全都具有重大意义。本文基于某水电站溢洪道消力池的模型试验研究,结合理论分析、模型试验和数值模拟的方法,对跌坎消力池底板的水动力荷载特性进行了研究。主要研究成果及结论如下:
     (1)运用动量定理和能量方程,推导出了突扩型跌坎消力池第一临界水深(发生面流时的最小下游水深)的理论计算公式。基于模型试验与数值计算,得出跌坎消力池流态演变的第一、第二临界水深经验计算公式,可以用来评估类似工程的流态。
     (2)基于模型试验和数值计算,分析比较了跌坎消力池与传统消力池的临底流速分布以及最大流速分布特性,得出了跌坎型消力池最大临底流速较传统消力池显著降低的指标;研究了跃首流速、跌坎高度、入池能量、入池角度对跌坎消力池最大临底流速的影响,得出了跌坎消力池最大临底流速与跌坎高度、入池能量的经验公式。
     (3)基于模型试验实测的传统消力池与跌坎消力池中的动水压强,分析得出了跌坎消力池较传统消力池脉动压强显著降低的指标;分析了脉动强度、空间积分尺度、概率密度以及频谱特性;得出了跌坎高度变化时估算消力池底板最大脉动压强的经验公式。
     (4)基于模型试验成果,研究了传统消力池和跌坎消力池板块所受上举力,分析了跌坎高度、板块尺寸、开孔率对底板上举力的影响,得出了最大上举力的预报经验公式;研究了陡槽末端水跃区底板的上举力以及错台对其的影响,得出了错台对上举力影响的指标。
     (5)经过一系列不同跌坎体型的消力池水动力学试验,为梨园水电站工程优化出了一种结构较优的跌坎消力池体型,降低了消力池里临底流速、脉动压强、上举力等指标。
In recent years, with the great development of society and economy, as well asthe improvement of people's awareness of environmental protection and therequirements of ecology and environment, the influence of hydraulic engineeringconstruction on ecological environment has become one of the engineering feasibilityconstraints. People's awareness and concern for the construction of hydropowerprojects is no longer merely the huge economic benefits, but considering the impact ofconstruction projects on the ecological environment. On this basis, stilling basin withdrop sill was proposed as a new energy dissipator which can be used in high-head,large-unit discharge engineering. As an energy-dissipator of downstream bed, thestability of stilling basin with drop sill was of great significance to both the energydissipation and the overall safety of the hydraulic structures. In this paper, based onthe model tests, numerical simulation and theoretical analysis, the characteristics ofhydrodynamic load in stilling basin with drop sill were studied. The main results andconclusions are as follows:
     (1)Based on momentum theory and energy equations, the first critical depthformula was derived in stilling basin with drop sill and sudden expansion. Other more,the first and second critical depth empirical formulas were brought forward accordingto the results of numerical simulation and the model tests in stilling basin with dropsill. The formulas could be used to assess the flow pattern of similar projects.
     (2)Based on the model tests and numerical calculation, the underflow velocitydistribution and the maximum velocity distribution characteirstic were comparedbetween the stilling basin with drop sill and the routine stilling basin. The index thatthe stilling basin with drop sill can effectively reduce the underflow velocity wasobtained.The influence of drop sill height, inlet energy and inlet angels on themaximum underflow velocity was investigated. The maximum underflow velocityformula was obtained as drop sill height or inlet energy changed.
     (3) Based on the model tests, the index that the stilling basin with drop sill caneffectively reduce the fluctuating pressure significantly was obtained. The distributionlaw, the probability characteristics, the cross correlation characteirstics and thespectrum characteristics of fluctuating pressure acting on chute slab and stilling basin slab were analyzed. The empirical formula of the maximum fluctuating pressure was obtained as drop sill height changed.
     (4) Based on the model tests, the uplift on slab was investigated between the stilling basin with drop sill and the routine stilling basin. The influence of drop sill height, slab size and pervious coefficient on the uplift was analyzed. The forecast formula of the maximum uplift was obtained. The uplift on chute slab in the jump region and the influence of the irregularity height on it were researched. The index of the influence of the irregularity height on uplift was obtained.
     (5) A new type of stilling basin with drop sill was put up for Liyuan Hydropower Project through a series of hydrodynamic test on different stilling basins with drop sill,which reduced the various hydraulics indicators of stilling basin, such as the underflow velocity, the fluctuating pressure, uplift and so on.
引文
[1]孙双科,我国高坝泄洪消能研究的最新进展[J],中国水利水电科学研究院学报,2009,7(2):249-255
    [2]童显武,李桂芬等,高水头泄水建筑物收缩式消能工[M],北京:中国农业科技出版社,2000
    [3]张志恒,王瑞彭,汪永真,我国高坝枢纽布置与泄洪消能技术进展综述[J],西北水资源与水工程,1991,2:1-15
    [4]袁银忠,水工建筑物专题:泄水建筑物的水力学问题[M],北京:中国水利水电出版社,1996
    [5]LIU Peiqing, et al. Inquiry into energy dissipation mechanism to plunge pool of bottom (or surface)-drop-flow type [J], Journal of Yangtze River Scientific Research Institute,1998,15(1):26-30
    [6]Rae, Peter, J. Hydraulic design of spillway plunge pool linings[C], Proceeding National Conference on Hydraulic Engineering,1994,(pt1):396-400
    [7]陈椿庭主编,高坝大流量泄洪建筑物[M],北京:水利电力出版社,1988年
    [8]南京水利试验处,淮河佛子岭水库泄洪钢管出口扩散器水工模型试验报告[R],1954年
    [9]水利电力部第八工程局、中南水电勘测设计院,乌江渡水电站左岸泄洪洞水力学原型观测[J],水力发电,1983(2):33-39
    [10]刘信真,乌江渡水电站重叠式枢纽布置[J],水力发电,1983(3):27-33
    [11]罗绍基,席与光,凤滩拱坝高低坎挑流消能工的设计和初步实践[J],水力发电学报,1984(1):19-27
    [12]高季章,窄缝式消能特性和体形研究[C],水利水电科学研究院论文集第13集(水力学),水利电力出版社,1983
    [13]车跃光,陈椿庭,陡槽末端大型分流墩的特性[C],水利水电科学研究院论文集第29集,水利电力出版社
    [14]龚振瀛,刘树坤,高季章,宽尾墩和窄缝挑坎——收缩性消能工的应用[J],水力发电学报,1983(3):48-57
    [15]刘树坤,宽尾墩挑流式消能工若干特性的研究[C],水利水电科学研究院论文集第13集(水力学),水利电力出版社,1983
    [16]潘瑞文,高坝挑流消能述评[J],云南水力发电,1998,14(3):15~19
    [17]刘宣烈等,泄洪雾化机理和影响范围的探讨[J],天津大学学报,特刊,1991:30-36
    [18]祁庆和,水工建筑物[M],天津大学,1997
    [19]吴持恭,水力学[M],北京:高等教育出版社,1984
    [20]叶菲缅科等,萨扬舒申斯克水电站消力池运行经验[J],水利水电快报,1995(20):10-15
    [21]日沃杰罗夫,BH,利用预应力锚索加固高水头消力池底板获得成功[J],1995(14):18-24
    [22]潘家铮,何瑾,中国大坝五十年[M],北京:中国水利出版社,2000
    [23]阎晋坦等,柘林掺气分流墩原型观测试验研究[J],水利学报,1986(10):1-9
    [24]水利水电科学研究院水力学研究所,柘溪、马迹塘及柘林水电站泄消建筑物运行情况调查[R],1993
    [25]张玉妹、陈贵余,黄坛口水电站坝下护坦消力坎的破坏检查和处理[C],枢纽布置及消能防冲选编,长江水利水电科学研究院选编,1983
    [26]陈宗梁,世界超级高坝[M],北京:中国电力出版社,1998
    [27]Richard P PEGAN, Anthony V MUNCH, Ernest, K SCHRADER, Cavitation and erotion damages of sluices and stilling basins at two high-head dams,13th ICOLD Proceedings, Q50, R11, vol. Ⅲ,177-198,1979, New Delhi, India
    [28]V M Semenkov, Large-capacity outlets and spillways, General Report, Q.50,13th ICOLD Proceedings, vol. Ⅵ,1~111,1979, New Delhi, India
    [29]林秉南,林秉南论文集[M],北京:中国水利电力出版社,2001,278~280
    [30]Cassidy J J, Hydraulic Design for Replacement of Floor Blocks for Pit6Stilling Basin, Proceedings of18th ICOLD Congress, Q,71, R.40,599-621
    [31]王瑞彭,面流水跃及其水力计算[J],中国水利,1958(4):26-33
    [32]广西西津水力发电厂、南京水利科学研究所,西津水电站溢流坝下游河床冲刷观测总结[R],1973
    [33]广西水电局设计院科研所,面流消能在我区应用情况初步调查总结[R],1978
    [34]水利电力部成都勘测设计院科学研究所,溢流坝面流漂木——515工程 模型试验总结之一[R],1973
    [35]黄河水利委员会勘测设计院,黄河天桥水电站技术设计书(初稿)[M],1977
    [36]面流消能调查组,面流消能工程的运行情况与分析[J],水力发电,1988,(08)
    [37]水利电力部东北勘测设计院科学研究所,回流山溢流坝面流消能的试验选择[R],1974
    [38]水利电力部东北勘测设计院科学研究所,回流山溢流坝面流消能的原型观测及模型验证[R],1974
    [39]辽宁省水利勘测设计院、辽宁省水利科学研究所,葠窝水库溢流坝消能型式的选择[R],1972
    [40]太平哨水电站溢流坝整体水工模型试验报告[R],水利电力部东北勘测设计院科学研究所,1974
    [41]李士一,陈其煊,新型联合消能工在五强溪水电站的应用[C]//水利水电科学研究院,高坝泄洪与消能专题文集,北京,水利电力出版社,1989
    [42]李玉柱,周炳烺,冬俊瑞等,有压泄洪洞内多级孔板消能的试验研究[J],水利学报,1988(7)
    [43]高建生,丁则裕,沈熊,有压管道双孔板水流消能特性试验研究[J],水利学报,1989(10):19-26
    [44]Wang Xianru et al. Comprehensive Report of Prototype Testing on Multiple Orifice Energy Dissipation of Sluice Tunnel at the Bikou Station. Proc. of International Symp. On Hydraulics for High Dams, Beijing Nov.1988
    [45]周石权,浅谈窄缝式消能工在泄水建筑物中的应用[J],人民长江,1989(1):26-28
    [46]肖兴斌,窄缝式消能工在高坝消能中的应用与发展综述[J],水电站设计,2004,20(3):36-41
    [47]许百立.,中国的坝工建设[J],水利水电科技进展,1999,19(5):2-6
    [48]王治祥.,窄缝式挑坎强化消能与体型问题研究[J],红水河,1994,13(2):24~31
    [49]周述明等,生态设计在水电工程水土保持设计中的应用[J],水电站设计,2011,27(3):99-102
    [50]Rajanatnam, N, and Subramanya, K. Hydraulic jumps below abrupt symmetrical expansions[J], J.Hydr.Div., ASCE,1968,94(2):481-503
    [51]Willi H. Hager,M., B-Jumps at abrupt channel drops[J], Journal of Hydraulic Engineering, ASCE,1985,111(5):861-866
    [52]Hager, W.H.Hydraulic jump in non-prismatic rectangular channels[J], J.Hydr.Res.Delf, The Netherlands,1985,23(1):21-25
    [53]Iwao Ohtsu, Youichi Yasuda, and Motoyasu Ishikawa, Submerged hydraulic jump below abrupt expansions[J], Journal of Hydraulic Engineering, ASCE,1999,125(5):492-499
    [54]Katakam V. Seetha Ram and Rama Prasad, Spatial B-Jump at sudden channel enlargements with abrupt drop, Journal of hydraulic engineering, ASCE,1998,124(6):643-646
    [55]孙双科.,柳海涛等,跌坎型底流消力池的水力特性[J],水利学报,2005,36(10):1-7
    [56]邓军.,许唯临等,向家坝水垫塘的实验研究与数值模拟[J],水力发电学报,2004,30(11):12-15
    [57]孙双科.,我国高坝泄洪消能研究的最新进展[J],中国水利水电科学研究院学报,2009,7(2):249-255
    [58]刘之平.,夏庆福,孙双科,跌坎底流消能水流再附长度的数值模拟[J]水力发电学报,2012,31(1):162-167
    [59]苗壮等,跌坎式消力池模型试验研究,陕西水利,2012(3),133-134
    [60]秦翠翠,杨敏等,跌坎消力池水力特性试验研究[J],南水北调与水利科技,2011,19(6):119-122
    [61]张强等,跌坎式底流消能工水流特性分析[J],南水北调与水利科技,2008(6),6(3):74-75
    [62]王海军,赵伟,杨红宣等,坎深和入池角度对跌坎型底流消能工水力特性影响的试验研究,昆明理工大学学报(理工版)2007,32(5):87-90
    [63]冯国一,王海军,唐涛,坎深和入池能量对跌坎型底流消能工流态影响的数值模拟[J],南水北调与水利科技,2008,6(2):69-71
    [64]孙双科,柳海涛,夏庆福,跌坎型底流消力池的水力特性与优化研究[J],水利学报,2005,36(10):1188-1193
    [65]郑雪等,跌坎深度对跌坎型底流消能工水力特性影响的数值模拟分析[J],昆明理工大学学报,2010,35(2):51-55
    [66]付腾吉,张闻辉等,入池角度对跌坎型底流消能工水力特性影响的数值模拟[J],云南水力发电,2009,25(3):33-36
    [67]王海军,赵伟等,跌坎型底流消能工水力特性的试验研究,水利水电技术,2007,38(10):39-41
    [68]王海军,张强等,跌坎式底流消能工的消能机理与水力计算[J],水利水电技术,2008,39(4):46-48
    [69]郑雪,跌坎型底流消能工的水力计算研究[D],[硕士学位论文],昆明理工大学,2010
    [70]张功育,汤健,王海军等,跌坎式底流消能工的消能机理分析与研究[J],南水北调与水利科技,2005,3(6):43-45
    [71]陈朝,王立辉,王海军,跌扩型底流消能工消能的试验研究[J],水力发电学报,2012,31(4):145-149
    [72]陈文鑫,王立辉,王海军,跌扩型底流消能工突扩比对边墙水力学指标影响的试验研究[J],南水北调与水利科技,2010,8(2):20-22
    [73]黄海艳,张强,王海军,跌扩型底流消能工水力特性的试验研究[J],中国农村水利水电,2010(7):86-88
    [74]胡自兴,面流消能在我国大坝建设中的应用[C],泄水建筑物消能防冲论文集,水利出版社,1980,255-274
    [75]王正臬,溢流坝面流式鼻坎衔接流态的水力计算[C],泄水建筑物消能防冲论文集,水利出版社,1980,241-254
    [76]李炜,水力计算手册[M],北京,中国水利水电出版社,2006,145-149
    [77]郭子中,消能防冲原理与水力设计[M],科学出版社,1982,21-32
    [78]清华大学水力学教研组,水力学(中册)[M],1961
    [79]水利电力部成都勘察设计院科研所,具有鼻坎的溢流坝下游产生面流衔接的试验研究[R],1959
    [80]金明,郭子中,三元混合流初步研究[J],河海大学学报,1987,15(1)88-91
    [81]程飞,刘善均,微挑消力池的数值模拟与试验研究[J],四川大学学报(工程科学版),2011,增刊1(43):12-17
    [82]邢富冲,一元三次方程求解新探[J],中央民族大学学报(自然科学版),2003,12(3):207-218
    [83]陈椿庭,水工水力学及水文论文集[M],水利电力出版社,1993,29-38
    [84]许唯临,紊流代数应力模型在水力学中的应用研究[D],[成都科技大学博士学位论文],1991
    [85]吴持恭,温贤云等,自由面重力流的数值理论和方法[M],成都科技大 学出版社,1993
    [86]金忠青,N-S方程的数值解和紊流模型力特性研究[M],南京:河海大学出版社,1989
    [87]Orszag S. A. Patterson G S. Phys. Fluids. Suppl.2,12:250-257(1972)
    [88]Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics1987;177:133-166
    [89]Lee M J, Kim J, Moin P. Structure of turbulence at high shear rate. Journal of Fluid Mechanics.1990;216:561-583
    [90]Rogers M M, Moin P. Structure of the vorticity field in homogeneous turbulent flows. Journal of Fluid Mechanics.1987;176:33-66
    [91]She Z S, Jackson E, Orszag S A. Intermittent vortex structures in homogeneous isotropic turbulence.Nature,1990;344:226-288
    [92]MomR, Mahesh K., Direct numerical simulation:A tool in turbulence research. Annu. Rev. Fluid Mech.1998,(30):535-78
    [93]邓岗,许春晓,弯槽湍流的直接数值模拟[J],水动力学研究与进展,SerA,17(3):311-317
    [94]王明皓,符松,章光华,竖直平板间湍流自然对流中的螺旋羽流结构[J],科学通报,2002,47(3):173-177
    [95]伍敏伟,张习日,匝圆管湍流结构的数值研究[J],水动力学研究与进展,Ser.A,17(3):334-342
    [96]姚军,樊建人,岑可法,圆柱近厂澎变湍流涡结构的直接数值模拟[J].工程热物理学,23(5):561-564
    [97]Boussinesq J. Mem. Pres. Pardiv. Savant a1'acad. sci. Paris,1877
    [98]Prandtl, L. Nachrichten Von der Akad. Der Wissenschoft in Gottingen
    [99]Bradshaw P, Ferriss D H and Atwell N P. Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech.,1967, Vol.28,593-616.
    [100]Nee V W and Kobasznay L S G, The calculation of the incompressible turbulent boundary layer by a simple theory.Phys. of Fluid,1969, No.12,473.
    [101]Patankar S V, Pratap V S and Spalding D B. Prediction of turbulent flow in curved pipes, Journal of Fluid Mechanics,1975,67:583-595.
    [102]Leschziner M A and Rodi W. Calculation of strongly curved open channel flow. Journal of the Hydraulics Division, ASCE,1979,105(10):1297-1314.
    [103]林斌良,Shiono K,矩形明渠三维紊流的数值模拟[J],水利学报,1994,(3):47-56
    [104]Xu Weilin and Liao Huasheng, Numerical simulation of flow field of a river with complicated boundaries. Journal of Hydrodynamics, Ser.B,1996,8(3):7580.
    [105]Rodi W. The Prediction of Free Boundary Layers by Use of a2-Equation Model of Turbulence; Ph D Thesis, Faculty of Engineering, University of London,1972
    [106]Gibson M M and Launder B E. Ground effects on Pressure fluctuation in atmospheric boundary. J Fluid Mech,1978,86:491
    [107]Yakhot V, Orszag S A, Renormalised group analysis of turbulence:I.basic theory.J Sci Comput,1986,1:3-5
    [108]Smagorinsky J.General circulation experiments with the primitive equations [J]. The Basic Experiment, Mon Wea,1963,91:99-165
    [109]Deardorff J W A numerical study of three-dimensional turbulent channel at large Reynolds number [J], J. Fluid Mech.1970,41(2):452-480
    [110]Germano M,Piomelli U and Cabot W.A. dynamic subgridscale eddy viscosity model[J], Physics of Fluid,1991, A3:1760-1765
    [111]Ghosal S, Lund T S and Moin P.A. dynamic location model for large-eddy simulation of turbulent Flows [J], J. Fluid Mech.1995,286:229-255
    [102]苏铭德,弯曲槽道内湍流运动的大涡模拟[J],力学学报,1989,21(5):513-521
    [113]李树宁,杨敏,水力自动翻板门稳定性数值模拟研究[J],水力发电学报,2012,31(1):143-147
    [114]宁方飞,徐力平,二维定常湍流中的GMRES算法[J],力学学报,2001,33(4):442-451
    [115]Saad Y, Schultz MH,GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,1986(7):856-869
    [116]Harlow F H, Welch J E, Shannon J P, Daly B J, The MAC Method, Los Alamos Scientific Laboratory Report,LA-3425,1965,5-12
    [117]Hirt C W, Nichols B D, Volume of fluid (VOF) for the Dynamics of Free Boundaries, Journal of Computational Physics,1981,(39):201-225
    [118]丁则裕,高水头泄水建筑物的防蚀抗磨与消能[M],水利电力出版社,1989,48-49
    [119]祁庆和,水工建筑物[M],中国水利水电出版社,2003
    [120]C E Browers and J Toso. Karnafuli project, model studies of spillway damage [J]. Journal of hydraulic engineering,1988,114(5):469-483
    [121]J S Sanchez Bribiesca and A C Capella Viscaino.Turbulent effects on the lining of stilling basin. The11th international congress on large dams[C], Madrid: Spain,1575-1592
    [122]刘沛清,高季章,李桂芬,五强溪水电站右消力池底板失事分析[J].水利学报,1991,(1):8-15.
    [123]陈子洲,官庄水库溢洪道泄槽底板水毁原因分析与加固[J].湖南水利水电,2005,(1),8-9.
    [124]高仪盛,汪世鹏,陈俊,隔河岩枢纽水力学原型观测及检查成果[J],长江科学院院报,2003,20(5):18-20
    [125]王木兰,水流脉动压强的数据处理、工程应用及机理研究的进展[J],河海大学科技情报,1990,10(3):28-43
    [126]谢省宗,关于泄水建筑物紊流压力脉动问题的几点看法[J],高速水流,1984(2):1-11
    [127]R. H. Kraichnan, Pressure Fluctuations in Turbulent Flow over a Flat Plate. The Journal of The Acoustical Society of America,1956,28(3):378-390
    [128]陈学良,湍流计算模型[M],北京:国科学技术人学出版社,1991
    [129]窦国仁,紊流力学[M],北京:人民教育出版社,1981
    [130]刘昉,水流脉动壁压特性及其相似率研究[D],[博士学位论文],天津,天津大学,2007
    [131]Dryden,H. L. and A. M. Kuethe, Natl. Advisory Comm. Aeronaut. Tech. Repts. No.342,1930
    [132]梁在潮,紊流相干结构与脉动壁压[J],水利学报,1985(8):12-17
    [133]Fiorotto.V and Rinaldo.A. Fluctuating uplift and lining design in spillway stilling basins, Journal of Hydraulic Engineering, ASCE, VOL.118, NO.4,1992:578-596.
    [134]刘沛清,冬俊瑞,余常昭,在岩缝中脉动压强传播机理探讨[J],水利 学报,1994(12):31-36
    [135]彭新民,王继敏,崔广涛,拱坝水垫塘拱形底板受力与稳定性实验研究[J],水力发电学报,1999(2):52-59
    [136]杨敏,彭新民.高坝消力塘底板上举力特性与预测方法[J],水利水电技术,2003(9):29-31
    [137]哈焕文,透水护坦动水荷载及脉动的研究[J],水利学报,1964,4:14-26
    [138]王继敏,高坝泄洪消能结构安全问题研究[D],[博士学位论文],天津大学,2006
    [139]孙勉,水垫塘透水底板水动力特性研究[D],[硕士学位论文],天津大学,2007
    [140]张少济,消力塘透水底板减压降载机理研究[D],[硕士学位论文],天津大学,2008
    [141]杨敏,李树宁,平底水垫塘透水底板下表面脉动压强试验研究[J],水利学报,2011,42(11):1368-1371
    [142]崔广涛,陈荣光,林继镛,关于挑跌流对河床的动水压力及基岩的防护问题[J],天津大学学报,1982(2):22-26
    [143]林继镛、彭新民,挑跌流作用下底板稳定性试验研究[C],水利水电系统应用概率统计学术讨论会文集,1985
    [144]毛野,有关岩基冲刷机理的探讨[J],水利学报,1982,2(2):46-53
    [145]崔莉、张廷芳,射流冲击下护坦板块失稳机理的随机分析[J],水动力学研究与进展A辑,1992,7(2):212-218
    [146]郭航忠,水垫塘底板稳定性判别标准研究[D],[硕士学位论文],天津;天津大学,2003
    [147]刘沛清,挑射水流对岩石河床的冲刷机理研究[D],[清华大学博士学位论文],1994
    [148]郑哲敏,平板在流体作用下的振动[J],力学学报,1958,2(1):11-16
    [149]肖天铎,溢洪道衬砌底板自由振动的计算研究[J],水利学报,1982(5):11-22
    [150]武丽娜,于希哲,高速泄流下平板的振动和稳定性[J],应用力学学报,1987,4(2):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700