KRAS信号通路蛋白相互作用的双分子荧光互补成像研究及其优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双分子荧光互补(Bimolecular Fluorescent Complimentary, BiFC)技术是指通过具有相互作用亲和力的两个蛋白质,将分别与其相连的荧光蛋白片段拉近,组装成完整的荧光蛋白,从而表征蛋白质相互作用的发生及其空间位置。由于BiFC技术检测灵敏度高、操作简便直观,已成为活细胞内研究蛋白质-蛋白质相互作用的有力工具。但该方法具有假阳性率高、结合反应不可逆等缺点,使其在蛋白质相互作用的动态与量化研究应用中受到限制。本文对不同理化特点的BiFC系统进行了比较与探讨,并通过选择合适的表达载体和荧光蛋白片段构建了一个能显著降低假阳性的BiFC体系,进而用不同的BiFC系统对K-Ras信号通路中的上下游蛋白质相互作用进行了研究,研究成果如下:
     对不同BiFC体系的效率与特点进行了比较;同时利用基于黄色荧光蛋白突变体Venus的N端1-172(Vn173)和C端155-238(Vc155)组成的BiFC体系对上皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)二聚化作用在多种细胞中进行了观察和分析。在此基础上,构建了基于Vn173/Vc155的真核双表达载体,把BiFC体系简化成每个载体中含有两个蛋白的基因序列;进而利用该体系,分别对KRAS (Kirsten大鼠肉瘤病毒原癌基因同源基因产物)/RAF1(RAF原癌基因丝氨酸/苏氨酸蛋白激酶)、KRAS/RASSF2(Ras-association domain family2)和KRAS/GRB2(生长因子受体结合蛋白2,Growth factor receptor-bound protein2)的相互作用及其细胞定位进行了研究。通过对上述蛋白在细胞内形成的荧光复合体的亚细胞定位进行分析发现:在没有EGF刺激的条件下,RAF1与KRAS间存在微弱的结合作用;在RAF1定位于细胞膜上的过程中,KRAS与RAF1间形成的复合体而不是KRAS起着更为重要的作用;KRAS与GRB2能形成复合体,在这个过程中GRB2的两个SH3结构域与KRAS的结合能力较SH2结构域强,在活细胞中证实了已有的理论,即GRB2同SOS1形成复合体后与KRAS结合并被募集到细胞膜上;RASSF2与KRAS能在细胞膜上结合,但RASSF2进入细胞核的过程中KRAS没有与之形成复合体;EGF的刺激或KRAS的活化明显增强了以上三个蛋白与KRAS的相互作用中。在这些体系中,由于Vn173与Vc155随机碰撞导致的本底结合作用,即使不存在相互作用的一对蛋白也可能产生BiFC荧光,所以仅仅根据BiFC的结果无法确定两个蛋白间是否存在相互作用。这限制了BiFC在蛋白相互作用检测中的应用。
     为了克服BiFC的上述缺点,本论文通过使用一对新的BiFC荧光片段mLumin1-151(Ln)和mLumin152-231(Lc),在双表达载体中构建了新的BiFC体系,通过一对已知相互作用的蛋白对bFOS/bJUN及其失去相互作用的突变体(bΔFOS)/bJUN的BiFC效率的比较,证明该体系明显降低了BiFC体系中因非特异性结合而导致的假阳性。利用这个体系,对KRAS/GRB2的相互作用进行了量化分析。结果显示KRAS在活化前后与GRB2间形成的BiFC荧光变化比基于Venus的BiFC体系中更大,而KRAS的CAAX突变体与GRB2在这个体系中无法观测到可见的荧光;这进一步验证了这个体系降低假阳性的能力。通过对BiFC体系的比较,为我们提供了在不同目的的蛋白相互作用研究中对这些体系选择的原则:以弱相互作用复合体的亚细胞定位观察为目的的研究中,更适于选择具有更高灵敏度的Venus为基础的BiFC体系;在最佳生长温度低于30oC的生物体进行BiFC观察时,基于GFP的BiFC体系将是更好的选择;而对于需要量化分析蛋白质的相互作用,尤其是判定未知蛋白质之间是否发现相互作用时,基于mLumin的双表达载体具有更大的优势。
     总之,本论文建立了一个基于mLumin的双表达载体的BiFC体系,该体系很大程度上降低了BiFC的假阳性率;利用不同的BiFC体系,对KRAS信号通路中的几个蛋白间的相互作用进行了BiFC观察。比较结果表明,我们的BiFC体系适于蛋白相互作用的量化分析以及对假阳性率有较高要求的检测,如文库筛选的BiFC分析中。
Bimolecular fluorescence complementation (BiFC) assay is a powerful tool forresearches of protein-protein interactions in vivo. With high sensitivity, BiFC is a simplemeaning to directly observe protein-protein interactions in living cells. It is based on theassociation of fluorescent protein fragments that are attached to components of the samemacromolecular complex. Proteins that are postulated to interact are fused to unfoldedcomplementary fragments of a fluorescent reporter protein and expressed in live cells.Interaction of these proteins will bring the fluorescent fragments within proximity,allowing the reporter protein to reform in its native three-dimensional structure and emitits fluorescent signal. In this paper, the efficiency of BiFC systems with differentcharacteristics was compared; while dimerization of EGFR was observed and analyzedused the Vn173/Vc155BiFC system based on yellow fluorescent protein variant, Venus ina variety of cells.
     On this basis, a BiFC system in a dual-expression eukaryotic vector based onVn173/Vc155was built, which simplified the two-vector system into single-vector; theninteractions between KRAS (Kirsten rat sarcoma viral oncogene homolog) and RAF1(RAF proto-oncogene serine/threonine-protein kinase), KRAS and RASSF2(Ras-association domain family2), KRAS and GRB2(Growth factor receptor-boundprotein2) were observed respectively with this system. Through observation ofsubcellular localization of fluorescent complex formed in the assay, the interactionsbetween these proteins as well as the activation of cellular signal transduction mechanismsare discussed. However, BiFC fluorescent intensity and protein interaction strength does not have obvious proportional relationship in these systems, because of spontaneouscombination between Vn173and Vc155, which limits its use in quantitative analysis ofprotein interactions. To this end, we use a new pair of BiFC fluorescent fragments,mLumin1-151(Ln) and mLumin152-231(Lc), to construct BiFC system in a dualexpression vector, which significantly reduced false positive produced by spontaneouscombination of fluorescent protein fragments. With this system, interaction betweenKRAS and GRB2was quantified. Comparison between these BiFC systems provides usprinciples for the choice in the studies of protein-protein interaction with differentpurposes: Venus-based BiFC system with higher sensitivity is more suitable forsubcellular localization studies of proteins with weak interaction; whereas the GFP-basedBiFC system will be the better choice in studies on cells or organisms which grow incondition below30oC, such as plants, nematodes; and for quantitative analysis ofinteractions as well as studies requires a lower false-positive, mLumin-based BiFC systemin dual expression vector has greater advantage.
     In short, this paper establishes a mLumin-based BiFC system in dual expressionvector that largely reduces the BiFC false-positive rate; use of different BiFC systems,several protein-protein interactions in the KRAS signaling pathway were observed.Results show that our BiFC system is suitable for quantitative analysis of proteininteraction and lower false-positive-required researches, such as library screening of BiFCanalysis.
引文
[1] Alberts, B. and Miake-Lye, R. Unscrambling the puzzle of biological machines: theimportance of the details. Cell,1992,68(3):415-20.
    [2] Prelich, G., Tan, C.K., Kostura, M., et al. Functional identity of proliferating cellnuclear antigen and a DNA polymerase-delta auxiliary protein. Nature,1987,326(6112):517-20.
    [3] Porpaczy, Z., Sumegi, B., and Alkonyi, I. Association between thealpha-ketoglutarate dehydrogenase complex and succinate thiokinase. BiochimBiophys Acta,1983,749(2):172-9.
    [4] Srere, P.A. Complexes of sequential metabolic enzymes. Annu Rev Biochem,1987,56:89-124.
    [5] Weber, J., Lee, R.S., Wilke-Mounts, S., et al. Combined application of site-directedmutagenesis,2-azido-ATP labeling, and lin-benzo-ATP binding to study thenoncatalytic sites of Escherichia coli F1-ATPase. J Biol Chem,1993,268(9):6241-7.
    [6] Evans, P.R., Farrants, G.W., and Hudson, P.J. Phosphofructokinase: structure andcontrol. Philos Trans R Soc Lond B Biol Sci,1981,293(1063):53-62.
    [7] Susskind, M.M. and Youderian, P. Transcription in vitro of the bacteriophage P22antirepressor gene. J Mol Biol,1982,154(3):427-47.
    [8] Nakai, H. and Richardson, C.C. The gene1.2protein of bacteriophage T7interactswith the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein.J Biol Chem,1990,265(8):4411-9.
    [9] Cohen, B.D., Lowy, D.R., and Schiller, J.T. The conserved C-terminal domain ofthe bovine papillomavirus E5oncoprotein can associate with an alpha-adaptin-likemolecule: a possible link between growth factor receptors and viral transformation.Mol Cell Biol,1993,13(10):6462-8.
    [10] Truant, R., Xiao, H., Ingles, C.J., et al. Direct interaction between thetranscriptional activation domain of human p53and the TATA box-binding protein.J Biol Chem,1993,268(4):2284-7.
    [11] Smith, G.P. Filamentous fusion phage: novel expression vectors that display clonedantigens on the virion surface. Science,1985,228(4705):1315-7.
    [12] Chien, C.T., Bartel, P.L., Sternglanz, R., et al. The two-hybrid system: a method toidentify and clone genes for proteins that interact with a protein of interest. ProcNatl Acad Sci U S A,1991,88(21):9578-82.
    [13] Fields, S. and Song, O. A novel genetic system to detect protein-protein interactions.Nature,1989,340(6230):245-6.
    [14] Fields, S. and Sternglanz, R. The two-hybrid system: an assay for protein-proteininteractions. Trends Genet,1994,10(8):286-92.
    [15] Formosa, T., Barry, J., Alberts, B.M., et al. Using protein affinity chromatography toprobe structure of protein machines. Methods Enzymol,1991,208:24-45.
    [16] Miller, J. and Stagljar, I. Using the yeast two-hybrid system to identify interactingproteins. Methods Mol Biol,2004,261:247-62.
    [17] Selbach, M. and Mann, M. Protein interaction screening by quantitativeimmunoprecipitation combined with knockdown (QUICK). Nat Methods,2006,3(12):981-3.
    [18] Nguyen, T.N. and Goodrich, J.A. Protein-protein interaction assays: eliminatingfalse positive interactions. Nat Methods,2006,3(2):135-9.
    [19] Wu, P. and Brand, L. N-terminal modification of proteins for fluorescencemeasurements. Methods Enzymol,1997,278:321-30.
    [20] Becker, C.F., Seidel, R., Jahnz, M., et al. C-terminal fluorescence labeling ofproteins for interaction studies on the single-molecule level. Chembiochem,2006,7(6):891-5.
    [21] Cardullo, R.A. Theoretical principles and practical considerations for fluorescenceresonance energy transfer microscopy. Methods Cell Biol,2007,81:479-94.
    [22] Remy, I. and Michnick, S.W. Clonal selection and in vivo quantitation of proteininteractions with protein-fragment complementation assays. Proceedings of theNational Academy of Sciences,1999,96(10):5394.
    [23] Johnsson, N. and Varshavsky, A. Split ubiquitin as a sensor of protein interactions invivo. Proceedings of the National Academy of Sciences,1994,91(22):10340.
    [24] Kerppola, T.K. Design and implementation of bimolecular fluorescencecomplementation (BiFC) assays for the visualization of protein interactions inliving cells. Nature protocols,2006,1(3):1278-1286.
    [25] Ghosh, I., Hamilton, A.D., and Regan, L. Antiparallel leucine zipper-directedprotein reassembly: application to the green fluorescent protein. AmericanChemical Society,2000,122(23):5658-5659.
    [26] Hu, C.D., Chinenov, Y., and Kerppola, T.K. Visualization of interactions amongbZIP and Rel family proteins in living cells using bimolecular fluorescencecomplementation. Molecular cell,2002,9(4):789-798.
    [27] Kerppola, T.K. Complementary methods for studies of protein interactions in livingcells. Nat Methods,2006,3(12):969-71.
    [28] Michnick, S.W., Ear, P.H., Manderson, E.N., et al. Universal strategies in researchand drug discovery based on protein-fragment complementation assays. Nat RevDrug Discov,2007,6(7):569-82.
    [29] Kerppola, T.K. Visualization of molecular interactions by fluorescencecomplementation. Nat Rev Mol Cell Biol,2006,7(6):449-56.
    [30] Kerppola, T.K. Design and implementation of bimolecular fluorescencecomplementation (BiFC) assays for the visualization of protein interactions inliving cells. Nat Protoc,2006,1(3):1278-86.
    [31] Shyu, Y.J., Hiatt, S.M., Duren, H.M., et al. Visualization of protein interactions inliving Caenorhabditis elegans using bimolecular fluorescence complementationanalysis. Nat Protoc,2008,3(4):588-96.
    [32] Hu, C.D. and Kerppola, T.K. Simultaneous visualization of multiple proteininteractions in living cells using multicolor fluorescence complementation analysis.Nat Biotechnol,2003,21(5):539-45.
    [33] Zhang, S., Ma, C., and Chalfie, M. Combinatorial marking of cells and organelleswith reconstituted fluorescent proteins. Cell,2004,119(1):137-44.
    [34] Bhat, R.A., Lahaye, T., and Panstruga, R. The visible touch: in planta visualizationof protein-protein interactions by fluorophore-based methods. Plant Methods,2006,2:12.
    [35] Shyu, Y.J., Suarez, C.D., and Hu, C.D. Visualization of AP-1NF-kappaB ternarycomplexes in living cells by using a BiFC-based FRET. Proc Natl Acad Sci U S A,2008,105(1):151-6.
    [36] Cabantous, S., Terwilliger, T.C., and Waldo, G.S. Protein tagging and detection withengineered self-assembling fragments of green fluorescent protein. Nat Biotechnol,2005,23(1):102-7.
    [37] Shyu, Y.J., Liu, H., Deng, X., et al. Identification of new fluorescent proteinfragments for bimolecular fluorescence complementation analysis underphysiological conditions. Biotechniques,2006,40(1):61-6.
    [38] Remy, I. and Michnick, S.W. A cDNA library functional screening strategy based onfluorescent protein complementation assays to identify novel components ofsignaling pathways. Methods,2004,32(4):381-388.
    [39] Valencia-Burton, M., McCullough, R.M., Cantor, C.R., et al. RNA visualization inlive bacterial cells using fluorescent protein complementation. Nature methods,2007,4(5):421-427.
    [40] Kilpatrick, L.E., Briddon, S.J., and Holliday, N.D. Fluorescence correlationspectroscopy, combined with bimolecular fluorescence complementation, revealsthe effects of β-arrestin complexes and endocytic targeting on the membranemobility of neuropeptide Y receptors. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research,2012:1068-1081.
    [41] Sarkar, M. and Magliery, T.J. Re-engineering a split-GFP reassembly screen toexamine RING-domain interactions between BARD1and BRCA1mutantsobserved in cancer patients. Mol. BioSyst.,2008,4(6):599-605.
    [42] Zhang, S., Ma, C., and Chalfie, M. Combinatorial marking of cells and organelleswith reconstituted fluorescent proteins. Cell,2004,119(1):137-144.
    [43] Waadt, R. and Kudla, J. In planta visualization of protein interactions usingbimolecular fluorescence complementation (BiFC). Cold Spring Harbor Protocols,2008,2008(4):pdb. prot4995.
    [44] Jach, G., Pesch, M., Richter, K., et al. An improved mRFP1adds red to bimolecularfluorescence complementation. Nat Methods,2006,3(8):597-600.
    [45] Fan, J.Y., Cui, Z.Q., Wei, H.P., et al. Split mCherry as a new red bimolecularfluorescence complementation system for visualizing protein-protein interactions inliving cells. Biochem Biophys Res Commun,2008,367(1):47-53.
    [46] Hudry, B., Viala, S., Graba, Y., et al. Visualization of protein interactions in livingDrosophila embryos by the bimolecular fluorescence complementation assay. BMCBiol,2011,9:5-22.
    [47] Li, M., Doll, J., Weckermann, K., et al. Detection of in vivo interactions betweenArabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novelclass B-HSF interacting proteins. Eur J Cell Biol,2009,89(2-3):126-32.
    [48] Kodama, Y. and Wada, M. Simultaneous visualization of two protein complexes in asingle plant cell using multicolor fluorescence complementation analysis. Plant MolBiol,2009,70(1-2):211-7.
    [49] Barnard, E. and Timson, D.J. Split-GFP screens for the detection and localization ofprotein-protein interactions in living yeast cells. Methods Mol Biol,2010,638:303-317.
    [50] Kodama, Y. and Hu, C.D. An improved bimolecular fluorescence complementationassay with a high signal-to-noise ratio. Biotechniques,2010,49(5):793-805.
    [51] Chu, J., Zhang, Z., Zheng, Y., et al. A novel far-red bimolecular fluorescencecomplementation system that allows for efficient visualization of proteininteractions under physiological conditions. Biosens Bioelectron,2009,25(1):234-9.
    [52] Lin, J., Wang, N., Li, Y., et al. LEC-BiFC: a new method for rapid assay of proteininteraction. Biotech Histochem,2010,86(4):272-9.
    [53] Lee, Y.R., Park, J.H., Hahm, S.H., et al. Development of Bimolecular FluorescenceComplementation Using Dronpa for Visualization of Protein-protein Interactions inCells. Molecular Imaging and Biology,2010,12(5):468-478.
    [54] Shyu, Y.J. and Hu, C.D. Fluorescence complementation: an emerging tool forbiological research. Trends Biotechnol,2008,26(11):622-30.
    [55] Barnard, E., Mcferran, N.V., Trudgett, A., et al. Development and implementationof split-GFP-based bimolecular fluorescence complementation (BiFC) assays inyeast. Biochemical Society Transactions,2008,36(Pt3):479.
    [56] Liu, Y., Jia, D., Chen, H., et al. The P7-1protein of southern rice black-streakeddwarf virus, a fijivirus, induces the formation of tubular structures in insect cells.Archives of virology,2011,156(11):1-8.
    [57] Zheng, H., Yan, F., Lu, Y., et al. Mapping the self-interacting domains of TuMVHC-Pro and the subcellular localization of the protein. Virus genes,2011,42(1):110-116.
    [58] Hiatt, S.M., Shyu, Y.J., Duren, H.M., et al. Bimolecular fluorescencecomplementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.Methods,2008,45(3):185-191.
    [59] Harvey, S.A. and Smith, J.C. Visualisation and quantification of morphogengradient formation in the zebrafish. PLoS Biol,2009,7(5):0001-0009.
    [60] Saka, Y., Hagemann, A.I., and Smith, J.C. Visualizing protein interactions bybimolecular fluorescence complementation in Xenopus. Methods,2008,45(3):192-195.
    [61] Walter, M., Chaban, C., Schutze, K., et al. Visualization of protein interactions inliving plant cells using bimolecular fluorescence complementation. Plant J,2004,40(3):428-38.
    [62] Hu, C.D., Chinenov, Y., and Kerppola, T.K. Visualization of interactions amongbZIP and Rel family proteins in living cells using bimolecular fluorescencecomplementation. Mol Cell,2002,9(4):789-98.
    [63] Deppmann, C.D., Thornton, T.M., Utama, F.E., et al. Phosphorylation of BATFregulates DNA binding: a novel mechanism for AP-1(activator protein-1)regulation. Biochem J,2003,374(Pt2):423-31.
    [64] Grinberg, A.V., Hu, C.D., and Kerppola, T.K. Visualization of Myc/Max/Madfamily dimers and the competition for dimerization in living cells. Mol Cell Biol,2004,24(10):4294-308.
    [65] Rajaram, N. and Kerppola, T.K. Synergistic transcription activation by Maf and Soxand their subnuclear localization are disrupted by a mutation in Maf that causescataract. Mol Cell Biol,2004,24(13):5694-709.
    [66] Zhu, L., Tran, T., Rukstalis, J.M., et al. Inhibition of Mist1homodimer formationinduces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol,2004,24(7):2673-81.
    [67] Kanno, T., Kanno, Y., Siegel, R.M., et al. Selective recognition of acetylatedhistones by bromodomain proteins visualized in living cells. Mol Cell,2004,13(1):33-43.
    [68] Farina, A., Hattori, M., Qin, J., et al. Bromodomain protein Brd4binds toGTPase-activating SPA-1, modulating its activity and subcellular localization. MolCell Biol,2004,24(20):9059-69.
    [69] Diaz, I., Martinez, M., Isabel-LaMoneda, I., et al. The DOF protein, SAD, interactswith GAMYB in plant nuclei and activates transcription of endosperm-specificgenes during barley seed development. Plant J,2005,42(5):652-62.
    [70] Jang, M.K., Mochizuki, K., Zhou, M., et al. The bromodomain protein Brd4is apositive regulatory component of P-TEFb and stimulates RNA polymeraseII-dependent transcription. Mol Cell,2005,19(4):523-34.
    [71] Laricchia-Robbio, L., Tamura, T., Karpova, T., et al. Partner-regulated interaction ofIFN regulatory factor8with chromatin visualized in live macrophages. Proc NatlAcad Sci U S A,2005,102(40):14368-73.
    [72] Von der Lehr, N., Johansson, S., Wu, S., et al. The F-box protein Skp2participatesin c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulatedtranscription. Mol Cell,2003,11(5):1189-200.
    [73] De Virgilio, M., Kiosses, W.B., and Shattil, S.J. Proximal, selective, and dynamicinteractions between integrin alphaIIbbeta3and protein tyrosine kinases in livingcells. J Cell Biol,2004,165(3):305-11.
    [74] Blondel, M., Bach, S., Bamps, S., et al. Degradation of Hof1by SCF(Grr1) isimportant for actomyosin contraction during cytokinesis in yeast. EMBO J,2005,24(7):1440-52.
    [75] Niu, T.K., Pfeifer, A.C., Lippincott-Schwartz, J., et al. Dynamics of GBF1, aBrefeldin A-sensitive Arf1exchange factor at the Golgi. Mol Biol Cell,2005,16(3):1213-22.
    [76] Remy, I., Montmarquette, A., and Michnick, S.W. PKB/Akt modulates TGF-betasignalling through a direct interaction with Smad3. Nat Cell Biol,2004,6(4):358-65.
    [77] Stolpe, T., Susslin, C., Marrocco, K., et al. In planta analysis of protein-proteininteractions related to light signaling by bimolecular fluorescence complementation.Protoplasma,2005,226(3-4):137-46.
    [78] Hynes, T.R., Mervine, S.M., Yost, E.A., et al. Live cell imaging of Gs and thebeta2-adrenergic receptor demonstrates that both alphas and beta1gamma7internalize upon stimulation and exhibit similar trafficking patterns that differ fromthat of the beta2-adrenergic receptor. J Biol Chem,2004,279(42):44101-12.
    [79] Guo, Y., Rebecchi, M., and Scarlata, S. Phospholipase Cbeta2binds to and inhibitsphospholipase Cdelta1. J Biol Chem,2005,280(2):1438-47.
    [80] Ozalp, C., Szczesna-Skorupa, E., and Kemper, B. Bimolecular fluorescencecomplementation analysis of cytochrome p4502c2,2e1, and NADPH-cytochromep450reductase molecular interactions in living cells. Drug Metab Dispos,2005,33(9):1382-90.
    [81] Giese, B., Roderburg, C., Sommerauer, M., et al. Dimerization of the cytokinereceptors gp130and LIFR analysed in single cells. J Cell Sci,2005,118(Pt21):5129-40.
    [82] Hynes, T.R., Tang, L., Mervine, S.M., et al. Visualization of G protein betagammadimers using bimolecular fluorescence complementation demonstrates roles forboth beta and gamma in subcellular targeting. J Biol Chem,2004,279(29):30279-86.
    [83] Nyfeler, B., Michnick, S.W., and Hauri, H.P. Capturing protein interactions in thesecretory pathway of living cells. Proc Natl Acad Sci U S A,2005,102(18):6350-5.
    [84] Rackham, O. and Brown, C.M. Visualization of RNA-protein interactions in livingcells: FMRP and IMP1interact on mRNAs. EMBO J,2004,23(16):3346-55.
    [85] Remy, I. and Michnick, S.W. Regulation of apoptosis by the Ft1protein, a newmodulator of protein kinase B/Akt. Mol Cell Biol,2004,24(4):1493-504.
    [86] Zhang, J., Campbell, R.E., Ting, A.Y., et al. Creating new fluorescent probes for cellbiology. Nat Rev Mol Cell Biol,2002,3(12):906-18.
    [87] Morell, M., Espargaro, A., Aviles, F.X., et al. Detection of transient protein-proteininteractions by bimolecular fluorescence complementation: the Abl-SH3case.Proteomics,2007,7(7):1023-36.
    [88] MacDonald, M.L., Lamerdin, J., Owens, S., et al. Identifying off-target effects andhidden phenotypes of drugs in human cells. Nat Chem Biol,2006,2(6):329-37.
    [89] Kilpatrick, L.E., Briddon, S.J., Hill, S.J., et al. Quantitative analysis of neuropeptideY receptor association with beta-arrestin2measured by bimolecular fluorescencecomplementation. Br J Pharmacol,2010,160(4):892-906.
    [90] Paduch, M., Jelen, F., and Otlewski, J. Structure of small G proteins and theirregulators. Acta Biochim Pol,2001,48(4):829-50.
    [91] Bourne, H.R., Sanders, D.A., and McCormick, F. The GTPase superfamily:conserved structure and molecular mechanism.1991.
    [92] Wennerberg, K., Rossman, K.L., and Der, C.J. The Ras superfamily at a glance.Journal of cell science,2005,118(5):843.
    [93] Repasky, G.A., Chenette, E.J., and Der, C.J. Renewing the conspiracy theory debate:does Raf function alone to mediate Ras oncogenesis? Trends in cell biology,2004,14(11):639-647.
    [94] Malumbres, M. and Barbacid, M. RAS oncogenes: the first30years. NatureReviews Cancer,2003,3(6):459-465.
    [95] Egan, S.E., Giddings, B.W., Brooks, M.W., et al. Association of Sos Ras exchangeprotein with Grb2is implicated in tyrosine kinase signal transduction andtransformation.1993.
    [96] Wellbrock, C., Karasarides, M., and Marais, R. The RAF proteins take centre stage.Nature Reviews Molecular Cell Biology,2004,5(11):875-885.
    [97] Davies, H., Bignell, G.R., Cox, C., et al. Mutations of the BRAF gene in humancancer. Nature,2002,417(6892):949-954.
    [98] Gonzalez-Garcia, M. Global analysis of neutrino data. Physica Scripta,2005,2005:72.
    [99] Madaule, P. and Axel, R. A novel ras-related gene family. Cell,1985,41(1):31-40.
    [100] ülkü, A. and Der, C. Ras signaling, deregulation of gene expression andoncogenesis. Signal Transduction in Cancer,2004:189-208.
    [101] Zuber, M.T., Solomon, S.C., Phillips, R.J., et al. Internal structure and early thermalevolution of Mars from Mars Global Surveyor topography and gravity. Science,2000,287(5459):1788.
    [102] Moodie, S.A., Willumsen, B.M., Weber, M.J., et al. Complexes of Ras. GTP withRaf-1and mitogen-activated protein kinase kinase. Science,1993,260(5114):1658.
    [103] Vojtek, A.B., Hollenberg, S.M., and Cooper, J.A. Mammalian Ras interacts directlywith the serine/threonine kinase Raf. Cell,1993,74(1):205-214.
    [104] Warne, P.H., Vician, P.R., and Downward, J. Direct interaction of Ras and theamino-terminal region of Raf-1in vitro.1993.
    [105] Zhang, X.F., Settleman, J., Kyriakis, J., et al. Normal and oncogenic p21ras proteinsbind to the amino-terminal regulatory domain of c-Raf-1.1993.
    [106] Tsao, H., Atkins, M.B., and Sober, A.J. Management of cutaneous melanoma. NewEngland Journal of Medicine,2004,351(10):998-1012.
    [107] McFall, A., Ulku, A., Lambert, Q.T., et al. Oncogenic Ras blocks anoikis byactivation of a novel effector pathway independent of phosphatidylinositol3-kinase.Molecular and Cellular Biology,2001,21(16):5488.
    [108] Kang, S., Bader, A.G., and Vogt, P.K. Phosphatidylinositol3-kinase mutationsidentified in human cancer are oncogenic. Proceedings of the National Academy ofSciences of the United States of America,2005,102(3):802.
    [109] Feig, L.A. Ral-GTPases: approaching their15minutes of fame. Trends in cellbiology,2003,13(8):419-425.
    [110] González-García, A., Pritchard, C.A., Paterson, H.F., et al. RalGDS is required fortumor formation in a model of skin carcinogenesis. Cancer Cell,2005,7(3):219-226.
    [111] Bai, Y., Edamatsu, H., Maeda, S., et al. Crucial role of phospholipase Cε inchemical carcinogen-induced skin tumor development. Cancer research,2004,64(24):8808.
    [112] Malliri, A., Van Der Kammen, R.A., Clark, K., et al. Mice deficient in the Racactivator Tiam1are resistant to Ras-induced skin tumours. Nature,2002,417(6891):867-871.
    [113] Minard, M.E., Ellis, L.M., and Gallick, G.E. Tiam1regulates cell adhesion,migration and apoptosis in colon tumor cells. Clinical and Experimental Metastasis,2006,23(5):301-313.
    [114] Donninger, H., Vos, M.D., and Clark, G.J. The RASSF1A tumor suppressor. Journalof cell science,2007,120(18):3163.
    [115] Sherwood, V., Recino, A., Jeffries, A., et al. The N-terminal RASSF family: a newgroup of Ras-association-domain-containing proteins, with emerging links to cancerformation. Biochem. J,425:303-311.
    [116] Han, M. and Sternberg, P.W. let-60, a gene that specifies cell fates during C. elegansvulval induction, encodes a ras protein. Cell,1990,63(5):921-931.
    [117] Broek, D., Toda, T., Michaeli, T., et al. The S. cerevisiae CDC25gene productregulates the RAS/adenylate cyclase pathway. Cell,1987,48(5):789-799.
    [118] Bonfini, L., Karlovich, C.A., Dasgupta, C., et al. The Son of sevenless gene product:a putative activator of Ras. Science,1992,255(5044):603.
    [119] Hahn, W.J. A phylogenetic analysis of the Arecoid line of palms based on plastidDNA sequence data. Molecular Phylogenetics and Evolution,2002,23(2):189-204.
    [120] Rangarajan, A., Hong, S.J., Gifford, A., et al. Species-and cell type-specificrequirements for cellular transformation. Cancer Cell,2004,6(2):171-183.
    [121] Johnson, E., Miyanishi, K., and Bridge, S. Wildfire regime in the boreal forest andthe idea of suppression and fuel buildup. Conservation Biology,2001,15(6):1554-1557.
    [122] Sweet-Cordero, A., Mukherjee, S., Subramanian, A., et al. An oncogenic KRAS2expression signature identified by cross-species gene-expression analysis. Naturegenetics,2004,37(1):48-55.
    [123] Przybyla, J.A. and Watts, V.J. Ligand-induced regulation and localization ofcannabinoid CB1and dopamine D2L receptor heterodimers. J Pharmacol Exp Ther,2009,332(3):710-9.
    [124] Belanis, L., Plowman, S.J., Rotblat, B., et al. Galectin-1is a novel structuralcomponent and a major regulator of h-ras nanoclusters. Molecular biology of thecell,2008,19(4):1404-1414.
    [125] Ohashi, K., Kiuchi, T., Shoji, K., et al. Visualization of cofilin-actin and Ras-Rafinteractions by bimolecular fluorescence complementation assays using a new pairof split Venus fragments. Biotechniques,2012,52(1):45-50.
    [126] Pathmanathan, S., Barnard, E., and Timson, D.J. Interactions between the buddingyeast IQGAP homologue Iqg1p and its targets revealed by a split-EGFPbimolecular fluorescence complementation assay. Cell Biol Int,2008,32(10):1318-22.
    [127] Cox, A.D. and Der, C.J. Ras family signaling: therapeutic targeting. Cancer biology&therapy,2002,1(6):599.
    [128] Sebti, S.M. and Der, C.J. Searching for the elusive targets of farnesyltransferaseinhibitors. Nature Reviews Cancer,2003,3(12):945-951.
    [129] Jares-Erijman, E.A. and Jovin, T.M. FRET imaging. Nat Biotechnol,2003,21(11):1387-95.
    [130] Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellularsignaling. Dev Cell,2003,4(3):295-305.
    [131] Brock, R. and Jovin, T.M. Fluorescence correlation microscopy(FCM)-fluorescence correlation spectroscopy (FCS) taken into the cell. Cell MolBiol (Noisy-le-grand),1998,44(5):847-56.
    [132] Robida, A. and Kerppola, T. Bimolecular Fluorescence Complementation Analysisof Inducible Protein Interactions: Effects of Factors Affecting Protein Folding onFluorescent Protein Fragment Association. Journal of molecular biology,2009.
    [133] J.萨姆布鲁克and拉塞尔, D.W.,分子克隆实验指南.第三版ed.2002,北京:科学出版社.87-92.
    [134] Ullrich, A. and Schlessinger, J. Signal transduction by receptors with tyrosinekinase activity. Cell,1990,61(2):203-12.
    [135] Newton, A.C. Protein kinase C: structural and spatial regulation by phosphorylation,cofactors, and macromolecular interactions. Chem Rev,2001,101(8):2353-64.
    [136] Groves, J.T. and Kuriyan, J. Molecular mechanisms in signal transduction at themembrane. Nat Struct Mol Biol,2010,17(6):659-65.
    [137] Sundaram, M.V. RTK/Ras/MAPK signaling. WormBook,2006:1-19.
    [138] Rajalingam, K., Schreck, R., Rapp, U.R., et al. Ras oncogenes and theirdownstream targets. Biochim Biophys Acta,2007,1773(8):1177-95.
    [139] Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERKpathway by protein interactions. Biochem J,2000,351Pt2:289-305.
    [140] Rodriguez-Viciana, P., Warne, P.H., Vanhaesebroeck, B., et al. Activation ofphosphoinositide3-kinase by interaction with Ras and by point mutation. Embo J,1996,15(10):2442-51.
    [141] van der Weyden, L. and Adams, D.J. The Ras-association domain family (RASSF)members and their role in human tumourigenesis. Biochim Biophys Acta,2007,1776(1):58-85.
    [142] Peisajovich, S.G., Garbarino, J.E., Wei, P., et al. Rapid diversification of cellsignaling phenotypes by modular domain recombination. Science,328(5976):368-72.
    [143] Koch, C.A., Anderson, D., Moran, M.F., et al. SH2and SH3domains: elements thatcontrol interactions of cytoplasmic signaling proteins. Science,1991,252(5006):668-74.
    [144] Giubellino, A., Burke, T.R., Jr., and Bottaro, D.P. Grb2signaling in cell motility andcancer. Expert Opin Ther Targets,2008,12(8):1021-33.
    [145] Suy, S., Anderson, W.B., Dent, P., et al. Association of Grb2with Sos and Ras withRaf-1upon gamma irradiation of breast cancer cells. Oncogene,1997,15(1):53-61.
    [146] Winkler, D.G., Cutler, R.E., Jr., Drugan, J.K., et al. Identification of residues in thecysteine-rich domain of Raf-1that control Ras binding and Raf-1activity. J BiolChem,1998,273(34):21578-84.
    [147] Vos, M.D., Ellis, C.A., Elam, C., et al. RASSF2is a novel K-Ras-specific effectorand potential tumor suppressor. J Biol Chem,2003,278(30):28045-51.
    [148] Sherwood, V., Manbodh, R., Sheppard, C., et al. RASSF7is a member of a newfamily of RAS association domain-containing proteins and is required forcompleting mitosis. Mol Biol Cell,2008,19(4):1772-82.
    [149] Cooper, W.N., Dickinson, R.E., Dallol, A., et al. Epigenetic regulation of the raseffector/tumour suppressor RASSF2in breast and lung cancer. Oncogene,2008,27(12):1805-11.
    [150] Buday, L. Membrane-targeting of signalling molecules by SH2/SH3domain-containing adaptor proteins. Biochim Biophys Acta,1999,1422(2):187-204.
    [151] Downward, J. The GRB2/Sem-5adaptor protein. FEBS Lett,1994,338(2):113-7.
    [152] Jiang, X. and Sorkin, A. Coordinated traffic of Grb2and Ras during epidermalgrowth factor receptor endocytosis visualized in living cells. Science's STKE,2002,13(5):1522.
    [153] Bivona, T.G. and Philips, M.R. Ras pathway signaling on endomembranes. CurrOpin Cell Biol,2003,15(2):136-42.
    [154] Egan, S.E., Giddings, B.W., Brooks, M.W., et al. Association of Sos Ras exchangeprotein with Grb2is implicated in tyrosine kinase signal transduction andtransformation. Nature,1993,363(6424):45-51.
    [155] Pearson, G., Robinson, F., Gibson, T.B., et al. Mitogen-activated protein (MAP)kinase pathways: Regulation and physiological functions. Endocrine Reviews,2001,22(2):153-183.
    [156] Macaluso, M., Russo, G., Cinti, C., et al. Ras family genes: an interesting linkbetween cell cycle and cancer. J Cell Physiol,2002,192(2):125-30.
    [157] Satoh, T., Nakafuku, M., and Kaziro, Y. Function of Ras as a molecular switch insignal transduction. Journal of Biological Chemistry,1992,267(34):24149.
    [158] Stokoe, D., MacDonald, S.G., Cadwallader, K., et al. Activation of Raf as a result ofrecruitment to the plasma membrane. Science,1994,264(5164):1463.
    [159] Udell, C.M., Rajakulendran, T., Sicheri, F., et al. Mechanistic principles of RAFkinase signaling. Cell Mol Life Sci,2011,68(4):553-65.
    [160] Leevers, S.J., Paterson, H.F., and Marshall, C.J. Requirement for Ras in Rafactivation is overcome by targeting Raf to the plasma membrane. Nature,1994,369(6479):411-4.
    [161] Hibino, K., Shibata, T., Yanagida, T., et al. A RasGTP-induced conformationalchange in C-RAF is essential for accurate molecular recognition. Biophysicaljournal,2009,97(5):1277-1287.
    [162] Hancock, J., Paterson, H., and Marshall, C. A polybasic domain or palmitoylation isrequired in addition to the CAAX motif to localize p21ras to the plasma membrane.Cell,1990,63(1):133.
    [163] Magee, T., Marshall, C., and Hill, M. New Insights into the Minireview Interactionof Ras with the Plasma Membrane. Cell,1999,98:9-12.
    [164] Schafer, W. and Rine, J. Protein prenylation: genes, enzymes, targets, and functions.Annual review of genetics,1992,26(1):209-237.
    [165] Zhang, F. and Casey, P. Protein prenylation: molecular mechanisms and functionalconsequences. Annual review of biochemistry,1996,65(1):241-269.
    [166] Rotblat, B., Yizhar, O., Haklai, R., et al. Ras and its signals diffuse through the cellon randomly moving nanoparticles. Cancer research,2006,66(4):1974.
    [167] Casar, B., Arozarena, I., Sanz-Moreno, V., et al. Ras subcellular localization definesextracellular signal-regulated kinase1and2substrate specificity through distinctutilization of scaffold proteins. Molecular and Cellular Biology,2009,29(5):1338.
    [168] Tian, T., Harding, A., Inder, K., et al. Plasma membrane nanoswitches generatehigh-fidelity Ras signal transduction. Nature Cell Biology,2007,9(8):905-914.
    [169] Marais, R., Light, Y., Paterson, H.F., et al. Ras recruits Raf-1to the plasmamembrane for activation by tyrosine phosphorylation. Embo J,1995,14(13):3136-45.
    [170] Marais, R., Light, Y., Paterson, H.F., et al. Differential regulation of Raf-1, A-Raf,and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem,1997,272(7):4378-83.
    [171] Comincini, S., Castiglioni, B.M., Foti, G.M., et al. Isolation and molecularcharacterization of rasfadin, a novel gene in the vicinity of the bovine prion gene.Mamm Genome,2001,12(2):150-6.
    [172] Akino, K., Toyota, M., Suzuki, H., et al. The Ras effector RASSF2is a noveltumor-suppressor gene in human colorectal cancer. Gastroenterology,2005,129(1):156-69.
    [173] Donninger, H., Hesson, L., Vos, M., et al. The Ras effector RASSF2controls thePAR-4tumor suppressor. Mol Cell Biol,2010,30(11):2608-20.
    [174] Agathanggelou, A., Cooper, W.N., and Latif, F. Role of the Ras-association domainfamily1tumor suppressor gene in human cancers. Cancer Res,2005,65(9):3497-508.
    [175] Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res,1989,49(17):4682-9.
    [176] Cooper, W.N., Hesson, L.B., Matallanas, D., et al. RASSF2associates with andstabilizes the proapoptotic kinase MST2. Oncogene,2009,28(33):2988-98.
    [177] Kumari, G., Singhal, P.K., Rao, M.R., et al. Nuclear transport of Ras-associatedtumor suppressor proteins: different transport receptor binding specificities forarginine-rich nuclear targeting signals. J Mol Biol,2007,367(5):1294-311.
    [178] Saka, Y., Hagemann, A.I., and Smith, J.C. Visualizing protein interactions bybimolecular fluorescence complementation in Xenopus. Methods,2008,45(3):192-5.
    [179] Hemerka, J.N., Wang, D., Weng, Y., et al. Detection and characterization ofinfluenza A virus PA-PB2interaction through a bimolecular fluorescencecomplementation assay. Journal of virology,2009,83(8):3944-3955.
    [180] Ottmann, C., Weyand, M., Wolf, A., et al. Applicability of superfolder YFPbimolecular fluorescence complementation in vitro. Biol Chem,2009,390(1):81-90.
    [181] Grefen, C., Obrdlik, P., and Harter, K. The determination of protein-proteininteractions by the mating-based split-ubiquitin system (mbSUS). Methods MolBiol,2009,479:217-33.
    [182] Shibasaki, S., Sakata, K., Ishii, J., et al. Development of a yeast protein fragmentcomplementation assay (PCA) system using dihydrofolate reductase (DHFR) withspecific additives. Appl Microbiol Biotechnol,2008,80(4):735-43.
    [183] Gentz, R., Rauscher, F.J.,3rd, Abate, C., et al. Parallel association of Fos and Junleucine zippers juxtaposes DNA binding domains. Science,1989,243(4899):1695-9.
    [184] Riley, L.G., Junius, F.K., Swanton, M.K., et al. Cloning, expression, andspectroscopic studies of the Jun leucine zipper domain. Eur J Biochem,1994,219(3):877-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700