印染碱减量废水二级出水生物活性炭法深度处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含有碱减量废水的印染废水,具有污染物浓度高、碱度大、难降解性强等特点,经常规的水解—酸化—好氧生物处理后难以达标排放。废水的难处理性以及日益严格的排放要求,使印染碱减量废水的深度处理势在必行。
     论文针对印染碱减量废水二级出水中有机物浓度低、难降解程度高、C/N比严重失调的特点,采用吸附性强、能够富集氧气及基质、表面利于微生物栖息的活性炭作为生物载体,选用上流式曝气生物滤池(UABAF)作为反应器类型,形成曝气生物活性炭滤池(BAC)处理印染碱减量废水二级出水;考虑到实践工程中,有机物浓度低、氨氮含量高的制丝废水的混入,会提高印染碱减量废水二级出水中氨氮浓度,本研究在废水中外加氮源,促进反应器内硝化菌大量生长,形成自养菌-异养菌混合生长体系。利用活性炭吸附、以自养菌代谢产物为二级基质的共代谢作用、自养菌氧化氨氮中产生的氨单加氧酶的催化作用促进废水中难降解有机物的去除与转化。研究结果证明该工艺经过长期运行,污染物去除率高、出水水质好,是深度处理印染碱减量废水二级出水的简单、高效、实用的生化处理工艺。
     论文详细分析了影响污染物处理效率的主要因素,包括:废水中有机物分子量分布特征、特征污染物的吸附降解性、反应器有机负荷、水力负荷、氨氮负荷、溶解氧、反冲洗特性、反应器高度等,为优化反应器运行提供了理论依据。
     研究了运行过程中,反应器沿程活性炭残余吸附能力变化、生物量及生物活性的分布、溶解氧以及pH值在反应器内的变化规律及其影响因素,分析了以上参数与污染物沿程去除率之间的关系。
     研究探讨了采用TTC-DHA法分析反应器内生物活性时,活性炭表面附着生物膜剥落步骤对活性检测结果的影响情况,提出了测试生物炭表面生物活性的有效方法。采用该方法分析了生物炭沿程截留/附着生物活性,讨论了生物活性分布与污染物去除效果、生物活性与活性炭吸附以及反冲洗之间的关系。
     在常规的曝气生物活性炭滤池的基础上,本文还研究了提高反应器溶解氧、强化生物活性的富氧生物炭技术。通过提高反应器内溶解氧来增加活性生物量,强化反应器对各类污染物的去除,取得较好的污染物去除效果。论文从基质去除效率、进出水pH值差异、生物活性、有机物去除的最佳分子量范围、活性炭残余吸附能力等方面与普通生物炭滤池进行对比,分析了富氧生物炭的优势所在,剖析了溶解氧提高对生物炭处理效果影响的原因。
     此外,本论文还研究了处理印染碱减量废水时活性炭的动、静态吸附容量,对比了活性炭单纯吸附与生物活性炭对废水处理能力的差别,总结了生物炭滤池长期运行中,为达到处理效果,防止活性炭吸附饱和所必须的关键控制条件。研究成果为曝气生物炭滤池处理印染碱减量废水二级出水处理时,反应器所能达到的处理效果、曝气生物炭滤池的处理能力、活性炭的残余吸附能力等方面,提供了可靠的运行数据。
With increasing application of polyester deweighting techniques in Chinese textile plants, a great deal of alkali-peeling waste streams containing high strength of recalcitrant organic matters and waste alkali are discharged. These alkali-peeling waste streams are normally treated with dying-printing wastewater by hydrolysis-acidification-aerobic bio-treatment processes. But effluents emitted by these conventional bioprocesses are always beyond discharging standards and need urgent further-treatment.
     Physicochemical advanced treatment methods are operational complicated and high cost, and biological processes are still simple and cost-saving ways. But existence of inhibitory compounds, inadequate biodegradable organic matters and inert active microbial population are all unfavorable factors for further bio-treatment of these notorious textile dying-printing & polyester deweighting secondary effluents (TSE). Granular activated carbon (GAC) has advantages over other bio-media in supplying microbe abundant inhabitation surface area and possessing strong adsorption capacity of micro-inhibitory matters. In this study, we employed up-flow-biofilter and used GAC as support media forming up-flow aerated bio-activated-carbon-filter (UABACF) to treat TSE. In view of the characteristics of TSE, such as low level of biodegradable organic matter, nitrogen nutrition and high content of refractory organics, we attempted to adjust the influent NH_4~+-N with NH_4HCO_3 to induce excess nitrifiers growth in the reactor. Therefore, the recalcitrant organics can be removed by activated carbon adsorption, co-metabolism with heterotrophs/nitrifiers, catalyzed oxidization with ammonia mono-oxygenase (AMO). The experimental results demonstrated that the pollutants in the studied streams were effectively removed by UABACF, and high quality effluents were produced during almost 1.5 years of its operation. Therefore, UABACF was the simple, sound and solid process in advanced treatment of TSE.
     The paper studied the main operational influence factors of the UABACF, such as molecular weight distribution and adsorption/biodegradation characteristics of TSE pollutants, applied organic, hydraulic and nitrogen load, dissolved oxygen(DO), back-wash styles. The reactor performance was optimized when the key controlling factors were understood.
     The paper also studied the distribution of residual adsorption capacities of activated carbons, the biomass and bioactivities in the reactor. The changing rules of DO and pH values along the height of the reactor, their influencing factors as well as the relationship of pollutants removal to the above-mentioned parameters.
     The study applied Triphenyl tetrazolium chloride - Dehydrogenase activity (TTC-DHA) assays to measure the activities of attached biofilm on bio-activated carbon (BAC) samples in the reactor. The influences of pre-separation of biofilm from the media surface to the magnitude of attached bioflm activities were discussed and the new TTC-DHA monitoring method of attached biofilm activities of BAC samples were provided. The new method was applied to detect the captured/attached biomass bioactivity distribution along the height of BAC reactor. The relations between bioactivities to pollutants removal, activated carbon adsorption and backwash flush were also analyzed.
     On the basis of UBACF, we configured pressurized Enriched Oxygen Biological Activated Carbon reactor (PRBAC) which simply increased reactor pressure to create an enriched dissolved oxygen (DO) environment to improve activated biomass within the reactor, leading to pollutant removal enhancement in the reactor. The study evaluated the function of enhanced oxygen level in BAC through comparisons of UABACF and PRBAC in the scope of substrate removal rate, differences of influent/effluent pH values, different molecular size organic matter removal rate, biomass activities and activated carbon residual adsorption capacities.
     In addition, the study also analyzed the activated carbon adsorption capacities of COD, color, UV_(254) surrogated pollutants in the wastewater with tumbling bottle adsorption and dynamic adsorption method. Differences between GAC sole adsorption and BAC treatment capacities were calculated. The essential operational controlling parameters in BAC to achieve high pollutant removal and prevent the GAC saturation during long-term performance were also concluded.
     Conclusions of the research provide reliable operational data on UABACF treatment capacities, activated carbon residual adsorption capacities in the reactor in advanced treatment of the TSE.
引文
[1]朱虹等.印染废水处理技术.2004,中国纺织工业出版社,16~24
    [2]戴日成等.印染废水水质特征及处理技术综述.给水排水.2000,26(10):33-37
    [3]王国庆,金月祥,沈寅松.仿真丝生产中碱减量及染整废水的治理.环境保护,1998,2, 21-25
    [4]郭茂新,周慧华.碱减量废水处理技术试验研究.工业用水与废水,2000,31(2):23-25
    [5]官宝红.碱减量印染废水的处理技术研究:[博士学位论文].杭州,浙江大学环境工程系,2002.
    [6]王菊思,许坤,徐良才.对苯二甲酸生产废水的治理研究.环境科学,1988,9(4):46-52
    [7]郑容泉.美国AMOCO公司对苯二甲酸废水处理技术浅析.化工环保,1991,11(3):152-156
    [8]刘晓林.碱减量-印染混合污水的处理.工业用水与废水,2000,31(2):19-22
    [9]马汉译,谢可蓉等.涤纶仿真丝印染废水治理技术的研究及其应用.环境工程,1999,17(2):22-24
    [10]戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述.给水排水,2000,26(10):33-37
    [11]陈杭飞,史惠祥,等.杭州拱宸桥纺织联片污水治理工程.环境工程,1997,17(2):13-15
    [12]Martin Alexander, B. K. Lustigman. Effect of chemical structure on microbial degradation of substituted benzenes. Agricultural and Food Chemistry, 1996,14(4): 1-6
    [13]Cheng Sheng-shung, Ho Chiou-yuan, Wu Jor-horng. Pilot study of UASB process treating PTA manufacturing wastewater. Water Science and Technology, 1997,36(6-7):75-82
    [14]包志成,王相明等.向阳污水厂COD超标问题研究.环境化学.1985(专辑):88-95
    [15]Macarie H, Noyola A, Guyot J P.Anaerobic treatment of a petrochemical wastewater from a terephalic acid plant. Water Science and Technology, 1992,25(7):223-235
    [16]Kleerebezem R, Ivalo M, Pol L W H, Lettinga G.High rate treatment of telephthalate in anaerobic hydrid reactors. Biotectnology Progress, 1999,15(3):347-357
    [17]Inbrahim M.B., Poonam Nigam., Datel Singh etc.al. Microbial decoloraiton of textile-dye-containing effluents: A review, Bioresource Technology, 1996,58:217-227
    [18]Pearce C. I., Lloyd J. R., Guthrie J. T. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and pigments, 2003,58(3): 179-186
    [19]沈东升,仁意芬,冯存善,印染碱减量废水处理.中国给水排水,1997,13(5):33-35
    [20]王淦,印染厂碱减量废水处理工艺探讨.中国给水排水,2000,16(8):21-22
    [21]李刚等,精对苯二甲酸生产废水处理技术.中国沼气,1995,13(4):1-6
    [22]张国威.“物化-生化”及“生化-物化”工艺在印染废水处理中的选择.中国环保产业,2005(8):19-22
    [23]石宝龙,李海英,PCM对涤纶碱减量废水预处理的研究.青岛大学学报,1997,10(3):10-13
    [24]肖锦,城市污水处理及回用技术.化学工业出版社,2002(第一版),234-238
    [25]雷乐成,杨岳平等,污水回用新技术及工程设计.化学工业出版社,2002(第一版),69
    [26]Metcalf & Eddy编,秦裕衍等译,废水工程处理与回用,化学工业出版社,2004,6(第一版),866-873
    [27]陈莉,范跃华.微污染原水的处理技术发展与讨论.重庆环境科学,2002,24(6):67-69
    [28]H.K.Oh,S.Takizawa, S.Ohgaki, Removal of organics and viruses using hybrid MF systems without draining out of PAC Proceeding of IWA Specialty Conference WRRS2005 wastewater reclamation & reuse for sustainability, 2005,11:195
    [29]K.H.Choo,S.J.Choi and E.D.Hwang Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultra filtration system. Proceeding of IWA Specialty Conference WRRS2005 wastewater reclamation & reuse for sustainability, 2005,11:98
    [30]Shu-Hai You, Dyi-Hwa Tseng Effect and mechanism of membrane fouling removed by ozonation. Proceeding of IWA Specialty Conference WRRS2005 wastewater reclamation & reuse for sustainability, 2005,11:66
    [31]Hyeok Choi, Elias Stathatos Photocatalytic TiO_2 films and membrane for the development of efficient wastewater treatment and reuse system. Proceeding of IWA Specialty Conference WRRS2005 wastewater reclamation & reuse for sustainability, 2005,11:463
    [32]Hyeok Choi, Elias Stathatos Photocatalytic TiO_2 films and membrane for the development of efficient wastewater treatment and reuse system. Proceeding of IWA Specialty Conference WRRS2005 wastewater reclamation & reuse for sustainability, 2005,11:405
    [33]M.Marcucci,G.Nosenzo,ect al. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination, 2001,138:75-82
    [34]A.Rozzi, M.Antonelli, Membrane treatment of secondary textile effluents for direct reuse, Wat.Sci.Tech. 1999, 40(4-5):409-416
    [35]Bes-Piá,J.A.Mendoza-Roca, ect. al. Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination, 2002,149:169-174
    [36]Chang I.S., Clech P.L., Jefferson B., Judd S., Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 2002,128(11)
    [37]Rozzi,A. Mappei,F.,Colli,S.ect.al. Distribution of absorbance in the visible spectrum related to molecular size fractions in secondary and tertiary municipal-textile effluent. Wat. Sci.& Tech. 1998, 38(4-5):473-480
    [38]杨宁翔,陈荣三.硅藻土脱色机理及其在印染废水中应用的研究.工业水处理,1999,19(1):15-17
    [39]Masi.F, Martinuzzi,N. Tertiary treatment pilot plant of PubliSer Spa(Florence,Tuscany): a multistage experience. Wat.Sci.Tech. 1999, 40(3):195-202
    [40]Gearheart.R.A. Use of free surface constructed wetland as an alternative process treatment train to meet unrestricted water reclamation standards. Wat.Sci.Tech. 1999, 40(4): 375-382
    [41]Green,M.B. Martin,J.R. Treatment of combined sewer overflows at small wastewater treatment works by constructed reed beds. Wat.Sci.Tech. 1999, 40(3): 357-364
    [42]Committee Report. An Assessment of Microbial Activity on GAC. Journal AWWA 1981,73:447-454.
    [43]Yin, W.C.and Weber E.J.Jr Bio-physicochemical Adsorption Model Systems for Wastewater Treatment. Journal WPCF, 1979, 51:2661-2677
    [44]Ferhan C. And ozgür Aktas. Powdered Activated carbon-assisted Biotreatment of a Chemical Synthesis Wastewater. Journal of Chem Technol and Biotechnol 2001,76:1249-1259
    [45]Sublertte KL., Snider EH, Sylvester ND. A review of the mechanism of powdered activated carbon enhancement of activated sludge treatment. Water Research. 1982,16:1075-1082
    [46]Walker,G.M, Weatherley, L.R. Biological activated carbon treatment of industrial wastewater in stirred tank reactors. Chemical Engineering Journal, 1999,75(3): 201-206
    [47]Snoeyink V.L,, Campos C., Marinas B.J. Design and performance of powdered activated carbon/ultrafiltration systems. Wat.Sci.Tech.2000, 42(12): 1-10
    [48]张忠祥,钱易.废水生物处理新技术.2004,清华大学出版社(第一版),348
    [49]Pujol, R.; Canler J.P.; Iwerma, A. Biological aerated filter: An attractive and alternative biological process. Wat, Sci. Tech., 1992, 26(3-4): 693-702
    [50]Hodkinson B, Williams J, Butler J E. The development of BAF reactors: a review. Water and Environmental Management, 1999,13(4): 250-255
    [51]Rittman B.E., Perry L.McCarty. Environmental biotechnology: Principles and applications. 2002,清华大学出版社(第一版),215-219
    [52]Waiter J.Weber, Jr, Massoud Pirbazari,Gaii L.Meison.Biological growth on activated carbon: An investigation by Scanning Electron Microscopy. Environmental Science and Technology. 1978,12(7), 817-819
    [53]立木英机,安部郁夫,高尚愚.活性炭的应用技术:其维持管理及存在问题.2002,东南大学出版社(第一版),174-182
    [54]马放,时双喜等.固定化生物活性炭的形成及功能研究.哈尔滨建筑大学学报,2000,33(1):46-50
    [55]Wataru Nishijima, Takao Akama, Eiji Shoto etc. al. Effects of adsorbed substrates on bioactivity of attached bacterial on granular activated carbon. War. Sci. Tech., 1997, 35(8): 203-208
    [56]马军,邱立平.曝气生物滤池及其研究进展.环境工程,2002,20(3):7-13
    [57]王占生,刘文军.微污染水源饮用水处理.1999,中国建筑工业出版社出版(第一版),北京:197-232
    [58]田文华,文湘华,杨爱华,钱易.沸石生物滤池处理低浓度生活污水性能及影响因素.环境科学.2003,24(5):97-100
    [59]Frida O., Nava N. Characteristics of organics removal by PACT simultaneous adsorption and biodegradation. Water Research. 1997, 31(3): 391-398
    [60]Voice T.C., Pirbazari M., etc. al. Biological activated carbon in fluidized bed reactors for the treatment of groundwater contaminated with volatile aromatic hydrocarbons. Water Research, 1992, 12(7): 817-819
    [61]Zhao X., Doh K., Criddle C.S., Voice T.C. Accumulation of metabolic intermediates during shock loads in biological fluidized bed reactors. Journal of Environmental Engineering. 1997, 123(12): 1185-1193
    [62]Creveiro F., Malina J.F. Anaerobic degradation phenol and bioregeneration of granular activated carbon. J. Hazard.Wat. 1991, 28:189-191
    [63]Zhang Xiao Jian, Wang Z., Gu X.SH. Simple combination of biodegradation and carbon adsorption-the mechanism of the biological activated carbon process. Water Research. 1991,25:165-172
    [64]Isao Somiya, Harumi Yamad, Eiji Nozawa etc. al. Biodegradation and GAC absorbability of micropollutants by preozonation. Ozone Science and engineering. 1986, 8(1): 11-26
    [65]David H.H., Campbell W.R. A microbial regeneration process modelling: Ⅱ.Regeneration studies. Water Research, 1990,24(10): 1217-1223
    [66]Glaze W.H. Adsorption and microbiological mechanisms for removal of natural organics in granular activated carbon column. Ozone Scinee and Engineering. 1986,8(4): 162-167
    [67]马放,时双喜,杨基先等.固定化生物活性炭的形成及功能的研究.哈尔滨建筑大学学报.2000,33(1):46-50
    [68]Seo G.T., Ohgaki S. Evaluation of refractory organic removal in combined biological powered activated carbon-microfiltration for advanced wastewater treatment. Wat. Sci. Tech. 2001, 43(11): 67-74
    [69]Duncan J.B., David C.S. A review of soluble microbial products(SMP) in wastewater treatment systems. Water Research 1999,33(14): 3063-3082
    [70]马家烨.化工、化纤废水处理与回用.工业废水与用水.2001,32(3):36-40
    [71]苏月来,张建中,谢雨生,徐向阳.有毒难降解废水处理的强化技术.环境污染与防治,1998,21(2):36-40
    [72]全向春,刘佐才,范广裕,韩厉平.生物强化技术及其在废水治理中的应用.环境科学研究,1999,12(3):22-28
    [73]Arp D.J,Yeager C.M.,Hyman M.R. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation.2001,12(2):81-103
    [74]文湘华等,环境生物技术:原理与应用,2004,化学工业出版社(第一版),556,47,408,558
    [75]任南琪,马放.环境污染控制工程微生物学原理与应用.2003.化学工业出版社(第一版),174-195.
    [76]Raina M.等编著,张甲耀等翻译,环境微生物学.2004,科学出版社出版(第一版),502-526
    [77]Metcalf & Eddy编,秦裕衍等译,废水工程处理与回用,2004,化学工业出版社(第四版),464
    [78]Bart De Heyder, Too V.E., Herman V.L. Enhancement of ethene removal from waste gas by simulation nitrification. Biodegradation, 1997,8(1): 21-30
    [79]Miserez, K.; Philips, S.; Verstraete, W. New biology for advanced wastewater treatment. Wat. Sci. Tech. 1999, 40(4-5): 137-144
    [80]Verstraete, W.; Phlips, S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998, 102, S1: 717-726
    [81]刘志培,刘双江.硝化作用微生物分子学进展.应用与环境生物学报,2004,10(4):521-525
    [82]Wood, P.M. Autotrophic and heterotrophic mechanisums for ammonia oxidation. Soil use and management, 1990, 6(2): 78-79
    [83]Chang S.W. Hyman M.R. Williamson K.J. Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea. Biodegradation, 2002, 13(6):373-381
    [84]马放,冯玉杰,任南琪.环境生物技术.2003,化学工业出版社(第一版),231-232
    [85]de Silva, D.G. Viraj; Rittmann, B. E. Nonsteady-State Modeling of Multispecies Activated-Sludge Processes. Water Environment Research, 2000, 72,(5): 554-565
    [86]Rittmann, B. E., Regan John M., Stahl David A. Nitrification as a source of soluble organic substrate in biological treatment, War. Sci. Tech., 1994,30(6): 1-8
    [87]Furumai, H.; Rittmann, B. E. Advanced modeling of mixed populations of heterophers and nitrifiers considering the formation and exchange of soluble microbial products. War. Sci. Tech., 1992,26(3-4): 493-502
    [88]McWhirter.等著,龙腾锐等译.高纯氧活性污泥法.1983,中国建筑工业出版社(第一版)北京:43-56
    [89]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制原理.2000,中国环境科学出版社.10-20
    [90]明欲晓,曹敬华.加压生物接触氧化法的初步研究.中国环境科学.1991,11(2):147-150
    [91]明欲晓,曹敬华.压力生物氧化法处理印染碱减量废水试验研究.1996,12(4):6-9
    [92]明朗.煤气加压气化废水加压曝气生物处理研究.城市环境与城市生态,1998,11(2):17-2
    [93]金人中,吴生,魏兴义.加压活性炭生物膜法处理DSD有机废水.上海环境科学,1993,4:9-12
    [1]刘晓林.碱减量-印染混合污水的处理.工业用水与废水,2000,31(2):19-22
    [2]王菊思,许坤,徐良才.对苯二甲酸生产废水的治理研究.环境科学,1988,9(4):46-52
    [3]孟祥周,夏冬升,吴雨川.无机紫外光降解活性艳蓝KN—R染料溶液的研究.武汉科技学院学报,2003,16(5):3-37
    [4]罗晓鸿,曹莉莉,王占生 绍兴市富营养化水源水中有机物特性的研究.环境科学,1997,18(5):13-16
    [5]王占生,刘文军 微污染水源饮用水处理.1999,中国建筑工业出版社出版(第一版),45-46,48
    [6]C. P. Leslie Grady, Jr., Edwin J. Kirsch, Margaret K. Koczwara, Molecular weight distribution in activated sludge effluents. Water research, 1984,18(2), 239-246
    [7]Raymond,M.H., Sudha Goel, Edward J.B. TOC removal in biofilters. Journal AWWA. 1995,12:40-63
    [8]Perry L.McCarty, E.Marco Aieta, Chemical Indicators and Surrogate Parameters in Water Treatment. Journal of AWWA, 1984,(10), 98-105
    [9]Pinheiro H. M., Touraud E., and Thomas O., Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and pigments, 2004,61(2), 121-139
    [10]余金中.印染废水生化处理与脱色.1978,纺织工业出版社(第一版),164
    [11]Rozzi,A. Mappei,F.,Colli,S.ect.al. Distribution of absorbance in the visible spectrum related to molecular size fractions in secondary and tertiary municipal-textile effluent Wat. Sci.& Tech. 1998, 38(4-5): 473-480
    [12]吕树光,安鼎年.臭氧处理天津纪庄子污水处理厂二级出水的深度处理实验.1996,9(2),22-25
    [13]Eckenfelder W.W. Molecular weight distribution of soluble microbial products in biological systems. Water Science and Technology, 1996, 34(5-6):241-248
    [14]马峥,张振良.活性炭对水中有机物去除的研究.环境保护,1999,(5)41-44
    [15]许保玖.给水处理理论.2000,中国建筑工业出版社(第二版):428,426,427
    [16]Metcalf& Eddy, Inc. Wastewater Engineering Treatment and Reuse, 2003. Fourth edition,清华大学出版社(第四版),北京:1147
    [17]Woo hang kim, Watam Nishijima Competitive Removal of Dissolved Organic Carbon by Adsorption and Biodegradation on BAC. Water Science and Technology, 1997,35(7): 147-153
    [18]芮晏,伍海辉、朱斌、徐斌、高乃云,饮用水深度处理中活性炭的筛选试验研究.给水排水,2005,31(1):27-32
    [19]立木英机,安部郁夫,高尚愚,活性炭的应用技术:其维持管理及存在问题.2002,东南大学出版社,南京,154,153-155,155
    [20]北川睦夫,活性炭处理水的技术和管理,1987,新时代出版社((第一版)):203,50,62-63,59
    [21]Giovanni Berga, Roberto Bianchi, Francesca Malpei. GAC adsorption of ozonated secondary textile effluent for industrial water reuse. Water Science and Technology, 1999, 40(4-5): 435-442
    [22]Perry L. Carty Mc. David Argo, Marin R. Operational experience with activated carbon adsorption at water factory 21. J. Of AWWA. 1979,11:683-689
    [1]国家环保总局,水与废水监测分析方法.2003,中国环境科学出版社(第四版)253-367
    [2]李强,硝化工艺中硝化菌体的微生物结构及其选择附着生长模式.辽宁城乡环境科技,2000,20(6):34-38
    [3]高廷耀,顾国维.水污染控制工程(下).高等教育出版社,1999.
    [4]潘宁,中小型制丝厂生产废水的治理.岱宗学报,1999,4:68-69
    [5]王占生,刘文军.微污染水源饮用水处理.1999,中国建筑工业出版社出版(第一版),132,145,27
    [6]任南琪,马放.污染控制工程微生物原理与应用.2003,化学工业出版社(第一版)
    [7]Miserez, K.; Philips, S.; Verstraete, W. New biology for advanced wastewater treatment. Wat. Sci. Tech., 1999, 40(4-5): 137-144
    [8]Verstraete,W.; Phlips, S. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 1998,102, S1:717-726
    [9]Bart De Heyder, Too V.E., Herman V.L. Enhancement of ethene removal from waste gas by simulation nitrification. Biodegradation, 1997,8(1): 21-30
    [10]立木英机,安部郁夫,高尚愚.活性炭的应用技术:其维持管理及存在问题,东南大学出版社,2002,南京,20
    [11]徐亚同编著.废水中氮磷的处理.1996,华东师范大学出版社
    [12]李伟光,马放,杨基先等.生物活性炭净化效能的研究.哈尔滨建筑大学学报,1999,32(6):6-10
    [13]刘广建,张晓健,王占生.生物活性炭处理高氨氮原水.中国给水排水,2003,19(12)61-454
    [14]宋志文,陈冠雄,杨基先.固定化生物炭处理低浓度甲醇废水.城市环境与城市生态,2001.14(5):51-55
    [15]Ma Fang, Yang Haiyan, Yang Ji-xian etc. al. Phenolic compound removal in coal-gas wastewater by O_3-IBAC.Journal of DongHua University. 2004,21(6):21-29
    [16]Regina Nogueira, Luis EMelo. Nitrifying and heterotrophic population dynamics in biofilm reactors:effects of hydrolic retention time an the presence of organic carbon. Wat. Res.2002, 36,469-481
    [17]H.Furumai, B.E.Rittmann, Evaluation of multiple-species biofilm and floe processes using a simplified aggregated model. War. Sci. Tech., 1994, 29(10-11): 439-446
    [18]李军,杨秀山,彭永臻.微生物与水处理工程.2002,北京:化工出版社(第一版),377
    [19]Elisabeth V.MüNCH; PAUL LANT; JüRG KELLER. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors, Wat. Res., 1996, 30(2):277-284
    [20]Britt-marie W., Peter B. The effect of dissolved oxygen concentration on the structure size and size distribution of activated sludge floes. Water Research 1999,33(2): 391-400
    [21]Barki N.A. A model for a nitrifying suspended-growth reactor incorporating intraparticle diffusional limitation. Wat. Res., 1992, 36(2): 1681-1690
    [22]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.2003,中国建筑工业出版社.
    [23]McWhirter.等著,龙腾锐等译.高纯氧活性污泥法.1983,中国建筑工业出版社,46
    [24]Rittmann, B. E., Regan John M., Stahl David A. Nitrification as a source of soluble organic substrate in biological treatment, 1994,30(6): 1-8
    [25]Furumai, H.; Rittmann, B. E. Advanced modeling of mixed populations of heterophers and nitrifiers considering the formation and exchange of soluble microbial products. Wat. Sci. Tech., 1992,26(3-4): 493-502
    [26]Tanju karanfil, Mark A. Schlautman, James S. Adsorption of organic macromolecules by granular activated carbon.2.Influence of dissolved oxygen. Environmental Science and Technology. 1996, 30(7): 2195-2197
    [27]M. Scholz and R. J. Martin, Ecological equilibrium on biological activated carbon. Wat. Res. 1997, 31:2959-2968
    [28]R.Pujol, J.P.Canler and A.Iwema, Biological aerated filters: An attractive and alternative biological process, War. Sci. Tech. 1992,26(3-4): 693-702
    [29]张杰,陈秀荣.曝气生物滤池的反冲洗特性.环境科学,2003,24(5):86-91
    [30]陈冬毅,施志强.气水反冲洗滤池的优化运行.中国给水排水,2001,17(4):55-58.
    [31]张智等.复合变速生物滤池深度处理城市污水研究.中国给水排水,2000,16(1):5-8.
    [32]张德跃等.气水反冲滤池的工艺设计与施工.中国给水排水,2000,16(6):39-41.
    [33]郭天鹏,汪成文,陈吕军等.升流式曝气生物滤池深度处理城市污水的工艺特性.环境科 学,2002,23(1):58-62
    [34]Yann Le Bihan,Lessard P. Influence of operational variables on enzymatic tests applied to monitor the microbial biomass activity of a biofilter, Water Science and Technology, 1998,37(4-5): 199-202
    [35]周春生,李永秋.陶粒反应器生物膜特性的研究.中国环境科学,1995,15(5):351-355
    [36]王国平.气相色谱基础.1986,科学出版社
    [37]Jeniny S.W.G,Rapp.A.气相色谱分析样品制备.199l,中国石化出版社,
    [38]北京大学有机所教研组编.有机化学实验.2001,北京大学出版社
    [39]丁世林编.波谱分析法.1991,重庆大学出版社
    [1]Zhao Xianda; Robert F. Hickey et al Long-term evaluation of adsorption capacity in a biological activated carbon fluidized bed reactor system. Wat. Res., 1999,33(13): 2893-2991
    [2]Nakhla G. F., Suidan M. T. Evaluation of competitive adsorption in anaerobic GAC reactors. Journal of Environmental Engineering, 1995,121(10): 712-719
    [3]Weber Jr and Ying, W.C. Integrated biological and physicochemical treatment of wastewater. Water Research, 1978, 25(2): 165-172
    [4]森长入丰等.Effect of bacterial adhesion on activated carbon on bacterial activity.水环境学 会志,2001,24(4):240-243
    [5]李军,杨秀山,彭永臻,微生物与水处理工程.2002,化学工业出版社(第一版),377
    [6]任南琪,马放,污染控制工程微生物原理与应用.2003,化学工业出版社(第一版),55
    [7]Regina Nogueira, Luis F.Melo. Nitrifying and heterotrophic population dynamics in biofilm reactors:effects of hydrolie retention time an the presence of organic carbon. War. Res.2002, 36,469-481
    [8]F.FDZ-POLANCO, E.MENDZE, etc. al. Spatial distribution of heterotrophs and nitrifiers in a submerged bio-filter for nitrification. Wat. Res. 2000,34(16): 4081-4089
    [9]Akiyoshi Ohashi, D.G. Viraj de Silva. Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs.Wat. Sci. Tech.1995 32(8): 75-84.
    [10]田文华,文湘华等.沸石生物滤池处理低浓度生活污水的工艺性能及影响因素.环境科学,2003,24(5):97-101.
    [11]孟雪征,曹相生,张杰.生物快速滤池深度处理城市污水的性能及pH值变化规律.城市环境与城市生态,2003,16(6),1-3
    [12]Gaffney Jr.A.E,Blachly T.Biochemical Oxidation ofthe Lower Fatty Acids..J.WPCF.,1996, 11:1169-1184
    [13]高景峰,彭永臻,王淑莹.SBR法去除有机物、硝化和反硝化过程中pH值变化规律.环境工程,2001,19(5):21-24
    [14]郑俊,吴浩汀.曝气生物滤池工艺的原理与工程应用.2005,化学工业出版社(第二版),13,46,51,98-99,101
    [15]Seo G.T., Ohgaki S. Evaluation of refractory organic removal in combined biological powered activated carbon-microfiltration for advanced wastewater treatment. Wat. Sci. Tech. 2001, 43(11): 67-74
    [16]Rittmann B.E., BaeW., Namkung E..A Critical Evaluation of Microbial Product Formation in Biological Process. Wat.Sci.Tech., 1987,37:223-229
    [17]Duncan J.B., David C.S. A review of soluble microbial products(SMP) in wastewater treatment systems. Water Research 1999,33(14): 3063-3082
    [18]Sontheimer.H., Heilker E.,Martin R. etc. al. The mülheim Process. Journal of AWWA, 1978,70(7): 393-396
    [19]胡静,张林生.生物活性炭技术在欧洲水处理中的应用研究与发展.环境技术,2002,2:33~37
    [20]马放,博士学位论文:固定化生物活性炭净化效能的研究,2000,哈尔滨建筑大学环境工程学院
    [21]李伟光,马放,杨基先等.生物活性炭净化效能的研究.哈尔滨建筑大学学报.1999,32(6):1~10
    [22]Horn H. Dynamics of a nitrifying bacterial population in a biofilm controlled by an oxygen microelectrode. Wat.Sci.Tech., 1994,29(10-11):69-76
    [1]Lazarova V. and Manem J. Biofilm characterization and activity analysis in water and wastewater treatment. Water Research, 1995,29(10): 2227-2245
    [2]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册.1990,中国环境出版社(第一版)
    [3]Committee Report. An Assessment of Microbial Activity on GAC. Journal of AWWA, 1981,73:447-454
    [4]Schoiz M., Martin. R.J. Ecological equilibrium on biological activated carbon. Water Science and Technology, 1997,31(12): 2959-2968
    [5]Nishijima W., Tojo M. 422-476 Biodegradation of organic substances by biological activated carbon-stimulation of bacterial activity on granular activated carbon. Water Science and Technology, 1992,26(9): 2031-2034
    [6]Yang Hongwei, Jiang Zhanpeng, Shi Sh, aoqi, W.Z.Tang INT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicology and Environmental Safety, 2002,53:416-421
    [7]Zinbei S., Henriette C.,E.Petitdemage and Joret J.C. Identification and characterization of bacterial activities involved in wastewater treatment by aerobic fixed-bed reactor. Water Research, 1994, 28(12):2575-2582
    [8]Blenkinsopp, S.A., Lock,M.A. The treatment of electron transport system activity in river biofilms. Water Research, 1990, 24:441-445
    [9]Raina M.等编,张甲耀等译.环境微生物学.科学出版社,北京,2004,第一版,353
    [10]周春生.TTC—脱氢酶活性检测方法的研究.环境科学学报,1996,16(4):400-405
    [11]洪梅.脱氢酶活性检测技术在污水处理厂的研究.石油化工环境保护,2001,4:30-33
    [12]周春生.低温下生物膜中微生物脱氢酶活性定性分析.中国给水排水,1995,11(2):46-47
    [13]尹军,韩相奎,周春生.流化式生物膜法处理含酚废水的效能.环境科学,1996,17(1):60-62
    [14]Bihan Yann Le,Lessard P. Influence of operational variables on enzymatic tests applied to monitor the microbial biomass activity of a biofilter. Water Science and Technology, 1998,37(4-5): 199-202
    [15]Bihan ann Y Le. Monitoring biofilter clogging: biochemical characteristics of the biomass. Water Research, 2000,34(17): 4284-4294
    [16]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用2005,化学工业出版社(第二版),51-62
    [17]Wang Jack Z; Summers Scott. R. Biofiltration performance: part1, relationship to biomass. Journal of AWWA. 1995, 87:55-62
    [18]周春生,李永秋.生陶粒反应器生物膜特性的研究.中国环境科学,1995,15(5):351-355
    [19]赵庆良,黄汝常.复合式反应膜反应器处中生物膜量、厚度及活性.哈尔滨建筑大学学报,1999,32(6):39-43
    [20]Valentina Lazarova, Daiele Bellahcen, Daniele Rybacki etc. al. Population dynamics and biofilm composition in a new three-phase circulating bed reactor. Water Science and Technology, 1998,37(4-5): 149-158
    [21]吴振斌,周巧红,贺峰等.构建湿地中试系统基质剖面微生物活性的研究.中国环境科 学,2003,23(4):422-426
    [22]朱南文,闵航,陈美赣,赵宇华.TTC-脱氢酶测定方法的探讨.中国沼气,1996,14(2):3-5
    [23]Taira Hidaka, Hiroshi Tsuno and Naoyuki Kishimoto, Advanced treatment of sewage by pre-coagulation and biological filtration process. Water Research, 2003,37(17): 4259-4269
    [24]Stewart M.H., Wolfe R.L., Means, E.G.. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water. Applied Environmental Microbiology, 1990.56:3822-3829
    [25]Yagi M., Nakashima S., Muramoto, S. Biological degradation of musty odor compounds,2-methylisoborneol and geosmin, in a pilot water treatment facility. Applied Environmental Microbiology. 1983, 46:406-416
    [26]Lamotta E.J. Kinetics of growth and substrate uptake in a biological film system. Applied environmental microbiology. 1976,31:286-293
    [1]明欲晓,曹敬华.加压生物接触氧化法的初步研究.中国环境科学.1991,11(2):147-150
    [2]明欲晓,曹敬华.压力生物氧化法处理印染碱减量废水试验研究.1996,12(4):6-9
    [3]明朗.煤气加压气化废水加压曝气生物处理研究.城市环境与城市生态.1998,11(2):17-2
    [4]金人中,吴生,魏兴义.加压活性炭生物膜法处理DSD有机废水.上海环境科学,1993,4:9-12
    [5]Metcalf & Eddy编,秦裕衍等译.废水工程处理与回用,2004,化学工业出版社(第四版),47,1253
    [6]顾夏声.废水生物处理数学模式.1993,清华大学出版社(第二版)
    [7]曹敬华,明欲晓.压力对加压生物反应器氧转移的影响.中国给水排水,2002,18(9):34-36
    [8]John J. pyeha, Williar E.K. Interaction of activated carbon with dissolved oxygen Richard prober, 21(6): 1200-1204
    [9]Miserez, K.; Philips, S.; Verstraete, W. New biology for advanced wastewater treatment. Wat. Sci. Tech. 1999, 40(4-5): 137-144
    [10]孟雪征,曹相生,张杰.生物快速滤池深度处理城市污水的性能及pH值变化规律.城市 环境与城市生态,2003,16(6):1-3
    [11]Sontheimer.H., Heilker E.,Martin R. etc. al.The mülheim Process. Journal of AWWA, 1978,70(7):393-396
    [12]Cokgor E.U.,Sozen S.,Henze M. Respirometric analysis of activated sludge behavior Ⅰ.assessment of the readily biodegradable substrate. Water Research. 1998, 32(2): 461-475
    [13]Surmacz-Gorska H. Gernaey Krist,Demuynck C. etc.al. Nitrification monitoring in activated sludge by oxygen uptake rate(OUR) measurements. Water Research 1996,30(3): 1228-1236
    [14]刘锐.一体式膜-生物反应器的微生物代谢特性及膜污染控制.清华大学博士学位论文.北京:2000
    [15]Giovanni Berga, Roberto Bianchi, Francesca Malpei. GAC adsorption of ozonated secondary textile effluent for industrial water reuse. Water Science and Technology, 1999, 40(4-5):435-442
    [1]Summers R. S., Cummings L., DeMarco J., Hartman D. J., Metz D. H., Howe E. W.,MacLeod B. and Simpson M. Standardized protocol for the evaluation of GAC.AWWA Research Foundation Report, American Water Works Association, Denver, CO. 1992
    [2]皮运正,吴天宝,陈维芳.可吸附有机卤化物的深度处理实验研究.环境污染与防治,2001,23(2):49-51
    [3]Rittman B.E.,Perry L.McCarty.Environmental biotechnology:Principles and applications.2002,清华大学出版社(第四版),1155-1161
    [4]Crittenden John, C., Parimi Sanjay Reddy, Harish Arora ect. al Predicting GAC performance with rapid small-scale column tests. JAWWA, 1991, 83(1): 77-87
    [5]Giovanni Berga, Roberto Bianchi, Francesca Malpei. GAC adsorption of ozonated secondary textile effluent for industrial water reuse. Water Science and Technology, 1999, 40(4-5): 435-442
    [6]马峥,张振良,于惠芳.活性炭对水中有机物去除的研究.环境保护,1999,5:41-44
    [7]许保玖.给水处理理论,2000,中国建筑工业出版社(第二版),426-430
    [8]王占生,刘文军.微污染水源饮用水处理.1999,中国建筑工业出版社出版(第一版),167-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700