西藏南部岗巴地区Paleocene/Eocene界线时期古海洋事件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深海钻探计划(DSDP)和大洋钻探计划(ODP)的开展,在古海洋学领域已经取得了许多重大发现。古近纪古新世与始新世(P/E)界线间的地质事件的发现便是其重要成果之一。西藏南部岗巴地区发育有良好的海相界线地层。本文对剖面各个层位生物群,界线附近的碳、氧、锶稳定同位素以及磁化率进行了研究,研究成果显示,全球界线事件在西藏南部岗巴地区具有明显的影响。古新统宗浦组顶部底栖有孔虫动物群阶段性绝灭,总灭绝率为69%,与世界其他深海地区相对应。始新统遮普惹组底部有孔虫逐渐复苏,除两种为古新世的残存类型外,始新世生物组合全为新的属种,并呈现三个复苏阶段。根据分析,PETM事件的发生造成海水温度的升高,使生活环境发生改变。该事件发生很突然,持续时间很短,在突发事件中有孔虫不能适应新的环境,从而造成大量绝灭。事件发生后,海水温度逐步恢复正常,新的有孔虫的属种开始出现并大量繁殖,有孔虫又进入繁盛时代。碳稳定同位素表现为三期负向偏移,并在界线处出现约4‰的负向偏移。这一异常与全球碳稳定同位素事件表现一致。PETM事件的δ13C明显负偏移可从海洋环境的变化得到解释。由于成岩作用的影响,氧稳定同位素的变化与全球极端气候事件不太一致。锶同位素在界线位置没有明显的变化,而明显的峰值出现在界线之上,初步推断是与陆源物质的输入有关。这种变化与全球53Ma出现的锶同位素变化相对应。磁化率曲线在界线附近表现平稳,而在界线之上2m处出现一个很明显的波动。这一结果可能是由于岩性的变化以及降水或者是气候的变化造成的。西藏南部岗巴地区宗浦剖面P/E界线附近生物群、同位素、磁化率参数的明显变化,表明研究区对应的地质事件是客观存在的,也说明P/E界线全球地质事件同样发生在东特提斯低纬度浅海地区。西藏南部(特提斯低纬度浅海环境)受全球地质事件的影响,在古新世与始新世界线时期出现明显的气候变化。全球深海温度增高在浅海环境具有相同表现。只是影响时间较长。
With the development of DSDP and ODP, a lot of important results have beenachieved in palaeoceanography. One of them is the geologic event at thePaleocene/Eocene boundary (P/E). A marine boundary succession is well preserved inthe Gamba region of southern Tibet. The research on micro-fauna and carbon, oxygen,strontium isotopes and magnetic susceptibility reveals that the signals of globalPaleocene/Eocene boundary event are well recorded in the Gamba region. Thebenthic foraminifera were extinguished stepwise toward the top of the PaleoceneZongpu Formation, with a general extinction rate of 69%. Overturn of foraminiferaoccurs at the P/E boundary that is indicated by the extinction of genus Miscellanea.The recovery of the faunal happened gradually upward from the bottom of the EoceneZhepure Formation. Except 12 species were survived from the Paleocene, all other 56genera are new types of Eocene and present three recovery stages. According to theanalysis, PETM event caused seawater temperature rising and environment change.This event happened abruptly and lasted a short time, benthic foraminifera cannot fitfor it and begin to extinct. After that, the temperature return to normal, with newgenus appeared. A clear negative Carbon isotope shift of -4‰ occurs at the boundary.It is well correlated with standard isotopic shift in the world. The changes of the seaenvironment can help us to explain this kind of phenomenon. But the changes ofoxygen isotope are not consistent with event. The strontium isotopic shift is notobvious at the boundary, but an important peak appears above the boundary that ismatched with the 53ma level. Magnetic susceptibility change is obscure at theboundary but a sharp change of magnetic susceptibility clearly appears at two metersabove the boundary. All above significant changes imply that the Tethys-Himalayanarea was affected by the Paleocene/Eocene Thermal Maximum (PETM). Temperature
    warming in deep oceans also occurred in shallow marine sequence but with expandedduration.
引文
[1] 陈骏,仇钢,杨杰东. 黄土碳酸盐 Sr 同位素组成与原生和次生碳酸盐识别. 自然科学进展,1997,7(6)
    [2] 陈满荣,王少平,俞立中.环境磁学及其再地理环境研究中应用. 云南地理环境研究,2001,13(1):12~19
    [3] 董军社. 古海洋学中锶稳定同位素研究进展. 大自然探索,1995,3(14)
    [4] 高莉玲摘译. 古新世/始新世过渡期碳旋回和气候转暖的年代. Nature,1999,401(6755)
    [5] 郝诒纯,万晓樵. 西藏定日的海相白垩、第三系. 青藏高原地质文集(17),1985,227~232
    [6] 胡修棉,王成善. 100 Ma 以来若干重大地质事件与全球气候变化.大自然探索, 1999,18 (1):53~58
    [7] 黄思静,石和,沈立成.锶同位素地质学研究进展. 地球科学进展,2001,16(2)
    [8] 黄思静. 川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义. 岩学报,1993,9(增刊)
    [9] 黄思静. 上样子二叠系-三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件. 地球化学,1994,23(1):60~68
    [10] 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究. 地质学报, 1997,71(1)
    [11] 姜月华,殷鸿福,王润华. 环境磁学理论、方法和研究进展. 地球学报,2004,259 (3):357~362
    [12] 蓝先洪. 海洋锶同位素研究进展,海洋地质动态,2001,17(10)
    [13] 李国彪,万晓樵. 藏南岗巴-定日地区始新世微体化石与特提斯的消亡. 地层学杂志,2003,27(2):99~108
    [14] 刘传联,成鑫荣. 渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据. 科学通报,1996,41(10)
    [15] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件. 地球科学进展,2003,18(5): 681~687
    [16] 刘志飞. 古新世-始新世界线全球构造事件在沉积学中的反映. 成都理工学院学报增 刊,1996,23(增刊)
    [17] 穆恩之,尹集祥,文世宣等. 中国西藏南部珠穆朗玛峰地区的地层.中国科学,1973,16(1):59~71
    [18] 齐文同. 事件地层学. 北京:地质出版社. 1990
    [19] 舒小辛. 环境磁学在古湖泊学研究中的应用. 同济大学海洋地质开放实验室,1989,59~76.
    [20] 同济大学海洋地质系. 古海洋学概论. 上海:同济大学出版社. 1989
    [21] 万晓樵,阴家润. 西藏岗巴地区白垩纪中期微体生物群与古海洋事件. 微体古生物学报,1996:13(1):43~56
    [22] 万晓樵. 1985. 西藏岗巴地区白垩纪地层及有孔虫动物群. 见: 李廷栋主编, 青藏高原地质文集, 16: 203-228.
    [23] 万晓樵. 西藏第三纪有孔虫生物地层及地理环境. 现代地质,1987,1(1):15~22
    [24] 万晓樵. 西藏白垩纪—早第三纪有孔虫于特提斯—喜马拉雅海的演化. 微体古生物学报,1990,7(2):169~186
    [25] 王成善,刘志飞. 古新世-始新世界线的全球事件. 地球科学进展,1999,11(3)
    [26] 王世杰,董丽敏,林文祝,李春来,汪品先,赵泉鸿,吴锡浩. 泥河湾组有孔虫化石群的锶同位素研究. 科学通报,1995,40(22)
    [27] 魏振声,谭岳岩. 西藏地层概况. 西藏自治区地质局: 1979,37~41
    [28] 文世宣. 1974a. 珠穆朗玛峰地区的地层, 白垩系. 见: 中国科学院西藏科学考察队,珠穆朗玛峰地区科学考察报告. 地质. 北京:科学出版社,1966-1968,148~183
    [29] 文世宣. 1974b. 第三系. 珠穆朗玛峰地区科学考察报告. 北京:地质科学出版社. 1966-1968
    [30] 吴瑞荣,张守信等. 现代地层学. 武汉:中国地质大学出版社. 1989
    [31] 西藏地质矿产局. 西藏自治区岩石地层. 武汉:中国地质大学出版社. 1997
    [32] 西藏自治区测绘局. 西藏自治区地图册. 北京:中国地图出版社. 1995
    [33] 西藏自治区地质局综合地质大队(孙亦因等). 中华人民共和国区域地质调查报告(1:100 万). 北京:地质出版社. 1984
    [34] 西藏自治区地质矿产局. 西藏自治区区域地质志. 北京:地质出版社. 1993
    [35] 徐钰林,茅绍智. 西藏南部白垩纪-早第三纪钙质超微化石及其沉积环境. 微体古生物学报,1992,9(4):331~348
    [36] 徐钰林,万晓樵,苟宗海等. 西藏侏罗、白垩、第三纪生物地层. 武汉:中国地质大学出版社,1989,1~147
    [37] 杨遵仪,吴顺宝,杨逢清. 关于我国南方海相二叠-三叠系界线问题和接触关系. 地球科学,1981,1
    [38] 有孔虫. 科学出版社. 1980
    [39] 余光明,王成善. 西藏特提斯沉积地质. 中华人民共和国地质矿产部地质专报(三):岩石,矿物,地球化学,第 12 号,北京: 地质出版社. 1990
    [40] 俞立中. 环境磁学再城市污染研究中应用. 上海环境科学,1999,18(4):175~178
    [41] 张世红,李海燕. 地磁学、古地磁学和环境磁学的研究新发展-第 32 届国际地质大会学科总结和评述. 现代地质,2004,18(4):415~422
    [42] 章炳高,耿良玉. 西藏南部早第三纪地层的再认识. 地层学杂志,1983,7(4):310~312
    [43] 章炳高,穆西南. 西藏雅鲁藏布江以北海相第三系的发现. 地质学杂志,1979,7(4):310~312
    [44] 赵文金,万晓樵. 西藏特提斯演化晚期生物古海洋事件. 北京:地质出版社. 2003
    [45] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社,1997,1~238
    [46] 中国科学院青藏高原综合科学考察队(文世宣,章炳高等). 西藏地层. 科学出版社,1984,14
    [47] A li J R,Hailwood E A. Magnetostratigraphic(re) calibration of the Paleocene/Eocene boundary interval in Holes 550 and 549 Goban Spur,eastern North Atlantic[J]. Earth and Planetary Science Letters,1998. 161(1-4):201~213
    [48] B. Schmitz,V. Pujalte,K. Nunez-Betelu. Climate and sea-level perturbations during the Initial Eocene Thermal Maximum: evidence from siliciclastic units in the Basque Basin (Ermua,Zumaia and Trabakua Pass),northern Spain,Palaeogeography,Palaeoclimatology, Palaeoecology 165,2001. 299~320
    [49] B. Schmitz. 特提斯陆架南部(埃及)古新世末期底栖有孔虫灭绝事件记录. Geology,1996. 4
    [50] Bains S,Corfield R M,and Norris R D. Mechanisms of climate warming at the end of the Paleocene. Science,1999. 285:724~727
    [51] Bralower T J,Thomas D J,Zachos J C,et al. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology,1997. 25:963~966
    [52] Christian Robert and James P Kennett. Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications. Marine Geology,1992. 103:99~100
    [53] Christian Robert and James P Kennett. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology,1994. 211~214
    [54] D. Clay Kelly,Timothy J. Bralower,James C.Zachos,Isabella Premoli Silva,Ellen Thomas. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology,1996. 24(5):423~426
    [55] D. J. Beerling,D. W. Jolley. Fossil plants record an atmospheric CO2 and temperature spike across the Palaeocene-Eocene transition in NW Europe. Journal of the Geological Society,1998. 155:591~594
    [56] D. J. Beerling. Increased terrestial carbon storage across the Palaeocene-Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,2000. 161:395~405
    [57] Deborah J. Thomas and Timothy J. Bralower,James C. Zachos. New evidence for subtropical warming during the late Paleocene thermal maximum: Stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography,1999. 14(5):561~570
    [58] Dickens G R,Castillo M M,Walker J C G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate [J]. Geology,1997. 25:259~262
    [59] Flavia Nunes and Richard D. Norris. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature,2006. 439:60~63
    [60] Gabriel J. Bowen,William C. Clyde,Paul L. Koch,Suyin Ting,John Alroy,Takehisa Tsubamoto,Yuanqing Wang,Yuan Wang. Mammalian Dispersal at the Paleocene/Eocene Boundary. Science,2002. 295
    [61] Gibson T G,Bybell L M,Owens J P. Latest Paleocene lithologic and bitic events in neritic deposits of southwestern New Jersey[J]. Paleoceanography,1993. 8(4):495~544
    [62] Hayden H H. The geology of the provinces Tsang and U in Tibet. Mem. Geological Survey of India,1907. 36:122~201
    [63] Hottinger L. Processes determing the distribution of larger foraminifera in space and time. Utrecht Micropal. Bull,1983. 30:239~254
    [64] Hsü K J. Paleoceanography of the Mesozoic Alpine Tethys. Geol. Soc Am,1976. Special Paper 170
    [65] J. I. Baceta,V. Pujalte,J. Dinares-Turell,A. Payros,X. Orue-Eyxebarria and G. Bernaola. The Paleocene/Eocene boundary interval in the Zumaia section (Gipuzkoa, Basque Basin): Magnetostratigraphy and high-resolution lithostratigraphy. Geology,2000. Espana 13(2)
    [66] Jenkyns H C. Cretaceous anoxic events: form continents to oceans. Journal of the Geological Society,1980. 137:171~188
    [67] Kaufmann E G. High resolution event stratigraphy regional and global Cretaceous bioevents. In: Walliser O H, eds. Global bioevents. Spinger-Verlag Lecture Notes in Earth Science 8, Spring-Verlag, Berlin,1986. 279~336
    [68] Kennett J P,Stott L D. Abrupt deep sea warming,paleoceanographic changes and benthic extinctions at the end of the Palaoecene[J]. Nature,1991. 353:225-322
    [69] Koch P L& Zochos J C. Mamalian biochronology of the Paleocene-Eocene boundary in North America, Europe and Asia[J]. Journal of Vertebrate Palaeontology,1993. (3 Suppl.):47
    [70] Kureshy A A. The Tertiary larger foraminiferal zones of West Pakistan. Rovista Espanola de Micropaleontologia,1977. 9(2):203~219
    [71] Kureshy A A. The Tertiary larger foraminiferal zones of Pakistan. Rovista Espanola de Micropaleontologia,1978. 10(3):467~483
    [72] Lisa Cirbus Sloan,Birger Schmitz,Marie-Pierre Aubry and James Zachos. Early Paleogene Warm Climates and Biosphere Dynamics: Meeting in Goteborg makes progress in deciphering the dynamics of past greenhouse worlds,Paleoceanography,1999. 14(5):559~560
    [73] Norris R D,R?hl U. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition[J]. Nature,1999. 401:775~778.
    [74] Paul L. Koch,James Zachos,Philip D. Gingerich. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature,1992. 358
    [75] Raup D M and Sepkoski J J Jr. Mass extinctions in the marinr fossil record. Science,1982. 215:1501~1503
    [76] Richrd J,Howarth R J,McArthur J M. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age [J]. The Journal of Geology,1997. 105:441~456
    [77] Santo Bains,Richard D. Norris,Richard M. Corfield and Kristina L. Faul. Termination of global warmth at the Palaeocene/Eocene boundary through productivety feedback. Nature,2000. 407
    [78] Schlanger S O and Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence. Geol. Mijnbown,55: 179-184
    [79] Scott L. Wing and Guy J. Harrington. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology,2001. 27(3):539~563
    [80] Shackleton N,Boersma A. The climate of the Eocene ocean [J].Journal of Geological Society,London. 1981. 138:153~157
    [81] Suyin Ting,Gabriel J. Bowen,Paul L. Koch,William C. Clyde, Yuanqing Wang,Yuan Wang,Malcolm C. McKenna. Biostratigraphic,chemostratigraphic and magnetostratigraphic study across the Paleocene-Eocene bourdary in the Hengyang Basin, Hunan, China, Geological Society of America. 2003. Special Paper 369
    [82] Thomas E,Shackleton N J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies[A]. In: Knox R O,et al,eds. Correlations of the Early Paleogene in Northwest Europe[C]. Geological Society of London,Special Publication,1996. 101:401~411
    [83] Timothy J. Bralower,James C. Zachos,Ellen Thomas,Matthew Parrow,Charles K. Paull, D. Clay Kelly,Isabella Premoli Silva,William V. Sliter and Kyger C. Lohmann. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography,1995. 10(4):841~865
    [84] U. Rohl,T. J. Bralower,R. D. Norris,G. Wefer. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology,2000. 28(10):927~930
    [85] Walliser O H. events and events stratigraphy in the Phanerozoic. Berlin Heidelberg: Springer-verlag,1996. 242~252
    [86] William C. Clyde,Philip D. Gingerich. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology,1998. 26(11):1011~1014
    [87] X. Orue-Etxebarria,V. Pujalte,G. Bernaola,E. Apellaniz,J.I. Baceta,A.Payros,K. Nunez-Betelu,J. Serra-Kiel,J. Tosquella. Did the Late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain), Marine Micropaleontology,2001. 41:45~71
    [88] Xiaoqiao Wan. Eocene Larger Foraminifera from Southern Tibet. Revista Espanola De Micropaleontologia,1990. 22 (1):213~238
    [89] Zachos J C,Lohmann K C,Walker J C G,et al. Abrupt climate change and transient climates during the Paleogene: a marine perspective,1993. J Gerl. 101:191~213
    [90] Zachos J C,Pagani M,Sloan L,et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science,2001. 292:686~693

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700