四川龙门山地区泥盆纪腕足化石碳、氧同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海相碳酸盐岩中的碳、氧同位素组成及其演化特征分析是古气候、古海洋环境研究的一种常用手段。古代海相碳酸盐岩稳定同位素组成能近似地反映古海洋稳定同位素的组成。因此,研究海相碳酸盐岩稳定同位素组成对于了解古海洋平面变化、构造活动、全球气候冷暖变化、生物灭绝以及古海水温度、盐度等具有十分重要的意义。40多年碳酸盐岩碳、氧同位素研究历史表明:腕足化石分布广泛、壳体为低镁方解石成分,因而具有较强抵抗成岩后生作用改造能力,是重建地质历史时期原始海洋碳、氧同位素的理想分析对象。本论文对来自四川龙门山泥盆纪的腕足化石进行碳、氧同位素分析。通过对其碳、氧同位素不同影响因子的分析,结合四川龙门山泥盆纪时期的构造活动、地理位置以及其海平面变化的探讨,本论文得出如下初步认识:
     1:四川龙门山腕足化石微体结构识别、阴极发光实验、微量元素识别以及碳、氧同位素研究表明:绝大多数腕足化石保存着原始的海水碳、氧同位素特征。
     2:腕足化石的碳、氧同位素组成显示:其演化趋势同四川龙门山泥盆纪时期岩相古地理所反演的海平面变化有着良好的相关性。氧同位素呈负相关,碳同位素呈正相关。吉维特早、中期和弗拉斯早期的海侵、吉维特晚期和弗拉斯晚期的海退都在碳、氧同位素演化特征中有所反映。
     3:通过对腕足化石中的氧同位素组成演化原因探讨中,氧同位素对应于海平面变化,可能受控于引起海平面变化的冰川效应、大洋深层水的形成以及温度。初步估计冰川效应及大洋深层水可能影响氧同位素变化幅度为2.5‰,温度因蒸发作用所造成的氧同位素变化2‰,同时温度的变化加强冰川效应。三者共同作用造成四川龙门山泥盆纪腕足化石氧同位素变化达5‰。碳同位素变
The carbon and oxygen isotope composition and its evolution of Marine carbonate rock is commonly means to the study of the ancient climate and ancient marine environment. The stable isotope composition of Ancient marine carbonate rock approximate reflect the stable isotope composition. of the ancient oceans. Therefore, the study of marine carbonate rock stable isotope composition is of great significance to understanding the changes of paleocean level, tectonic activity, global climate changes, biological extinction, ancient seawater temperature and salinity. Last 40 years studies shows: brachiopods fossils is the ideal target to reconstruct the stable isotope composition of the ancient oceans for they are widely distributed, low magnesium calcite shell components, and thus have a stronger resistance to the transformation of the role of geneticive capacity geological history.
    This paper analysed the carbon and oxygen isotope composition of brachiopods fossils from the Devonian Period in Sichuan Province. Through analysis the influence factors that impact its carbon and oxygen isotope composition of brachiopods fossils, the Devonian Period tectonic activity, geographical location and its sea-level change, we reach the following preliminary understanding:
    1: Passes means of petrographic, trace element, cathodoluminescence, oxygen and carbon isotope analysis: the most of brachiopods from Devonian in Longmen mountain, Sichuan province presered the original oxygen and carbon isotope feature of seawater.
    2: the carbon, oxygen isotope composition of brachiopods fossils shows: the trends of its evolution have good relationship with the sea-level that reflected by lithofacies paleography. The Sichuan Longmen Mountain Devonian period. The heavy values of oxygen and the light values of carbon reflect the low sea-level. The variations in the oxygen and carbon isotopic signals reflect the transgression happened in the lower and middle Givetian stage and the lower Frasnian stage and the regression happened in the upper Givetian stage and the upper Frasnian stage.
    3: By discuss the carbon and oxygen isotope composition of brachiopods fossils and its evolution
引文
1. Allan,J.R. and Mattbews, R K Carbon and oxygen isotopes as diagenetic and stratigraphic tools: surface and subsurface data, Barbados, West Indies. Geology, 1977.5. 16~20
    2. Jean-Baptiste, P. Charlou, JL. Stievenard, M. Oxygen isotope study of mid-ocean ridge hydrothermal fluids: Implication for the oxygen-18 budget of the oceans. Geochimica et Cosmochimica Acta, 1997.61: p. 2669~2677.
    3. Bates, N.R. and Brand,U. Environmental and physiological influences on isotopic and elemental compositions of brachiopod shell calcite: implications for the isotopic evolution of Paleozoic oceans. Chem. Geol., 1991.94: p. 67~78.
    4. Bausch, W. and Hocfs, J. Die isotopenzusammensetzung yon Dolomiten und Kalken aus dem suddeutschen Maim. Contrib. Mineral. Petrol. 1975.37,121~130
    5. Becket, R.H. Oceanic growth models. Science, 1973. 182: p. 601~602.
    6. Berner, R. A. Biogeochemical cycles of carbon and sulfer and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr. Pa;aeoclimatol.,palaeoecol. (Global Planet. Change Sect.). 1989. 75, 97~122
    7. Bowers, T.S. and Taylor, H.P. An integrated chemical and stable isotope model of the origin of midocean ridge hot spring systems. J. Geophys. Res., 1985.90(B14): p. 12583~12606.
    8. Bradley, R.S. Quaternary palaeoclimatology. London: Allen and Unwin.
    9. Brand, U. Biogeochemistry of late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry., 1989.7, 159~193.
    10. Campbell, I.H. and Taylor, S.R. No water, no granites—no oceans, no continents. Geophys. Res. Lett. 1985.10, 1061-1064.
    11. Carothers, W. W. and Kharaka, Y. K. Stable carbon isotopes of H_2CO_3 in oilfield waters - implivations for the origin of CO_2 Geochimica et Cosmochimica Acta 1980. 44, 323-332
    
    12. Carpenter, S. J. and Lohmann, K. G. δ~(18)O and δ~(13)C values of modern brachiopod shells. Geochim. Cosmochim. Acta. 1995. 59, 3749-3764
    
    13. Chase, C.G. and Perry. E. C. The oceans: growth and oxygen isotope evolution. Science, 1973. 177: p. 992-994.
    
    14. Craig, H. and Gordon, L.I.. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgo, E. Ed., Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, CNR, Lab. of Nuclear Geology, Pisa, 1965. pp. 9-130.
    
    15. Donnadieu, Y. Godderls, Y. Ramstein, G. Nedelec, A. Meert, J. A 'snowball Earth' climate triggered by continental break-up through hanges in runoff, nature, 2004. 428: p. 303-306.
    
    16. Dorman, F. H. and Gill, E. D. Oxygen isotope palaeotemperature measurements on Australian fossils. Royal Soc.Victoria,1959,7l,73-98
    
    17. Emiliani, C. Isotopic paleotempeatures. Science, 1966. 154,851-857
    
    18. Epstein, S. Buchsbaum, R. Lowenstam, H. A. and Urey, H.C. Carbonate-Water isotopic temperature scale. Geol. Soc. Amer. Bull. 1953.64,1315-1325
    
    19. Epstein, S. Buchsbaum, R. Lowenstam, H. A. and Urey, H. C. Carbonate-Water isotopic temperature scale.Geol.Soc.Amer.Bull. 1951.62,417-426
    
    20. Epstein, S. and Mayeda, T. Varation of ~(18)O content of waters from natural sources. Geochim. Cosmochim. Acta 1953,4,213-224
    
    
    
    21. Fastoysky, D. E. Arthur, M. A. Strater, N. H. and Foss, A. Freshwater bivalves (Unionidae),disequilibrium isotopic fractionation and temperature, Palaios, 1993, 8, 602-608
    22. Frank, T. D. and Lohamnn, K. C. Diagensis of fibrous magnesian calcite marine cement implications for the interpretation of δ~(18)O and δ~(13)Cvalues of ancient equivalents Geochim. Cosmochim. Act,. 1996.60,2427-2434
    
    23. Gamzaev, G A. Dependence of the content of the trace elements in shells of santonian-paleogene rachiopods of the lesser Caucasus on their microstruetural features, Vopr. Paleobiogeokhimii. BAKU. 1983.55-58
    
    24. Gao, G The temperatures and oxygen-isotope composition of early Devonian oceans. Nature, 1993. 361: p. 712-714.
    
    25. Gao,G. and Land, S. L. Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklahoma: implications for diagenetic δ~(18)O alteration and secular δ~(13)C and ~(87)Sr/~(86)Sr variation. Geochim. Cosmochim.Acta, 1991. 55, 2911 -2920.
    
    26. Garrels, R. M. and Lerman, A. Phanerozoic cycles of sedimentary carbon and Sulfur. Proc. Nat. Acad. Sci. 1981.78,4652-4656
    
    27. Given, R. K. and Lohmann, K. C. Derivation of the original isotopic composition of Permian marine cements. J. Sediment. Petrol. 1985, 55,430-439
    
    28. Gregory, R.T. and Taylor, H. P. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: vidence for δ~(18)O buffering of the oceans by deep(>5 km)seawater hydrothermal circulation at mid-ocean ridges. J. Geo-phys. Res. 1981. 84 B4: p. 2737-2755.
    
    29. Gregory, R.T. Oxygen isotope history of seawater revisited: timescales for boundary event changes in the oxygen isotope composition of seawater. In: Taylor H.P, O'Neil J.R, Kaplan I.R. (Eds) , Stable Isotope Geochemistry:A Tribute to Samuel Epstein. Geochem. Soc. Spec. Publ, 1991. 3: p. 65-76.
    30. Grossman, E. L. Zhang, C. and Yancey, T. E. Stable isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. GSA Bull. 1991, 103, 953~965
    31. Holland, H.D. The Chemical Evolution of the Atmosphere and Oceans. Princeton Series in Geochemistry, Princeton University Press, Princeton. 1984.582
    32. Holmden,C. M. K. The origin of oxygen isotope variations in Paleozoic carbonates. Geol. Assoc. Can.Annu. Meet, Prog. Abstr. p, 1993: p. A~45.
    33. Hudson, J.D. Anderson, T. F. Ocean temperatures and isotopic compositions through time. Roy. Soc. Edinburgh Trans, 1989. 80: p. 183~192
    34. Karhu, J. Epstein, S. The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim Cosmochim Acta, 1986. 50: p. 1745~1756.
    35. Killingley, J.S. Effects of diagenetic recrystallization on ~(18)O/~(16)O values of deep-sea sediments. Nature, 1983.301: p. 594~597.
    36. Knauth, L.P. Epstein, S. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta, 1976. 40: p. 1095~1108.
    37. Knauth, L.P. Lowe, D.R. Oxygen isotope geochemistry of cherts from the Onverwacht Group 3.4 billion years, Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet. Sci.Lett, 1978.41: p. 209~222.
    38. Land, L. S. Phreatic versus vadose meteoric diagenesis of limestones:Evidence from a fossil water table: Sedimentology, 1970, 14, 175~185
    39. Land, L. S. Comment on "Oxygen and carbon isotopic composition of ordovician brachiopods: implications for coeval sea water" by H Qing & J Veizer. Geochim Cosmochim Acta, 1995.59: p. 2843~2844.
    40. Land, L.S. Diagenesis of skeletal carbonates. Jour, Sed. Petrology, 1967.37,912~913
    41. Lawrence, J.R. and Gieskes, J. M. Constraints on water transport and alteration in the oceanic crust from the isotopic composition of pore water. J. Geophys. Res, 1981.86(B9): p. 7924~7934.
    42. Lecuyer, C. F. S. Oxygen isotope evidence for multi-stage hydrothermal alteration at a fossil slow-spreading center: the Silurian Trinity ophioliteCalifornia, USA. Chem.Geol.Isot. Geosci. Sect, 1991.87: p. 231~246.
    43. Lecuyer, C. G. P, and Martineau, F. Seawater sediment basalt interactions: stable isotope H, O.and elemental fluxes within the Ordovician volcano-sedimentary sequence of ErquyBrittany, France. Contrib. Mineral. Petrol., 1995. 120: p. 3~4.
    44. Lohman, K. C. and Walker, J.C.G. The δ~(18)O record of Phanerozoic abiotic marine calcite cements. Geophy, Res.Lett. 1989, 16,319~322
    45. Lohmann K.C, W.J.C.G, The δ~(18)O record of Phanerozoic abiotic marine calcite cements. Geophys. Res. Lett, 1989. 16: p. 319~322.
    46. Lohmann, K. C. and Meyers, W. J. Microdolomite inclusions in cloudy prismatic calcites: A proposed criterion for former high magnesium calcites. J. Sediment. Petrol. 1977, 47. 1078~1088
    47. Lohmann, K. C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokrast. In Paleokarst(ed.N.P.James and P. W.Choquette). 1988. pp 58-80 Springer-Verlag.
    48. Longstaffe, J.Gower, C.F. Oxygen isotope geochemistry of Archean granitoid gneisses and related rocks in the English River Subprovince, northwestern Ontario. Precambrian Res. 1983. 22, 203~218.
    49. Lowenstam, K. C. and Walker, J. C. G. Mineralogy, ~(18)O/~(16)Oratios and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J. Geol. 1961. 69. 241~260
    50. Magaritz, M. and Schulze, k. H. Carbon isotope anomaly of the Permian period. in Fuchtbauer, H. andPeryt, T. M. eds., The Zechstein Basin of Europe. Contrib. Sedimentology, 1980. 9, 269~277
    51. Marshall, J. D. Climatic and oceanographic isotopic signals fi'om the carbonate rock record and their preservation. Geol. Mag. 1992. 129, 143-160.
    52. Mattewa, R. K. A process approach to diagensis of reefs and reef associated limestones. In Laporte L. E., ed., Reefs in Time and Space: Soc. Econ. Paleontologists Mineralogists. Spoc. Pub, 1974, 18, 234~256
    53. McConnaughey, T. ~(13)C and ~(18)O isotopic disequilibrium in biological carbonates:Ⅱ. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 1989a. 53, 163~171
    54. McConnaughey T. ~(13)C and ~(18)O isotopic disequilibrium in biological carbonates: Ⅰ. Patterns. Geochim. Cosmochim. Acta. 1989b. 53, 151~162
    55. McLaren, D J. Goodfellow, W. D. Geological and biogical consequences of giant impacts. Annu, Rev. Earth Planet Science, 1990. 18:123~171.
    56. Merlivat, L. A. C. Jean-Baptiste, P. Deuterium, oxygen-18, helium-3 and helium-4 content of hydrothermalvents on the East Pacific Rise, at 138Nin French. C. R. Acad. Sci. Paris Serie Ⅱ, 1984. 299(17): p. 1191~1196.
    57. Merlivat, L. Andrie, C. Jean-Baptiste, P. Deuterium, oxygen-18, helium-3 and helium-4 content of hydrothermal vents on the East Pacific Rise at 13°N in French.. C. R. Acad. Sci. Paris, SerieⅡ 1984. 299 17., 1191-1196.
    58. Mook, W. G. Marine Paleotemperatures and chiorinities from stable carbon and oxygen isotopes in shell carbonate. Paleogeogr. Palaeoclimat. Palaeoecol. 1971, 9, 245~263
    59. Morrison, J. O. Brand, U.,. Paleoscene #5. Geochemistry of recent marme invertebrates. Geosci. Can. 1986.13, 237-254.
    60. Muehlenbachs, K. Clayton, R. N. Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci, 1972. 9: p. 471~78.
    61. Muehlenbachs, K. Clayton, R. N. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res, 1976. 81 23: p. 4365~4369.
    62. Muehlenbachs, K. Byerly, G. 18 O-enrichment ofsilicic magmas caused by crystal fractionation at the Galapagos Spreading Center. Contrib. Mineral. Petrol. 1982. 79, 76-79.
    63. Muehlenbachs, K., Clayton, R. N., Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 1972. 9, 471-478
    64. Muehlenbachs, K., The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology 1998. 145. p. 263~273.
    65. Perry, E. C. The oxygen isotope chemistry of ancient cherts. Earth Planet. Sci. Lett, 1967. 3: p. 62~66.
    66. Pingitore, N. R., Jr Vadose and phreatic diagenesis: processes, products and their recognition in corals. Jour, Sed. Petrology, 1976, 46, 985~1006
    67. Popp, B. N., Anderson, T. F. and Sandberg, P. A. Textural, elemental and isotopic variations among constituents in Middle Devonian Limestones, North America. J. Sedim. Petrol. 1986 56, 715~727
    68. Railsback, L. B. Ackersly, S. C. Anderson, T. F. Paleotoiogical and isotope evidence for warm saline deep waters in Ordovician oceans. Nature 1990, 343, 156~159
    69. Railsbak, L. B., Anderson,. T. E, Ackerly, S. D. and Cisne, J. L. Paleoceanographic modeling od temperature-salinity profiles from stable isotopic date. Paleoceanography 1989. 4, 585~591
    70. Reymer, A. S. G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics, 1984. 3: p. 63~77.
    71. Richardon, J. R. Brachiopods. Scientific Arnerican. 1986. 255, No. 3, 96~102
    72. Savin, S. M. Oxygen and hydrogen isotope effects in lowtemperature mineral-water interactions. In Handbook of Environmental Isotope Geochemistry (ed. P. Fritz and J. Ch. Fontes). Elsevier, 1986. 283~327.
    73. Shackleton, N. J. Oxygen isotope, ice volume and sea level. Quaternary Science Reviews 6, 183~190
    74. Shackleton, N. J., Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews, 1987. 6: p. 183~190.
    75. Shackleton, N. J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial: Centre National de la Recherche Scientifique Colloque Intemationaux. 1974, 219, 203~209
    76. Shackleton, N. J. The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and the atmosphere. In: J. Brooks and A. J. Fleet (Editors), Marine Petroleum Source Rocks. Spec. Publ. Geol. Soc. London, 1987. 26, 423~434
    77. Shanks, W. C. I. Seyfreid, W. E. Stable isotope studies of vent fluids and chimney minerals, Southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. J. Geophys. Res, 1987. 92(B11): p. 11387~11399.
    78. Shanks, W. C. Seyfreid, W. E. Stable isotope studies of vent fluids and chimney minerals, Southern Juan de FucaRidge: sodium metasomatism and seawater sulfate reduction. J. Geophys. Res. 92B11. 1987. 11387-11399.
    79. Sharma, S. D. Patil, D. J. Srinivasan, R, Gopolan, K. Very high ~(18)O enrichment in Archean cherts from South India: implications for Archean ocean temperature. Terra Nostra, 1994. 6: p. 385~390.
    80. Siguang, L. Astronom, Geology and Paleontology (in Chinese) . [天文地质古生物].1972,Beijing:Science Press(M)北京:科学出版社.12115
    81. Silverman, S. R. The isotope geology of oxygen. Geochim. Cosmochim. Acta,, 1951. 2: p. 26~42.
    82. Suchanek, T. H. and Levinton, J. Articulate brachiopod Food, J. Paleonotology. 1974. 48. 1~5
    83. Tucker, M. E. Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 1982. 10: p. 7~12.
    84. Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947. 562~581
    85. Veizer, J. F. P. Jones B, Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochim. Cosmochim. Acta, 1986. 50: p. 1679~1696.
    86. Veizer J, H. J. The nature of ~(18)O/~(16)O and ~(13)C/~(12)C secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta, 1976. 40: p. 1387~1395.
    87. Veizer J, Reply to the comment by L. S. Land on 'Oxygen and carbon isotopic composition of Ordovician brachiopods:implications for coeval seawater. Geochim. Cosmochim. Acta 1995. 59((13)): p. 2845~2846.
    88. Veizer, J. Trace elements and isotopes in sedimentary carbonates. In: Reeder, R. J. (Ed. ), Carbonates: Mineralogy and Chemistry, Rev. Mineral., 1983. vol. 11, pp. 265-299.
    89. Vincent, E. A. B. W, H. Planktonic Foraminifera and their use in paleoceanography. In Emiliani, C. (ed. ),The Sea, 1981. 7(The oceanic lithosphere. (New York: Wiley)): p. 1025~1119.
    90. Von Huene R, S. D., A global estimate of fluid returned to the oceans from convergent margins. COSOD Ⅱ, Report on the 2nd Conference on Scientific Ocean Drilling. European Science Foundation, Strasbourg, 1987.
    91. Wadleigh M. A, V. J. ~(18)O/~(16)O and ~(13)C/~(12)C in lower Paleozoic articulate brachiopods: implication for the isotopic composition of seawater. Geochim. Cosmochim. Acta, 1992. 56: p. 431~443.
    92. Walker J. C. C, L. K. C., Why the oxygen isotopic composition of sea water changes with time. Geophys. Res. Lett, 1989. 16—4: p. 323~326.
    93. Walker, J. G. C. and Lohmann, K. C. Why the oxygen isotopic composition of seawater hanges throught time. Geoghys. Res. Lett. 1989. 16, 323~326
    94. Weber, J. N. Possible changes in the isotopic composition of the oceanic and atmospheric carbon reservoir over geologic time. Geochim. Cosmochim. Acta 1967, 31 2343~2352
    95. Weissert, H., C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surv. Geophys. 1989. 10, 1—61.
    96. Woodruff, F. and Savin, S. M. Micocenedeepwater oceanography. Pleoceanography, 1989, 4(1), 87~140
    97. Xinqing Lee et al., Ontogenetie trace element distribution in brachiopod shells: an indicator of original seawater chemistry. Chemical Geology 2004, 209 49-65
    98. Yapp, C. J. Paleoenvironment and oxygen isotope geochemistry of ironstone of the Upper Ordovician Neda Formation, Wisconsin, USA. Geochim. Cosmochim. Acta, 1993. 57: p. 2319~2327.
    99. Yapp, C. J. and Poths, H. Ancient atmosphere CO_2 pressures inferred from natural goethites. Nature. 1992, 355, 342~345
    100. Zaches. J. C. Cohmann, K. C. Walker. J. C. G. and Wise, S. W. Abrupt climate change and transient climates during the palcogene: A marine perspective. J Geol. 1993, 101. 191~213
    101. Zachos, J.C. Stoz, L.D. and Lohman, K.C. Evolution of early Cenozoic marine temperatures. Paleoceanography 1994. 9, 353~387
    102.白瑞梅,吴静淑,宋鹤彬,董燕玲.用磷酸法分析碳酸盐碳、氧稳定同位素组成的研究方法研究.地质矿产部地质研究所同位素地质研究室著,稳定同位素分析方法研究进展。北京科学技术出版社,26~28
    103.陈锦石,闻传芬,钟华.古生代海洋碳同位素演化[J].地质科学,1995,30(4):264~271.
    104.崔垂荃,卢武长,杨绍全.龙门山地区泥盆纪锶、碳同位素与海平面变化.[J].成都地质学院学报.1993.Vol.20.No.2,1~8
    105.黄思静.上扬子二叠/三叠系初海相碳酸盐岩的碳同位素组成与生物灭绝事件[J].地质科学,1984,23(1):60~67.
    106.黄思静.碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系[J].矿物岩石.1992.Vol 12.No.4.74~79
    107.黄思静.北川甘溪观雾山组碳酸盐岩的阴极发光特征和成岩作用.成都地质学院学报.1988,
    108.李心清,胡瑞忠,漆亮等,微量元素分布揭示腕足化石壳体原始信息保存现状.地球化学.2000.vol.29,No.6 584~562
    109.李心清,万国江,周会.腕足化石壳体氧、碳同位素生命效应问题研究.自然科学进展.2000 vol,10.No.5 435~443
    110.李忠雄,管士平.扬子地台西缘宁蒗泸沽湖地区志留系沉积旋回及锶、碳、氧同位素特征 [J].古地理学报,2001,3(4):269~276.
    111.刘岬峰主编,1991.沉积岩实验室研究方法,地质出版社
    112.卢武长,崔秉荃,杨绍全等,甘溪剖面泥盆纪海相碳酸盐岩的同位素地层曲线。沉积学报.1994,12(3),12~19
    113.彭苏萍,何宏,邵龙义,等.塔里木盆地∈—O碳酸盐岩碳同位素组成特征[J].中国矿业大学学报,2002,31(4):353~357.
    114.沈渭洲,方一亭,倪琦生,等.中国东部寒武系与奥陶系界线地层的碳氧同位素研究[J].沉积学报,1997,(4):38~42.
    115.谭光弼(主编)1983古生物学简明教程 地质出版社
    116.田景春,曾允孚.贵州二叠纪海相碳酸盐岩碳、氧同位素地球化学演化规律[J].成都理工学院学报,1995,(1):78~82.
    117.王国庆,夏文臣.贵州紫云剖面PIT界面附近碳氧同位素的变化及生物灭绝事件[J].地学前缘,2000,7(2):339~344.
    118.王鸿祯,史晓颖,王训练,等.中国地层研究IM].广州:广东科技出版社,2000.353~349.
    119.王钰,金玉矸,方大卫1966腕足动物化石.科学出版社
    120.王大锐.马学平.董爱正等,晚泥盆世弗拉斯期一法门期之交海水温度变化的同位素证据.2001.Vol 22.No.2.141~144
    121.郑淑惠,郑斯成,英志超1986稳定同位素地球化学分析北京大学出版社
    122.中国地质科学院成都地质矿产研究所、地质研究所.四川龙门山地区泥盆纪地层古生物及沉积相.1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700