重型商用车离合器自动操纵系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多档化和自动化技术的发展,机械式自动变速器广泛应用于重型商用车。本文基于国家863计划课题“重型商用车机械式自动变速器”,对低成本、高性能的气动液压式离合器自动操纵系统的机构和控制系统进行设计与研究。
     根据商用车离合器分离、接合要求设计系统的结构和各部件参数,通过分析流体的压力损失和结合设计手册对结构参数进行初步调整,选取所用的气阀、液阀和位移、油压传感器,并对工作缸附件进行分析研究。
     分析离合器膜片弹簧的负荷特性、离合器的转矩传递特性和滑磨特性,应用AMESim软件建立气动液压式离合器自动操纵系统的模型,根据初步确定的系统各部件的结构参数进行离合器分离和接合过程的仿真分析,为下一步进行结构优化提供了依据。
     离合器控制是离合器自动操纵系统开发的难点和重点。研究离合器的控制算法及离合器控制的实现方法,能较为完整的对离合器控制技术进行分析。在分析离合器接合过程三个阶段特点的基础上,为控制器选择了PID控制算法,在此基础上用Matlab/Simulink建立了以液阀电流为控制输出的系统模型,通过仿真分析为实验提供数据基础和参考。
     针对离合器自动操纵系统基于总线技术建立一个信息采集系统。由PC机作为上位机,采用CANoe作为上位机监控软件来监测系统的运行,由MATLAB和Cosmic编程控制气阀和液阀的动作,采集不同模式下离合器分离、接合过程的位移,并将数据转换后传到上位机处理。根据目标值和实际值的比较分析PID控制算法并进行调整,取得了较好的控制效果。
The automated mechanical transmission (AMT) holds the merits of the conventional manual transmission, such as high efficiency and good economic efficiency and good manufacturing inherit performance, it greatly meets the realistic demand of China’s automobile development. Along with the development of multi-gear and automatic technology, the automated mechanical transmission is widely used on heavy-duty vehicles.
     According to the difference of power source, the clutch automatic operating system mainly has three types, the electrical-hydraulic, the fully electrical and the electrical-pneumatic. The electrical-pneumatic type is picked as the research heavy-duty vehicle has pneumatic power source, it doesn’t need extra power source, so it’s good for reducing cost efficiently; at the same time, in order to overcome the defect of its low control precision, slow response and rough action, combined with the advantage of electrical-hydraulic, the pneumohydraulic method is finally selected.
     Its function principle and structure form are brought based on the feature of pneumohydraulic and its manipulation process is studied, so it can get the advantage and disadvantage of the system and the key issues during system design. According to the design specification, it calculates the structure parameters and adjusted by the reference design manual. The fluid state is confirmed by the calculated Reynolds number, and the corresponding resistance and pressure drop is calculated in different situations. And then it analyzes shearing stress when fluid flows in the gap between the cylinder wall and piston. Combined with previous experimental and design experience, the pneumatic and hydraulic valves an displacement and pressure transducer are picked. Finally accessories are selected and designed, such as sealing, guides, gas exhaust and so on.
     Several important properties of clutch are analyzed before the pneumohydraulic system’s simulation and analysis: the load and disengagement characteristic of diaphragm spring which means the load-distortion relation of its big and small end during the process of clutch engagement and disengagement; the torque transmission property of three phases during the process of clutch engagement, analyzes those factors which influence the torque transmission; the wear abrasion property analyzes the relation between abrasion loss and friction work and how the application factors work on the relation between abrasion loss and friction work, and studies how the change of abrasion loss affects torque transmission. The software AMESim is selected to simulation and analysis. Firstly it introduces the feature of the software and the four steps of modeling, simulation and analysis. The viscosity of hydraulic oil is chosen by previous experimental experience and then sets the initial condition of pneumatic and hydraulic valves and the properties of fluid. The simplified model of clutch disengagement and engagement process is built respectively, the simulation and analysis work is taken based on those calculated structure parameters. The pressure and flow change at the output port of pneumatic and hydraulic valves, the volume and pressure change and the displacement of piston of pneumatic and actuator cylinder, and the load and displacement change at both side of disengagement poking fork are analyzed and then get the shortest time during disengagement process. The simulation and analysis work of engagement process is followed when both the pneumatic and hydraulic valves are fully opened and based on the final state in the end of disengagement process, so it gets the faster engaging speed. It will provide some advice for structure optimization after the simulation and analysis work.
     The control rule during clutch engagement is gained through stressing the analysis of three phases of clutch engagement. The respective feature and range of application of fuzzy control, self-adapting control, intelligent control and PID control is introduced and then choose PID as the control algorithm. According to the feature of system structure and control, a clutch engagement model is established which takes the current of hydraulic as the control output, and then simulate and analyze the engagement process. It will give some help to the next experimental work.
     A information acquisition system is built based on the CAN bus technology aiming at the clutch automatic operating system. It takes PC as position machine and use CANoe to monitor the run state, and sets CANdatabase and CAPL and the variables according to the test requirement, such as the piston displacement and pressure, and then design the panel which can appropriately control those variables. It uses the built MATLAB/Smulink model to produce program code and transfer to Cosmic to run, the control program and bottom API could be compiled in Cosmic. It debugs program by changing the control variables on panel while running CANoe to monitor the system state. It uses the panel to control the action of pneumatic and hydraulic valves, collect the data about the displacement and velocity change during disengagement and engagement, and oil pressure in accessorial hydraulic cylinder, and then convert these data to pass to position machine. It analyzes and adjusts the PID control algorithm by comparing the difference between the target and realistic position and the control purpose is gained properly.
引文
[1]葛安林.车辆自动变速理论与设计.北京:机械工业出版社,1993?
    [2]7th LuK Symposium 2002
    [3]程振彪.国外重型载货车青睐自动变速器[J].重型汽车,2OOO,(4):29—31
    [4]尔悦.全新一代VOLVO I-shift自动变速器[J].商用汽车,2002,(7).
    [5]席军强等.ASCS与AMT的历史、现状及其在中国的发展趋势[J].汽车工程2002,24(2):89—93
    [6]梁珍.自动换档机械式变速器(AMT)在欧洲5大品牌载货汽车上的应用[J].商用汽车,2002,(8):35—37
    [7]ZF Fried rich sha fen AG . Automatic transmissions for trucks and coaches[J].Experiences in development and application Drive System Technique,2001,(4):1—13
    [8]FUJIO MOMIYAMA KOJI.商业车辆第二代EE传动自动机械变速箱(AMT)的优越性[J].传动技术,2001,(4):31—38
    [9]PETER KOPF.道路车辆变速箱起动部件的发展趋势.传动技术[J].1998,(3):25—29
    [10]KNIBB,GORMEZAN0,PARTNERS LARRY PLACHNO.Test Driving the J4500 and ZF AS Tronic Transmission[J].National Bus Trader/January,2003
    [11]陈荣桐.机械式自动变速器的全电动离合器开发.吉林大学硕士学位论文,2005
    [12]轩睿.载货汽车电控机械式自动变速器控制策略研究.吉林大学硕士学位论文,2006
    [13]高炳钊.AMT液压系统仿真及其应用.吉林大学硕士学位论文,2002
    [14]王丽芳.电控机械式自动变速器关键技术的研究. 吉林工业大学博士学位论文,1997
    [15]黎启柏等.液压元件手册. 北京:冶金工业出版社.1999.12
    [16]盛敬超.液压流体力学. 北京:机械工业出版社.1980
    [17]戚昌滋.液压系统实用计算. 北京建筑工程学院.1981.2
    [18]宋俊等.液压系统优化. 北京:机械工业出版社.1996.12
    [19]冯明星等.液压和液力传动油、液. 中国石化出版社.1991.4
    [20]李萍.商用车机械式自动变速系统离合器控制技术研究.? 吉林大学硕士学位论文,2005
    [21]牛铭奎等.高速开关电磁阀的特性与应用研究. 汽车技术,1997(7):13-16页
    [22]李玉贵等. PWM高速开关阀静态特性研究.太原重型机械学院学报,2002.3
    [23]Christopher C.Bostwick and Andrew Szadkowski. Self-Excited Vibrations During Engagements of Dry Friction Clutches, SAE982846
    [24]M.velardocchia and F.Amisano.R.Flora. A linear thermal model for an automotive clutch, SAE2000-01-0834
    [25]郑磊.解放载货车机械式自动变速器控制技术研究.吉林大学硕士学位论文,2004.5
    [26]段宁.TC+AMT液压控制系统仿真研究. 吉林大学硕士学位论文,2006
    [27]张勇.电控机械式自动变速器换挡品质自适应控制研究.吉林大学硕士学位论文,2006
    [28]雷雨龙.提高电控机械式自动变速器性能的研究.吉林工业大学博士学位 论文,1999
    [29]葛安林等.离合器最佳接合规律的研究.汽车工程,1988,No.2
    [30]葛安林等.AMT离合器接合速度的精确控制.机械工程学报,2000,No.10
    [31]李永军.电控机械式自动变速器起步过程的智能控制.吉林工业大学硕士 学位论文,1997
    [32]刘保林.AMT起步和换挡品质研究.吉林大学硕士学位论文,2003
    [33]高义峰.机械式自动变速器车辆起步辅助系统的开发.吉林工业大学硕士 学位论文,1998
    [34]Knut Nordgard. Developments in Automated Clutch Management Systems. SAE, 950896?
    [35]张迎军等.概述AMT车辆起步的离合器控制方法.拖拉机与农用运输车,2003,No.3
    [36]李士勇.模糊控制和智能控制理论与设计.哈尔滨:哈尔滨工业大学出版社, 1990
    [37]Tanaka H, Wada H. Fuzzy Control of Clutch Engagement for Automated Manual Transmission. JSAE9307399
    [38]葛瞬等.自动变速器离合器的模糊控制. 汽车技术,1996(6):7~12 页
    [39]宋忠华.电控机械式自动变速器起步模糊控制. 吉林工业大学硕士学位论文,1996
    [40]申水文等. AMT 离合器的综合模糊控制. 汽车工程,1997(6):347~351页
    [41]齐占宁等.基于遗传算法的 AMT 车辆起步模糊控制. 机械工程学报,2001,37(4):9~15
    [42]王云成等.机械式自动变速器系统的离合器起步模糊控制.农业机械学报,2000(11)
    [43]王丽芳等.机械式自动变速器的自适应控制.中国机械工程,1999(3)
    [44]阴晓峰等.基于神经网络的AMT离合器自适应温度补偿控制.农业机械学报, 2001(5)
    [45]李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999
    [46]陈桂明等.应用MATLAB建模与仿真. 科学出版社,2001
    [47]薛定宇等.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社,2002.4
    [48]刘金锟.先进PID控制及其MATLAB仿真,北京航空航天大学出版社,2003.1
    [49]董玉梁等.车辆AMT的数据采集及分析系统,工业仪表与自动化装置,2003,No.4
    [50]薛大为等.汽车AMT数据采集与分析系统研究. EIC Vol.13 .2006 .NO.4?
    [51]邵贝贝.单片机嵌入式应用的在线开发方法.清华大学出版社.2004
    [52]曹桂军.电控机械式自动变速器传动系综合控制的研究.吉林大学硕士学位论文,2004.5
    [53]李永军等.基于CAN总线的机械式自动变速器综合控制研究.农业机械学报, 第31卷第2期 2000.3 12-15页
    [54]Robin S, Simon DL, et al. A dvanced interactive driveline control. SAE paper 912680, 1991. 477~489?
    [55]马安丽等.汽车网络技术发展分析.汽车科技,2003
    [56] Liang Chu, Jiayun Gu, et al. CAN Communication Applying on the Performance Evaluating of Electronic Brake System for Commercial Vehicle. SAE 2006-01-3582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700