胸腺上皮肿瘤预后影响因素分析及DNA甲基化失衡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸腺上皮肿瘤是前纵隔常见的肿瘤之一,其在生物学、肿瘤学和组织学上特性极为复杂,病理分型和分期一直是近年来外科学和病理学领域极具争议的难题之一。Masaoka病理分期根据术中和镜下肿瘤侵犯范围对胸腺上皮肿瘤进行分期,被认为是判断疾病预后的有效指标之一。但由于该方法没有考虑组织学因素,因而存在一定局限性。1999年WHO推行的胸腺上皮肿瘤组织学分型标准,按照淋巴细胞/上皮细胞比例和上皮细胞形态将胸腺上皮肿瘤分为:A型、AB型、B1型、B2型、B3型和C型,从组织病理学角度对胸腺上皮肿瘤进行较为详细的分类,为疾病诊断和预后判断提供了较好的组织病理学标准。尽管目前在胸腺上皮肿瘤的病理分型、分期、诊断和治疗方法研究方面取得了一定进展,但对于其具体的发病分子机理仍不清楚。近年来研究发现肿瘤当中某些肿瘤抑制基因失活,但其DNA序列完整,并未有突变、缺失等变化,用经典的遗传调控理论难以解释其失活的现象,因而逐渐认识到表观遗传调控在肿瘤发生和发展当中的作用。表观遗传调控主要包括DNA甲基化和组蛋白修饰,其中DNA甲基化是目前表观遗传学领域研究的热点。近年来研究认为DNA甲基化是肿瘤抑制基因失活的主要原因之一,在某些情况下甚至可能为调控基因转录的唯一的机制。研究认为肿瘤发生时肿瘤抑制基因启动子区高甲基化失活的同时,通常伴随有基因组DNA整体的低甲基化和DNA甲基化转移酶的高表达,这三种异常的甲基化状态被称为“甲基化失衡”。目前在肺癌、结肠癌、口腔粘膜上皮癌中均观察到这种典型改变,但在胸腺上皮肿瘤中仍缺乏相应报道。为此,我们第一部分根据胸腺上皮肿瘤病例临床、病理和随访资料,进行统计学分析,寻找胸腺上皮肿瘤预后相关因素;第二部分首先采用实时定量RT-PCR技术检测胸腺上皮肿瘤中肿瘤抑制基因mRNA表达情况,再采用巢式MSP技术检测其启动子区甲基化情况,并与临床病理资料进行分析;采用免疫组织化学法和ELISA法检测胸腺上皮肿瘤石蜡标本和新鲜组织标本中基因组DNA总体甲基化情况,探讨其与临床病理之间的关系;最后采用实时定量RT-PCR技术检测DNA甲基化转移酶mRNA表达情况,并与临床病理资料进行分析,系统观察胸腺上皮肿瘤中DNA甲基化失衡情况,以期进一步探讨与疾病相关的发病机制和可能的生物学标志物。
     第一部分胸腺上皮肿瘤病理分型分期及预后影响因素分析
     目的通过对胸腺上皮肿瘤患者临床、病理及随访资料进行分析,探寻与疾病预后相关的影响因素。
     方法本院心胸外科1997年6月至2007年9月胸腺上皮肿瘤病例137例,记录患者临床资料、病理记录,并于术后进行随访。应用Kaplan-Meier法、COX回归模型进行生存分析并判断疾病预后影响因素。
     结果所有病例中124例(90.5%)行全切手术,9例(6.6%)行姑息性切除,4例(2.9%)行活检术。MasaokaⅠ期、Ⅱ期病例中手术完全切除率为100%,明显高于Ⅲ期、Ⅳ期病例的67.9%和63.6%(P<0.001)。137例病例中总的5年、10年总生存率为71.4%和50.1%。MasaokaⅠ/Ⅱ期病例5年、10年生存率为86.8%和62.5%,明显高于Ⅲ/Ⅳ期病例的28.4%和17.0%(P<0.001);按照WHO分型,A/AB/B1型组5年、10年生存率为88.6%和67.0%,明显高于B2/B3/C型组病例的40.5%和19.3%(P<0.001);完全切除组病例术后5年、10年生存率为76.8%和53.3%,明显高于不完全切除和活检组(P<0.001)。COX回归分析发现,Masaoka病理分期,WHO组织学分型,肿瘤完全切除及手术时年龄与预后相关,合并重症肌无力及性别与疾病预后无关。
     结论Masaoka病理分期,WHO组织学分型,肿瘤完全切除及手术时患者年龄是胸腺上皮肿瘤患者重要的预后相关因素。
     第二部分胸腺上皮肿瘤中DNA甲基化失衡状态的实验研究
     第一节胸腺上皮肿瘤中肿瘤抑制基因表达失活及启动子区甲基化情况研究
     目的:观察多种肿瘤抑制基因在胸腺上皮肿瘤中表达情况,并检测其启动子区DNA甲基化状态,探讨胸腺上皮肿瘤中肿瘤抑制基因失活的可能机制。
     方法:采用实时定量RT-PCR技术从mRNA水平检测胸腺上皮肿瘤组织中肿瘤抑制基因APC1A,RARβ,E-cad,hMLH1,RASSF1A,FHIT,P16~(INK4a),MGMT和DAPK表达情况;采用巢式MSP技术检测胸腺上皮肿瘤组织中多种肿瘤抑制基因启动子区甲基化情况,并分析其与临床病理参数之间的关系。
     结果:按照WHO组织学分型,与A/AB/B1组相比,APC1A,FHIT,RARβ,E-cad,hMLH1和RASSF1A mRNA表达水平在B2/B3/C组中明显下降(APC1A,p=0.002;FHIT,p=0.035;RARβ,p=0.002;E-cad,p=0.036;hMLH1,p=0.024;RASSF1A,p=0.042),而MGMT,P161~(INK4a)和DAPK则没有表现出明显的差异(MGMT,p=0.083;P16~(INK4a),p=0.41;DAPK,p=0.49)。按照Masaoka病理分期,Ⅲ/Ⅳ期与Ⅰ/Ⅱ期相比,APC1A,FHIT,RARβ,E-cad和hMLH1 mRNA表达明显下调(APC1A,p=0.005;FHIT,p=0.015;RARβ,p=0.047;E-cad,p=0.003;hMLH1,p=0.003)。而DAPK,P16~(INK4a),RASSF1A和MGMT则没有表现出明显差异(DAPK,p=0.632;P16~(INK4a),p=0.248;RASSF1A,p=0.114;MGMT,p=0.136)。在所有65例病例中,A型病例中无一例病例检测到肿瘤抑制基因启动子区高甲基化改变,在AB型和B1型病例当中,分别约有60%和66.7%的病例检测到至少一种基因启动子区存在高甲基化。而在B2型、B3型和C型病例中,几乎所有的病例均能检测到多个肿瘤抑制基因启动子区高甲基化。单个基因的甲基化频率最高的为FHIT(46.2%),最低的为RASSF1A(15.4%)。按照Masaoka分期,Ⅲ/Ⅳ期病例中肿瘤抑制基因高甲基化率明显高于Ⅰ/Ⅱ期(p<0.05)。DAPK高甲基化状态与性别存在一定关系(P=0.034);P16~(INK4a)基因高甲基化状态与手术时年龄相关联(P=0.011)。重症肌无力与肿瘤抑制基因的启动子区高甲基化无关(P>0.05)。
     结论:胸腺上皮肿瘤中存在多种肿瘤抑制基因mRNA表达下调,启动子区高甲基化可能是其失活的重要机制,且这一过程与WHO组织学分型和Masaoka病理分期密切相关。
     第二节胸腺上皮肿瘤中基因组DNA总体甲基化改变及其临床意义的研究
     目的:检测胸腺上皮肿瘤细胞中基因组DNA总体甲基化水平,并分析其与临床病理资料间的关系,探寻基因组DNA总体甲基化状态与胸腺上皮肿瘤发生的关系。
     方法:应用5-甲基胞嘧啶(5-MC)特异性抗体,采用免疫组织化学法和ELISA法,观察胸腺上皮肿瘤石蜡标本和新鲜组织标本中肿瘤上皮细胞中基因组DNA总体甲基化状态,并分析其与Masaoka病理分期、WHO组织学分型等临床病理资料间的关系。
     结果:按照Masaoka病理分期,肿瘤早期(Ⅰ/Ⅱ期)5-MC染色明显高于晚期(Ⅲ/Ⅳ期)病例(p<0.01)。按照WHO组织学分型,肿瘤上皮细胞分化越差,其5-MC染色越浅。我们分别对比了A、AB、B1、B2、B3和C型六种亚型间染色差异,并参考组织病理学将A和AB型归为A组,B1、B2和B3型归为B组,C型作为C组,比较三组之间的染色差异;最后按照A/AB/B1组和B2/B3/C组比较染色差异。结果发现AB型与B1型之间5-MC染色无明显差异(p=0.455),B3型与C型之间5-MC染色无明显差异(p=0.779),其余各亚型之间染色差异均具有统计学意义。按照A、B和C三组,三组之间5-MC染色均具有明显差异(A和B,p<0.01;A和C,p<0.01;B和C,p<0.01)。按照A/AB/B1组和B2/B3/C组,B2/B3/C组5-MC染色明显低于A/AB/B1组(p<0.01)。ELISA法检测新鲜组织中基因组DNA甲基化情况与石蜡标本结果相似。基因组DNA总体甲基化情况与性别和合并MG无明显关系。
     结论:在胸腺上皮肿瘤细胞当中基因组DNA总体甲基化水平低下,随着肿瘤恶性程度的增高和肿瘤的进展,基因组DNA总体甲基化程度越来越低,且与WHO组织学分型和Masaoka病理分期关系密切。
     第三节胸腺上皮肿瘤中DNA甲基化转移酶表达及其临床意义的研究
     目的:观察DNA甲基化转移酶(DNMT)在胸腺上皮肿瘤中表达情况,并与临床病理资料进行分析,探讨DNA甲基化转移酶在胸腺上皮肿瘤异常甲基化过程中的作用。
     方法:采用实时定量RT-PCR技术从mRNA水平检测胸腺上皮肿瘤组织中DNMT1、DNMT3a和DNMT3b表达情况,并分析与临床、病理间的关系。
     结果:在胸腺上皮肿瘤组织中DNMT1、DNMT3a和DNMT3bmRNA表达随着肿瘤恶性程度和肿瘤进展呈现上升趋势。在B2/B3/C组中,DNMT1、DNMT3a和DNMT3b mRNA表达均较A/AB/B1组明显升高(DNMT1,p<0.05;DNMT3a,p<0.05;DNMT3b,p<0.01)。按照Masaoka病理分期,在肿瘤晚期(Ⅲ/Ⅳ期),DNMT的表达也明显高于肿瘤早期(Ⅰ/Ⅱ期)(DNMT1,p<0.01;DNMT3a,p<0.01:DNMT3b,p<0.05)。DNMT1,DNMT3a和DNMT3b mRNA表达之间存在明显关联(DNMT1与DNMT3a,r=0.592,p=0.001;DNMT1与DNMT3b,r=0.419,p=0.033;DNMT3a与DNMT3b,r=0.777,p=0.001)。Pearson's相关分析显示三种DNMT中仅DNMT3b高表达与基因组DNA总体低甲基化呈负相关((DNMT1,r=-0.215,p=0.291;DNMT3a,r=-0.337,p=0.057;DNMT3b,r=-0.522,p=0.006),DNMT1、DNMT3a和DNMT3b mRNA表达与性别和合并MG均无明显关系。
     结论:胸腺上皮肿瘤中三种DNMT呈高表达状态,且与Masaoka分期、WHO分型相关;三种DNMT mRNA表达上调之间相互关联,其中DNMT3b的高表达与基因组DNA总体低甲基化的关系密切。
Thymic epithelial tumors(TETs) are primary neoplasms of the anterior mediastinum with highly variable histopathological characteristics.This heterogeneity has long hindered the development of a standardized protocol for diagnostic and prognostic evaluation of TETs. The modified Masaoka staging system,is currently the most commonly employed scoring method,but its value is limited by the fact that it assigns scores only for specific macroscopic surgical,but not histological, characteristics,making it difficult to reliably assess tumor severity in patients.In 1999,the World Health Organization(WHO) published histologic criteria of TETs that was based on the morphology of epithelial cells and on the ratio of lymphocyte-to-epithelial cell,which stratified TETs into six entities:types A,AB,B1,B2,B3 and C,and provided a new means of predicting states of malignancy of TETs.However,its factual accuracy is disputed.The insufficiencies of current staging systems are confounded by the fact that no genetic or epigenetic prognostic indicators have been included.Previous studies showed that multiple genetic alterations involved in many kinds of carcinomas,but the molecular mechanisms of TETs are poorly understood.Recent data suggests that carcinomas appear to be a process that is caused by genetic alterations and by epigenetic mechanism.It mainly involves DNA methylation and histone modifications.DNA methylation is one of the major mechanisms of epigenetics.Aberrant methylation of promoter regions resulting in inactivation of human tumor suppressor gene expression has been proposed to be an important mechanism in cancer. Cancer cell DNA is frequently characterized by global DNA hypomethylation,localized gene-specific hypermethylation,and overexpression of DNA methyltransferases(DNMTs),which were so called "methylation imbalance",have already been reported in many kinds of tumors,such as lung cancer,colon cancer and oral carcinoma. Although multiple genetic and epigenetic changes have been detected in many kinds of cancers,the precise molecular mechanisms in the development and/or progression of TETs still remain unknown.In this study,we firstly evaluated the prognostic factors of TETs based on the clinic and pathologic data of the patients,then detected the expression and the methylation pattern of TSGs in TETs by using the real-time RT-PCR and the nested MSP,and the expressions of DNMTs were also measured by real-time RT-PCR.Finaly the global DNA methylation status in TETs were measured by Immunohistologic analysis and ELISA.
     PartⅠRetrospective study of prognostic factors of patients with thymic epithelial tumors
     Objective:To investigate the prognostic factors of patients with thymic epithelial tumors(TETs).
     Methods:137 patients with TETs were surgically treated at our hospital from June 1997 and September 2007.The data of patients including age,gender,symptoms,histological types,stage and grade, pathological findings and operative reports were recorded.Follow-up was obtained via telephone and postal mail.The patients were divided into MasaokaⅠ/Ⅱgroup andⅢ/Ⅳgroup,and WHO A/AB/B1group and B2/B3/C group,and the Kaplan-Meier method,log-rank test and COX regression model were performed to analyze the prognostic factors of TETs.
     Results:Among the 137 patients,124(90.5%) received complete resection,9(6.6%) incomplete resection,and 4(2.9%) surgicat biopsy. The rate of complete resection was significantly higher in Masaoka stagesⅠ/Ⅱthan that in stagesⅢ/Ⅳ(P<0.001).The overall survival rate of 5-year and 10-year were 71.4%and 50.1%,respectively.Patients in stagesⅠ/Ⅱhad a better long-term survival than those in stagesⅢ/Ⅳ(P<0.001).According to WHO histologic criteria,the rate of 5-year and 10-year survival in patients with type A/AB/B1 TETs were significantly higher than those in patients with type B2/B3/C TETs(P<0.001).The 5-year and 10-year survival rate in complete resection group were significantly better than those in incomplete resection and biopsy group (P<0.001).Cox regression analysis showed that the prognosis of patients with TETs was related to the Masaoka stage,WHO histologic criteria, extent of resection and the age at operation.
     Conclusions:The Masaoka stage,WHO histologic criteria,extent of resection and the age at operation were the important prognostic factors in patients with TETs.
     PartⅡAbnormal DNA methylation and its clinical significance in TETs
     Part A The mRNA expression levels and promoter methylation patterns of TSGs in TETs
     Objective:To investigate the expression and the promoter hypermethylation of TSGs and potential clinical significance in patients with TETs.
     Methods:Real-time RT-PCR and methylation-specific PCR(MSP) were performed for evaluated the expression and promoter region methylation patterns of TSGs in TETs.The correlation between TSGs mRNA,TSGs methylation and clinicopathological data were analyzed.
     Results:According to WHO criteria,The mRNA levels of six of these genes,E-cad,RARβ,hMLH1,RASSF1A,APC1A and FHIT, were significantly reduced in WHO type B2/B3/C tumors relative to WHO type A/AB/B1 tumors(E-cad,p=0.036;RARβ,p=0.002;hMLH1, p=0.024;RASSF1A,p=0.042;APC1A,p=0.02;FHIT,p=0.035).The mRNA levels of APC1A,FHIT,RARβ,E-cad and hMLH1 were significantly reduced in stageⅢ/Ⅳrelative to stageⅠ/Ⅱ(APC1A,p= 0.005;FHIT,p=0.015;RARβ,p=0.047;E-cad,p=0.003;hMLH1, p=0.003).Of all 65 TETs samples,the promoter region of all 9 genes in all type A group samples displayed an unmethylated phenotype,whereas 60%of type AB samples,66.7%of type B1 samples,and all of WHO type B2/B3/C samples showed promoter hypermethylation in at least one gene.The frequency of hypermethylation of individual genes varied between 15.4%(RASSF1A) and 46.2%(FHIT).With the exception of RASSF1A and P16~(INK4a),the frequency of promoter hypermethylation for each gene correlated with Masaoka stage.DAPK methylation linked to gender(p=0.034) and P16~(INK4a) promoter methylation correlated with the age of the patient when operated(p=0.011).No correlations were found between TSG promoter hypermethylation and the occurrence of myasthenia gravis(MG) symptoms(p>0.05).
     Conclusion:Our findings suggest that epigenetic silencing of TSGs expression by promoter hypermethylation could play an important role in TETs,and may closely related to the Masaoka stage and WHO criteria.
     Part B Global DNA methylation status and its clinic significance in TETs
     Objective:To evaluate the global DNA methylation status in patients with TETs.
     Methods:Immunohistochemistry and ELISA with an antibody against 5-methylcytosine(5-MC) were performed to observe the global DNA methylation status in TETs.The results were compared with the clinicopathological data.
     Results:Tumors from primary stage(stageⅠ/Ⅱ) were more darkly stained compared to tumors from advanced stage(stageⅢ/Ⅳ)(p<0.05). We compared the stain intensity amongst different subgroups.In WHO type A,AB,B1,B2,B3 and C,significant differences were detected amongst all the six groups,except between AB and B1(p=0.455),B3 and C(p=0.779).We then set WHO type A and AB to group A,WHO type B1,B2 and B3 to group B,WHO type C to group C.Statistic difference were found among these three groups(group A and B,p<0.01; group A and C,p<0.01;group B and C,p<0.01).According to group A/AB/B1 and group B2/B3/C,the tumors from A/AB/B1 group were more darkly stained than that from B2/B3/C group(p=0.001).The similar results in fresh frozen TETs tissue were found by ELISA test. Correlations between global DNA methylation levels and gender or MG symptoms were also evaluated,but no statistically significant differences were found.
     Conclusion:Global DNA hypomethylation is associated with increasing severity and may be a determining factor in the development of TETs.
     Part C The expressions of DNMTs and clinic significance in TETs
     Objective:To investigate the expression of DNMTs gene and its potential clinical significance in TETs.
     Methods:The real-time RT-PCR was performed to evaluate the expression of the DNMTs.The correlations between DNMTs mRNA and clinicopathological data were analyzed.
     Results:All three DNMTs were found to be significantly up-regulated in WHO type B2/B3/C tumors relative to type A/AB/B1 (DNMT1,p<0.05;DNMT3a,p<0.05;DNMT3b,p<0.01).Similarly,the expression of each DNMT was significantly increased in Masaoka stageⅢ/Ⅳtumors relative to stageⅠ/Ⅱtumors(DNMT1,p<0.01;DNMT3a, p<0.01;DNMT3b,p<0.05).Moreover,a significant negative correlation was found between DNMT3b mRNA levels and the OD value of global methylation levels(r=-0.522,p=0.006).This correlation did not occur between OD values and DNMT1 or DNMT3a expression levels(r=-0.215, p=0.291,for DNMT1;r=-0.337,p=0.057,for DNMT3a),although the expression of the three genes correlated with each other across all TETs samples(DNMT1 vs.DNMT3a,r=0.592,p=0.001;DNMT1 vs. DNMT3b,r=0.419,p=0.033;DNMT3a vs.DNMT3b,r=0.777,p=0.001).
     Conclusion:DNMTs genes were overexpressed in TETs tissue,and overexpression of DNMTs was correlated with Masaoka pathologic system and WHO histologic criteria.
引文
[1] Kazuya K, Yasumasa M. Therapy for thymic epithelial tumors: a clinical study of 1320 patients from Japan [J]. Ann Thorac Surg, 2003, 76:878-885.
    [2] Okumura M, Ohta M, Tateyama H, et al. The World Health Organization histologic classification system reflects the oncologic behavior of thymoma: a clinical study of 273 patients [J]. Cancer, 2002, 94(3): 624 -632.
    [3] Lee HS, Kim ST, Lee J, et al. A single institutional experience of thymic epithelial tumors over 11 years: clinical features and outcome and implications for future management [J]. Br J Cancer, 2007, 97(1):22-28.
    [4] Nakagawa K, Asamura H, Matsuno Y, et al. Thymoma: a clinicopathologic study based on the new World Health Organization classification [J]. J Thorac Cardiovasc Surg, 2003, 126(4):1134-1140.
    [5] Okumura M, Ohta M, Miyoshi S, et al. Oncological significance of WHO histological thymoma classification. A clinical study based on 286 patients [J]. Jpn J Thorac Cardiovasc Surg, 2002, 50(5): 189 -194.
    [6] Wentao F, Wenhu C, Gang C, et al. Surgical management of thymic epithelial tumors: a retrospective review of 204 cases [J]. Ann thorac Surg, 2005, 80(6):2002-2007.
    [7] Chen G, Marx A, Wen-Hu C, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: A clinicopathologic study of 200 thymoma cases from China [J]. Cancer, 2002, 95(2):420-429.
    [8] Charalambos Z, Dimitra R, Chara T, et al. Prognostic factors in thymic epithelial tumors undergoing complete resection [J]. Ann Thorac Surg, 2005, 80(3):1056-1062.
    [9] Lehrbach DM, Nita ME, Cecconello I. Molecular aspects of esophageal squamous cell carcinoma carcinogenesis. Arq Gastroenterol, 2003, 40 (4):256-261.
    [10]Baylin SB, Herman JG DNA hepermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 2000,16(4): 168-174.
    [11]Laird PW. Cancer epigenetics. Hum Mol Genet, 2005,14 (Sp 1):R65-76.
    [12]Bird A. The essentials of DNA methylation. Cell, 1992, 70(1):5-8.
    [13] Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev, 1995, 5(3):309-14.
    [14] Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol, 2000, 249:35-54.
    [15] Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltrans ferase gene result in embryonic lethality. Cell, 1992, 69(6):915-26.
    [16] Panning B, Janeisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell, 1998, 93(3):305-308.
    [17] Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366(6453):362-365.
    [18] Herman JG, Graff JR, Myohanen S, et al. Methylation-Specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996,93(18): 9821-9826.
    [19]Tokugawa T, Sugihara H, Tani T, et al. Modes of silencing of p16 in development of esophageal squamous cell carcinoma. Cancer Res, 2002, 62(17):4938-4944.
    [20]Kwong FM, Tang JC, Srivastava G, et al. Inactivation mechanisms and growth suppressive effects of pl6INK4a in Asian esophageal squamous carcinoma cell lines. Cancer Lett, 2004, 208(2): 207-13.
    [21]Tzao C, Hsu HS, Sun GH, et al. Promoter methylation of the hMLHl gene and protein expression of human mutL homolog 1 and human mutS homolog 2 in resected esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg, 2005,130(5):1371.
    [22] Yu MY, Tong JH, Chan PK, et al. Hypermethylation of the tumor suppressor gene RASSFIA and frequent concomitant loss of heterozygosity at 3p21 in cervical cancers. Int J Cancer, 2003,105(2):204-209.
    [23] Chan MW, Chan LW, Tang NL. Frequent hypermethylation of promoter region of RASSFIA in tumor tissues and voided urine of urinary bladder cancer patients. Int J Cancer, 2003, 104(5):611-616.
    [24] Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg, 2000, 87(8):992-1005.
    [25]Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancer. Am J Pathol, 1998,153(2):333-339.
    [26]Pogrihny I, Raiche J, Slovack M, et al. Dose-dependence, sex-and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes[J]. Biochem Biophys Res Commun, 2004,320(4):1253-l 261.
    [27]Bombail V, Moggs JG, Orphanides G. Perturbation of epigenetic status by toxicants[J]. Toxicol Lett, 2004,149(l-3):51-58.
    [28]Federico R, Giuseppe M, Rodolfo G, et al. Long-term survival and prognostic factors in thymic epithelial tumors [J]. Eur J Cardiothorac Surg, 2004, 26(2):412-418.
    [29]Myojin M, Choi N, Wright C, et al. Stage Ⅲ thymomas: pattern of failure after surgery and postoperative radiotherapy and its implication for future study. Int J Radio Oncol Biol Phys 2000;46:927-33.
    [30]Elkiran ET, Abali H, Aksoy S, et al. Thymic epithelial neoplasia: a study of 58 cases. Med Oncol. 2007;24(2): 197-201.
    [31]Mangi AA, Wright C, Allan J, et al. Adjuvant radiation for stage Ⅱ thymomas. Ann Thorac Surg 2002;74:1033-7.
    [32] Singhal S, Shrager JB, Rosenthal DI, et al. Comparison of stages Ⅰ-Ⅱ thymoma treated by complete resection with or without adjuvant radiation. Ann Thorac Surg 2003;76:1635- 42.
    [33]Kundel Moo SP, Kyung YC, Kil DK, et al. Prognosis of Thymic Epithelial Tumors According to the New World Health Organization Histologic Classification. Ann Thorac Surg 2004;78:992-8.
    [34] Y, Yellin A, Popovtzer A, et al. Adjuvant radiotherapy for thymic epithelial tumor: treatment results and prognostic factors. Am J Clin Oncol. 2007Aug;30(4):389-94.
    [35]Venuta F, Rendina EA, Longo F, et al. Long-term outcome after multimodality treatment for stage Ⅲ thymic tumors. Ann Thorac Surg 2003;76:1866-72.
    [36] Marco L, Marcello CA, Leonardo D, et al. Advanced Stage Thymomas and Thymic Carcinomas: Results of Multimodality Treatments. Ann Thorac Surg 2005;79:1840-4.
    [37]L6pez-Cano M, Ponseti-Bosch JM, Espin-Basany E, et al. Clinical and pathologic predictors of outcome in thymoma-associated myasthenia gravis [J]. Ann Thorac Surg, 2003, 76(5): 1643-1649.
    [38] de Perrot M, Liu J, Bril V, et al. Prognostic significance of thymomas in patients with myasthenia gravis [J]. Ann Thorac Surg, 2002, 74(5): 1658-1662.
    [39]Evoli A, Minisci C, Di Schino C, et al. Thymoma in patients with MG: Characteristics and long-term outcome [J]. Neurology, 2002, 59(12):1844 -1850.
    [40]Kondo K, Yasumasa M. Thymoma and myasthenia gravis: A clinical study of 1,089 patients from Japan [J]. Ann Thorac Surg, 2005, 79(1):219 -224.
    [41]Detterbeck FC, Parsons AM. Thymic tumors [J]. Ann Thorac Surg, 2004, 77(5):1860-1869.
    [42] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6):415-428.
    [43]Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21(35):5400-5413.
    [44] Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet, 1999, 21(2):163-167.
    [45]Hirabayashi H, Fujii Y, Sakaguchi M, et al. pl6INK4, pRB, p53 and cyclin Dl expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma. Int J Cancer. 1997 Nov 27; 73(5):639-44.
    [46]Herman JG, Baylin SB. Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol, 2000, 249:35-54.
    [47]Herman JG, Baylin SB. Gene silencing in cancer is association with promoter hypermethylation. N Engl J Med, 2003, 349(21):2042-2054.
    [48] Park WS, Cho YG, Kim CJ, et al. Hypermethylation of the RUNX3 gene in hepatocellular carcinoma. Exp Mol Med, 2005, 37(4):276-281
    [49] Mori T, Nomoto S, Koshikawa K, et al. Decreased expression and frequent allelic inactivation of the RUNX3 gene at Ip36 in human hepatocellular carcinoma. Liver Int, 2005, 25(2): 380-388.
    [50]Oshimo Y, Oue N, Mitani Y, et al. Frequent loss of RUNX3 expression by promoter hypermethylation in gastric carcinoma. Pathobiology, 2004,71 (3): 137-143.
    [51] Kim TY, Lee HJ, Hwang KS, et al. Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Invest, 2004, 84(4): 479- 484.
    [52]Homma N,Tamura G, Honda T, et al. Spreading of methylation with RUNX3 CpG island in gastric cancer. Cancer Sci, 2006, 97(1):51-56.
    [53] Li QL, Kim HR, Lee YH, et al. Transcriptional silencing of Runx3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun,2004, 314(1): 223-228.
    [54] Sato K, Tomizawa Y, Iijima H, et al. Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncol Rep, 2006, 15(1):129-135.
    [55]Ku JL, Kang SB, Shin YK, et al. Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene. 2004, 23(40):6736-6742.
    [56]Imamura Y, Hibi K, Koike M, et al. RUNX3 promoter region is specifically methylated in poorly-differentiated colorectal cancer. Anticancer Res, 2005, 25(4): 2627-2630
    [57]Goel A, Arnold CN, Tassone P, et al. Epigenetic inactivation of RUNX3 in microsatellite unstable sporadic colon cancers. Int J Cancer, 2004,112(5):754-759.
    [58] Corn PG, Heath El, Heitmiller R, et al. Frequent Hypermethylation of the 5-CpG Island of E-Cadherin in Esophageal Adenocarcinoma. Clin. Cancer. Res. 2001, 7,2765-2769.
    [59] van Engeland M, Weijenberg MP, Roemen GM, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 2003, 15, 63(12),3133-7.
    [60]Fischer JR, Ohnmacht U, Rieger N, et al. Prognostic significance of RASSF1A promoter methylation on survival of non-small cell lung cancer patients treated with gemcitabine. Lung Cancer. 2007, 56(1), 115-23.
    [61]Vonlanthen S, Heighway J,Tschan MP, et al. Expression of pl6INK4a/pl6α and pl9ARF/pl6β is frequently altered in non-small cell lung cancer and correlates with p53 overexpression. Oncogene, 1998,17 (21):2779-2785.
    [62]Tanaka H, Shimada Y, Harada H, et al. Methylation of 5' CpG island of FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res, 1998, 58(15):3429-3434.
    [63]Noguchi T, Takeno S, Kimura Y, et al. FHIT expression and hypermethylation in esophageal squamous cell carcinoma. Int J Mol Med, 2003, 11(4): 441-447.
    [64]Fendri A, Masmoudi A, Khabir A, et al. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009 Mar 21; 8(5).
    [65]Avramouli A, Tsochas S, Mandala E, et al. Methylation status of RASSF1A in patients with chronic myeloid leukemia. Leuk Res. 2009 Feb 2.
    [66]Misawa A, Tanaka S, Yagyu S, et al. RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: a prognostic marker. Br J Cancer. 2009 Jan27;100(2):399-404.
    [67]Ahlquist T, Lind GE, Costa VL, et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers.Mol Cancer. 2008 Dec 31; 7:94.
    [68]Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009 Jan;58(1):90-6.
    [69]Humar B, Blair V, Charlton A, et al. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res. 2009 Mar 1; 69(5):2050-6.
    [70]Vaissi(?)re T, Hung RJ, Zaridze D, et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors.Cancer Res.2009 Jan 1;69(1):243-52.
    [71]Zhang L,Lu W,Miao X,et al.Inactivation of DNA repair gene O6-methyl guanine-DNA methyltransferase by promoter hypermethylation and its relation to p53 mutations in esophageal squamous cell carcinoma.Carcinogenesis.2003,24(6):1039-1044.
    [72]Fang MZ,Jin Z,Wang Y,et al.Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines.Int J Oncol,2005,26(3):615-622.
    [73]卢圣栋主编.现代分子生物学实验技术.北京:高等教育出版社,1993.465-497.
    [74]Kane MF,Loda M,Gaida GM,et al.Methylation of the hMLHI promoter correlates with lack of expression of hMLHI in sporadic colon tumors and mismatch repair-defective human tumor cell lines.Cancer Res,1997,57(5):808-811.
    [75]Trygve O.T著.表观遗传学实验手册.上海:上海科学技术出版社,2007.220-233.
    [76]Grigg C,Clark S.Sequencing 5-methylcytosine residues in genomic DNA.Bioessays,1994,16(6):431-436.
    [77]Worm J,Aggerholm A,Guldberg P.In-tube DNA methylation profiling by fluorescence melting curve analysis.Clin Chem,2001,47(7):1183-1189
    [78]Maekawa M,Sugano K,Ushiama M,et al.Heterogeneity of DNA methylation status analyzed by bisulfite-PCR-SSCP and correlation with clinicopathological characteristics in colorectal cancer.Clin Chem Lab Med,2001,39(2):122-128.
    [79]Xiong Z,Laird PW.COBRA:a sensitive and quantitative DNA methylation assay.Nucleic Acids Res,1997,25(12);2532-2534.
    [80]Simpson DJ,Clayton RN,Farrell WE.Preferential loss of Death Associated Protein kinase expression in invasive pituitary tumours is associated with either CpG island methylation or homozygous deletion[J].Oncogene,2002,21(8): 1217-1224.
    [81]lnbal B,Cohen O,Polak Charcon S,et al.DAP kinase links the control of apoptusis to metastasis[J]Natum,1997;390(6656):180-4.
    [82]Bai T,Tanaka T,Yukawa K,et al.A novel mechanism for acquired cisplatin-resistance:suppressed translation of death-associated protein kinase mRNA is insensitive to 5-aza-2'-deoxycitidine and trichostatin in cisplatin-resistant cervical squamous cancer cells[J].Int J Oncol,2006,28(2):497-508.
    [83]Tang X,Khuri FR,Lee JJ,et al.Hypermethylation of the death-associated protein(DAP) kinase promoter aggressiveness in stage Ⅰ non-small-cell lung cancer[J].J Natl Cancer Inst,2000;92(18):1511-6.
    [84]Cheng CW,Wu PE,Yu JC,et al.Mechanisms of inactivation of E-cadherin in breast carcinoma:modification of the two hit hypothesis of tumor suppressor gene.Oncogene,2001,20(29):381423823.
    [85]Sloan EK,Anderson RL.Genes involved in breast cancer metastasis to bone.Cell Mol Life Sci,2002,59(9):1491-1502.
    [86]刘汝青,庄志雄,何春华等.O~6-甲基鸟嘌呤-DNA甲基转移酶基因多态性与肿瘤易感性的关系[J].癌变·畸变·突变,2002,14(2):101-106,.
    [87]杨振华,蔡映云,孙丽华.非小细胞肺癌中hMLH1启动子的甲基化.肿瘤防治研究,2007,34(1):11-13.
    [88]Zuo C,Ai L,Ratliff P,et a l.O~6-Methylguanine-DNA Methyltransferase Gene:Epigenetic Silencing and Prognostic Value in Head and Neck Squamous Cell Carcinoma[J].Cancer Epidemiol Biomarkers Prev,2004,13(6):967-974.
    [89]Liu Y,Lan Q,Siegfried JM,et al.Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients[J].Neoplasia,2006,8(1):46-51.
    [90]Roth MJ,Abnet CC,Hu N,et al.p16,MGMT,RARbeta2,CLDN3,CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions[J].Oncol Rep,2006,15(6):1591-1597.
    [91]Shen L,Kondo Y,Rosner G L,et al.MGMT promoter methylation and field defect in sporadic colorectal cancer[J].J Natl Cancer Inst,2005,97(18):1330-1338
    [92]Ishii T,Murakami J,Notohara K,et al.Esophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa[J].Gut,2007,56(1):13-19.
    [93]Watson RE,Curtin GM,Doolitfle DJ,et al.Progressive alterations in global and GC-rich DNA methylation during tumorigenesis[J].Toxicol Sci,2003,75(2):289-299.
    [94]Su LK,Bueeril M,Hill De,el al.APC binds to the novel protein EBI[J].Cancer Res,1995,55:2972-2977.
    [95]Virmani AK,Rathi A,Sathyanarayana UG,et al.Aberrant methylation of the adenomatous polyposis coli(APC) gene promoter 1A in breast and lung carcinomas.Clin Cancer Res.2001 Jul;7(7):1998-2004
    [96]Oshita F,Sekiyama A,Suzuki R,et al.Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by promoter methylation and silencing of the retinoic acid receptor-beta.Oncol Rep.2003;10(1):105-8
    [97]Gama-Sosa MA,Slagel VA,Trewyn RW,et al.The 5-methylcytosine content of DNA from human tumors.Nucleic Acids Res.1983 Oct 11;11(19):6883-94.
    [98]蔡京伦主编.表观遗传学--原理、技术与实践.上海:上海科学技术出版社,2006.169-173.
    [99]Anisowicz A,Huang H,Braunschweiger KI,et al.A high-throughput and sensitive method to measure global DNA methylation:application in lung cancer.BMC Cancer.2008 Aug 3;8:222.
    [100]Guerrero-Preston R,B(?)ez A,Blanco A,et al.Global DNA methylation:a common early event in oral cancer cases with exposure to environmental carcinogens or viral agents.P R Health Sci J.2009 Mar;28(1):24-9.
    [101]Seifert HH,Schmiemann V,Mueller M,et al.In situ detection of global DNA hypomethylation in exfoliative urine cytology of patients with suspected bladder cancer.Exp Mol Pathol.2007 Jun;82(3):292-7.
    [102]Chen H,Liu J,Merrick BA,Waalkes MP.Genetic events associated with arsenic-induced malignant transformation:applications of cDNA microarray technology.Mol Carcinogen 2001,30:79-87.
    [103]Feinberg AP,Vogelstein B.Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature 1983,301:89-92.
    [104]Baylin SB,Herman JG,Graff JR,et al.Alterations in DNA methylation:a fundamental aspect of neoplasia.Adv Cancer Res 1998,72:141-196.
    [105]William DT著.肺、胸膜、胸腺及心脏肿瘤病理学和遗传学.北京:人民卫生出版社,2006.167-208.
    [106]Hakkarainen M,Wahlfors J,Myohannen S,et al.Hypermethylation of calcitonin gene regulatory sequences in human breast cancer as revealed by genomic sequencing.Int J Cancer Pred Oncol 1996;69:471-4.
    [107]de Capoa A,Di Leandro M,Grappelli C,et al.Methylation status of individual interphase nuclei in human cultured cells:a semi-quantitative computerised analysis.Cytometry 1998;31:85-92
    [108]de Capoa A,Febbo FR,Giovanelli F,et al.Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer assisted quantitative analysis.FASEB J 1999;13:89-93.
    [109]Habib M,Fares F,Bourgeois CA,et al.DNA global hypomethylation in EBV-transformed interphase nuclei.Exp Cell Res 1999;249:46-53.
    [110]Soares J,Pinto AE,Cunha CV,et al.Global DNA hypomethylation in breast carcinoma correlation with prognostic factors and tumor progression.Cancer 1999,85:112-118.
    [111]Cravo M,Fidalgo P,Pereira AD,et al.DNA methylation as an intermediate biomarker in colorectal cancer:modulation by folic acid supplementation.1994,Eur J Cancer Prev 3:473-479.
    [112]Cravo M,Pinto R,Fidalgo P,et al.Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma.Gut.1996,39:434-438.
    [113]Piyathilake CJ,Johanning GL,Macaluso MM,et al.Localized folate and vitamin B_(12) deficiencies in squamous cell lung cancer are associated with global DNA hypomethylation.Nutr Cancer 2000,37:99-107.
    [114]Piyathilake CJ,Bell WC,Johanning GL,et al.The accumulation of ascorbic acid by squamous cell carcinomas of the lung and larynx is associated with global methylation of DNA. Cancer 2000, 89: 171 - 176.
    [115] Piyathilake CJ, Henao 0, Frost AR, et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control. 2003 Feb; 4(1):37-42.
    [116] Rountree MR, Bachman KE, Herman JG, et al. DNA methylation, chromatin inheritance, and cancer. Oncogene 2001, 20, 3156-65.
    [117] Pradhan S, Bacolla A, Wells RD, et al. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274:33002-10.
    [118] Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001 1;61(19):7025-9.
    [119] Slack A, CervoniN, PinardM, et al. Feedback regulation of DNA methyltransferase gene expression by methylation. Eur J Biochem, 1999,264: 191-199.
    [120] Jones PA, Takat D. The role of DNA methylation in mammalian epigenetics. Science, 2001, 293 (5532): 1068-1070.
    [121] Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3 A and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001; 97 (5): 1172-1179.
    [122] Bestor T, Laudano A, Mattaliano R, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988; 203: 971-983.
    [123] Peng DF, Kanai Y, Sawada M, et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis. 2006; 27(6): 1160-8.
    [124] Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006 28; 233(2):271-8
    [125]Nakagawa T,Kanai Y,Ushijima S,et al.DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis.J Urol.2005;173(5):1767-71.
    [126]Baylin SB,Herman JG.Alterations in DNA methyla2tion:a fundamental aspect of neoplasia.Adv Cancer Res,1991,72:141-196.
    [127]Issa JP,Vertino PM,Wu J,et al.Increased cytosine DNA - methyltransferase activity during colon cancer p regression.Journal of the National Cancer Institute.1993;85(15):1235-1240
    [128]Bai A,Kojima H.Priming with G-CSF effectively enhances lowdose Ara-C -induced in vivo apoptosis in myeloid leukemia cells.Exp Hematol.1999,27(2):259-265.
    [129]Oridate N,Lotan R.Suppression of DNA methyltransferase 1 levels in head and neck squamous carcinoma cells using small interfering RNA results in growth inhibition and increase in Cdk inhibitor p21.Int J Oncol.2005 Mar;26(3):757-61.
    [130]Suzuki M,Sunaga N,Shames DS,et al.RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells.Cancer Res.2004 1;64(9):3137-43.
    [131]Girault I,Tozlu S,Lidereau R,et al.Expression analysis of DNA methyltransferases 1,3A,and 3B in sporadic breast carcinomas.Clin Cancer Res.2003,1;9(12):4415-22.
    [132]Chen CL,Yan X,Gao YN,et al.Expression of DNA methyltransferase 1,3A and 3B mRNA in the epithelial ovarian carcinoma.Zhonghua Fu Chan Ke Za Zhi.2005 Nov;40(11):770-4.
    [133]Xie S,Wang Z,Okano M,et al.Cloning,exp ression and chromosome locations of the human DNMT3 gene family.Gene.1999;236:87-95.
    [134]Robertson K.D.The human DNA methyltransferases(DNMTs) 1,3a and 3b:coordinate mRNA expression in normal tissues and overexpression in tumors.Nucl.Acid.Res.1999;27(11):2291-2298.
    [135]Mizuno S,Takahito Chijiwa,et al.Expression of DNA methyl - transferases DNMT1V,3A,and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia.Blood,2001,97(5):1172-1179.
    [136]Beaulieu N,Morin S,Chute IC,et al.An essential role for DNA methyltransferase DNMT3B in cancer cell survival.J Biol Chem.2002 2;277(31):28176-81.
    [137]Wang YA,Kamarova Y,Shen KC,et al.DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression.Cancer Biol Ther.2005,4(10):1138-1143.
    [138]Li H,Rauch T,Chen ZX,et al.The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells.J Biol Chem.2006,281(28):19489-19500.
    [139]Majumder S,Ghoshal K,Datta J,et al.Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription.J Biol Chem.2006,281(31):22062-22072.
    [140]Scardocci A,Guidi F.Reduced BRCA1 exp ression due to promoter hypermethylation in therapy- related acute myeloid leukaemia.Br J Cancer.2006,95(8):1108-1113.
    [141]Karpf AR,Matsui S.Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells.Cancer Res,2005,65(19):8635-8639.
    [142]Rhee I,Bachman KE,Park BH,et al.DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.Nature,2002,416:552-556.
    [143]Leu YW,Rahmatpanah F,Shi H,et al.Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation.Cancer Res,2003,63(19):6110-6115.
    [1]Masaoka A,Monden Y,Nakahara K,et al.Follow-up study of thymomas with special reference to their clinical stages.Cancer 1981;48:2485-92.
    [2]Asamara H,Nakagawa K,Matsuno Y,et al.Thymoma needs a new staging system.Interact Cardiovase Thorac Surg,2004,3(1):163-167.
    [3]Okumura M,Ohta M,Tateyama H,et al.The World Health Organization histologic classification system reflects the oncologic behavior of thymoma:a clinical study of 273 patients[J].Cancer,2002,94(3):624-632.
    [4]Lee HS,Kim ST,Lee J,et al.A single institutional experience of thymic epithelial tumors over 11 years:clinical features and outcome and implications for future management[J].Br J Cancer,2007,97(1):22-28.
    [5]William DT著.肺、胸膜、胸腺及心脏肿瘤病理学和遗传学.北京:人民卫生出版社,2006.167-208.
    [6]Nakagawa K,Asamura H,Matsuno Y,et al.Thymoma:a clinicopathologic study based on the new World Health Organization classification[J].J Thorac Cardiovasc Surg,2003,126(4):1134-1140.
    [7]Okumura M,Ohta M,Miyoshi S,et al.Oncological significance of WHO histological thymorna classification.A clinical study based on 286 patients[J].Jpn J Thorac Cardiovasc Surg,2002,50(5):189-194.
    [8]Wentao F,Wenhu C,Gang C,et al.Surgical management of thymic epithelial tumors:a retrospective review of 204 cases[J].Ann thorac Surg,2005,80(6):2002-2007.
    [9]Chen G,Marx A,Wen-Hu C,et al.New WHO histologic classification predicts prognosis of thymic epithelial tumors:A clinicopathologic study of 200 thymoma cases from China[J].Cancer,2002,95(2):420-429.
    [10]Charalambos Z,Dimitra R,Chara T,et al.Prognostic factors in thymic epithelial tumors undergoing complete resection[J].Ann Thorac Surg,2005,80(3):1056-1062.
    [11]Gamonde' s JP, Balawi A, Greenland T, et al. Seventeen years of surgical treatment of thymoma: factors influencing survival. Eur J Cardiothorac Surg 1991; 5:124-31.
    [12]Levine GD, Rosai J. Thymic hyperplasia and neoplasia: a review of current concepts. Hum Pathol 1978; 9:495-515.
    [13] Wang LS, Huang MH, Lin TS, et al. Malignant thymoma. Cancer 1992; 70:443-50.
    [14] ElertO, Buchwald J, Wolf K. Epithelial thymus tumors therapy and prognosis. Thorac Cardiovasc Surg 1988; 36:109-13.
    [15]Verley JM, Hollmann KH. Thymoma. A comparative study of clinical stages, histologic features, and survival in 200 cases. Cancer 1985; 55:1074-86.
    [16]Regnard J-F, Magdeleinat P, Dromer C, et al. Prognostic factors and long-term results after thymoma resection: a series of 307 patients. J Thorac Cardiovasc Surg 1996; 112:376-84.
    [17]Maggi G, Casadio C, Cavallo A, et al. Thymoma: results of 241 operated cases. Ann Thorac Surg 1991; 51:152-6.
    [18]Lardinois D, Rechsteiner R, Lang RH, et al. Prognostic relevance of Masaoka and Muller-Hermelink classification in patients with thymic tumors. Ann Thorac Surg 2000; 69:1550-5.
    [19]Nakahara K, Ohno K, Hashimoto J, et al. Thymoma. Results with complete resection and adjuvant postoperative irradiation in 141 consecutive patients. J Thorac Cardiovasc Surg 1988; 95:1041-7.
    [20] Lewis JE, Wick MR, Scheithauer BW, Bernatz PE, Taylor WF. Thymoma. A clinicopathologic review. Cancer 1987; 60:2727-43.
    [21]Quintanilla-Martinez L, Wilkins EJ, Choi N, et al. Thymoma. Histologic subclassification is an independent prognostic factor. Cancer 1994; 74:606-17.
    [22] Pan CC, Wu HP, Yang CF, et al. The clinicopathological correlation of epithelial subtyping in thymoma: a study of 112 consecutive cases. Hum Pathol 1994; 25:893-9.
    [23] Wilkins KB, Sheikh E, Green R, et al. Clinical and pathologic predictors of survival in patients with thymoma. Ann Surg 1999; 230:562-74.
    [24]Okumura M, Miyoshi S, Takeuchi Y, et al. Results of surgical treatment of thymomas with special reference to the involved organs. J Thorac Cardiovasc Surg 1999; 117:605-13.
    [25]Kondo K, Monden Y. Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. Ann Thorac Surg 2003;76:878-84.
    [26]Myojin M, Choi NC, Wright CD, et al. Stage Ⅲ thymoma. Pattern of failure after surgery and postoperative radiotherapy and its implication for future study. Int J Radiat Oncol Biol Phys 2000;46:927-33.
    [27]Crucitti F, Doglietto GB, Bellantone R, et al. Effects of surgical treatment in thymoma with myasthenia gravis: our experience in 103 patients. J Surg Oncol 1992; 50:43-6.
    [28]Blumberg D, Port JL, Weksler B, et al. Thymoma: a multivariate analysis of factors predicting survival. Ann Thorac Surg 1995; 60:908-14.
    [29] Wang LS, Huang MH, Lin TS, et al. Malignant thymoma. Cancer 1992; 70:443-50.
    [30]Wilkins KB, Sheikh E, Green R, et al. Clinical and pathologic predictors of survival in patients with thymoma. Ann Surg 1999; 230:562-74.
    [31]Moore KH, McKenzie PR, Kennedy CW, et al. Thymoma: trends over time. Ann Thorac Surg 2001; 72:203-7.
    [32]Rios A, Tones J, Galindo PL et al. Prognostic factors in thymic epithelial neoplasms. Eur J Cardiothorac Surg, 2002; 21(2): 307-313.
    [33] de Perrot M, Liu J, Bril V, et al. Prognostic significance of thymomas in patients with myasthenia gravis. Ann Thorac Surg, 2002; 74(5): 1658-1662.
    [34]Detterbeck FC, Parsons AM. Thymic tumors. Ann Thorac Surg, 2004; 77(5): 1860-1869.
    [35]Masaoka A, Yamakawa Y, Niwa H, et al. Thymectomy and malignancy. Eur J Cardiothorac Surg 1994; 8:251-3.
    [36]Loehrer PJ, Chen M, Kim K, et al. Cisplatin, doxorubicin, and cyclophosphamide plus thoracic radiation therapy for limited-stage unresectable thymoma. An intergroup trial. J Clin Oncol 1997; 15:3093-9.
    [37]Shamji F, Pearson FG, Todd TRJ, et al. Results of surgical treatment for thymoma. J Thorac Cardiovasc Surg 1984; 87:43-7.
    [38] Herman SJ, Holub RV, Weisbrod GL, Chamberlain DW. Anterior mediastinal masses: utility of transthoracic needle biopsy. Radiology 1991; 180:167-70.
    [39]Federico R, Giuseppe M, Rodolfo G, et al. Long-term survival and prognostic factors in thymic epithelial tumors [J]. Eur J Cardiothorac Surg, 2004, 26(2):412-418.
    [40]Girard N, Mornex F, Van Houtte P, et al. Thymoma: a focus on current therapeutic management.J Thorac Oncol. 2009 Jan; 4(1):119-26.
    [41]Elkiran ET, Abali H, Aksoy S, et al. Thymic epithelial neoplasia: a study of 58 cases. Med Oncol. 2007; 24(2): 197-201.
    [42]Pastorino U, Yang XN, Francese M, et al. Long-term survival after salvage surgery for invasive thymoma with intracardiac extension. Tumori. 2008; 94(5):772-6.
    [43]Kondo K, Monden Y Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. Ann Thorac Surg 2003; 76:878-84.
    [44]Venuta F, Rendina EA, Pescarmona EO, et al. Multimodality treatment of thymoma: a prospective study. Ann Thorac Surg 1997; 64:1585-92.
    [45]Loehrer PJ, Chen M, Kim K, et al. Cisplatin, doxorubicin, and cyclophosphamide plus thoracic radiation therapy for limited-stage unresectable thymoma. An intergroup trial. J Clin Oncol 1997; 15:3093-9.
    [46]Highley M, Underhill C, Parnis F, et al. Treatment ofinvasive thymoma with single-agent ifosfamide. J Clin Oncol 1999; 17:2737-44.
    [47] Kim ES, Putnam JB, Komaki R, et al. A phase II study of a multidisciplinary approach with induction chemotherapy (IC), followed by surgical resection (SR),radiation therapy (RT) and consolidation chemotherapy (CC) for unresectable malignant thymomas: final report [Abstract]. Proc ASCO 2001; 20:310a.
    [48]Cohn HE. Successful long-term outcome in locally advanced Masaoka IVA thymoma with induction chemotherapy followed by complete resection and adjuvant radiotherapy. Ann Thorac Surg. 2008; 86(5): 1725.
    [49]Loehrer PJ Sr. Current approaches to the treatment of thymoma. Ann Med. 1999; 31 2:73-9.
    [50]Loehrer PJ Sr, Wick MR. Thymic malignancies. Cancer Treat Res. 2001; 105:277-302.
    [51] Shin DM, Walsh GL, Komaki R, et al. A multidisciplinary approach to therapy for unresectable malignant thymoma. Ann Intern Med. 1998, 129(2):100-4.
    [52] Shin HJ, Katz RL. Thymic neoplasia as represented by fine needle aspiration biopsy of anterior mediastinal masses. A practical approach to the differential diagnosis. Acta Cytol. 1998; 42(4):855-64.
    [53]Giaecone G Treatment of malignant thymoma. Curr Opin Oncol, 2005; 17(2):140-146.
    [54]Bretti S, Berruti A, Loddo C, et al. Multimodal management of stage Ⅲ-Ⅳa malignant thymoma. Lung Cancer, 2004; 44(1):69-77.
    [55]Rea F, Marulli G, Girardi R, et al. Long-term survival and prognostic factors in thymic epithelial tumours. Eur J Cardiothorac Surg, 2004; 26(2):412-418.
    [56]Refaely Y, Simansky DA, Paley M, et al. Resection and perfusion thermochemotherapy: a new approach for the treatment of thymic malignancies with pleural spread. Ann Thorac Surg, 2001; 72(2): 366-370.
    [57]Mangi AA, Wright C, Allan J, et al. Adjuvant radiation for stage Ⅱ thymomas. Ann Thorac Surg 2002;74:1033-7.
    [58]Singhal S, Shrager JB, Rosenthal DI, et al. Comparison of stages HI thymoma treated by complete resection with or without adjuvant radiation. Ann Thorac Surg2003;76:1635-42.
    [59]Kundel Moo SP, Kyung YC, Kil DK, et al. Prognosis of Thymic Epithelial Tumors According to the New World Health Organization Histologic Classification. Ann Thorac Surg 2004;78:992-8.
    [60] Yellin A, Popovtzer A, et al. Adjuvant radiotherapy for thymic epithelial tumor: treatment results and prognostic factors. Am J Clin Oncol. 2007 Aug; 30(4):389-94.
    [61]Regnard J-F,Zinzindohoue F,Magdeleinat P,et al.Results of re-resection for recurrent thymomas.Ann Thorac Surg 1997;64:1593-8.
    [62]Kirschner PA.Reoperation for thymoma:report of 23 cases.Ann Thorac Surg 1990;49:550-5.
    [63]Urgesi A,Monetti U,Rossi G,et al.Aggressive treatment of intrathoracic recurrences of thymoma.Radiother Oncol 1992;24:221-5.
    [64]Ruffini E,Mancuso M,Oliaro A,et al.Recurrence of thymoma:analysis of clinicopathologic features,treatment,and outcome.J Thorac Cardiovasc Surg 1997;113:55-63.
    [65]Utsumi T,Shiono H,Matsumura A,et al.Stage Ⅲ thymoma:relationship of local invasion to recurrence.J Thorac Cardiovasc Surg.2008;136(6):1481-5.
    [66]Urgesi A,Monetti U,Rossi G,et al.Aggressive treatment of intrathoracic recurrences of thymoma.Radiother Oncol 1992;24:221-5.
    [67]Goldel N,Boning L,Fredrik A,et al.Chemotherapy of invasive thymoma:a retrospective study of 22 cases.Cancer 1989;63:1493-500.
    [1] Baylin SB, Herman JG DNA hepermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 2000,16(4):168-174.
    [2] Bird A. The essentials of DNA methylation. Cell, 1992, 70(1):5-8.
    [3] Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol, 2000, 183(2):145-154.
    [4] Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltrans ferase gene result in embryonic lethality. Cell, 1992, 69(6):915-26.
    [5] Panning B, Janeisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell, 1998, 93(3):305-308.
    [6] Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366(6453):362-365.
    [7] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6):415-428.
    [8] Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003, 349(21):2042-2054.
    [9] Sharrard RM, Rovds JA, Rogers S, et al. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer, 1992, 65(5): 667-672.
    [10] Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet, 1999,21(2):163-167.
    [11] Esteller M, Cora PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res, 2001, 61(8):3225-3229.
    [12] Tanemura A, Terando AM, Sim MS, et al. CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res. 2009; 15(5):1801-7.
    [13] Liang G, Robertson KD, Talmadge C, et al. The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res, 2000, 60(17): 4907 -4912.
    [14] Hoebeeck J, Michels E, Pattyn F, et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett. 2009 Jan 18; 273(2):336-46.
    [15]Conway KE, McConnell BB, Bowring CE, et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res, 2000, 60(22):6236-6242
    [16] Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis, 2000,21(3): 461-467.
    [17] Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/pl6/MTSl gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res, 1995, 55(20): 4525-4530.
    [18] Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumor suppressor pl6/CDKN2/MTSl in human cancers. Nat Med, 1995,1 (7):686-692.
    [19] Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLHl promoter correlates with lack of expression of hMLHl in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res, 1997,57(5):808-811.
    [20] Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst,2000, 92(7):564-569.
    [21] Cohen O, Inbal B, Kissil JL, et al. DAP-kinase participates in TNF-alpha and Fas-induced apoptosis and its function requires the death domain. J Cell Biol,1999,146(1): 141-148.
    [22] Hoffmann AC, Vallbohmer D, Prenzel K, et al. Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol. 2009 Mar 4.
    [23] Esteller M, Corn PG, Urena JM, et al.Inactivation of glutathione S-transferase PI gene promoter hypermethylation in human neoplasia. Cancer Res, 1998,58(20):4515-4518.
    [24] Hiltunen MO, Alhonen L, Koistinaho J, et al. Hypermethylation of the APC gene promoter region in human colorectal carcinoma. Int J Cancer, 1997, 70(6): 644-648.
    [25] Dammann R, Strunnikova M, Schagdarsurengin U, et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer. 2005;41(8):1223-36.
    [26] Hogg RP, Honorio S, Martinez A, et al. Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer. 2002; 38(12):1585-92.
    [27] Jarmalaite S, Jankevicius F, Kurgonaite K, et al. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology. 2008; 75(3-4): 145-51.
    [28] Dhawan D, Hamdy FC, Rehman I, et al. Evidence for the early onset of aberrant promoter methylation in urothelial carcinoma. J Pathol 2006; 209:336-43.
    [29] Riquelme E, Tang M, Baez S, et al. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett, 2007; 250(1): 100-6.
    [30] Yanagawa N, Tamura G, Oizumi H , et al. Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci, 2003, 94 (7):589-592.
    [31] Kim WJ, Kim EJ, Jeong P, et al. Runx3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. CancerRes,2005,65(20):9347-9354.
    [32] Long C, Yin B, Lu Q, et al. Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Invest. 2007; 25(8):685-90.
    [33] Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983 Oct 11; 11(19):6883-94.
    [34] Chen H, Liu J, Merrick BA, et al. Genetic events associated with arsenic-induced malignant transformation: applications of cDNA microarray technology. Mol Carcinogen 2001, 30: 79-87.
    [35] Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301: 89-92.
    [36] Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998, 72: 141 - 196.
    [37] Szyf M. Towards a pharmacology of DNA mcthylation. Trends Pharmacol Sci, 2001; 22:350-354.
    [38] Duthie SJ, Narayanan S, Blum S, et al. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalised normal human colon epithelial cells. Nutr Cancer, 2000; 37(2):245-251.
    [39] Mathers JC. Reversal of DNA hypomethylation by folic acid supplements: possible role in colorectal cancer prevention. Gut, 2005; 54:579-581.
    [40] Florl AR, Steinhoff C, Muller M, et al. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer, 2004; 91:985-994.
    [41] Lian HT, Wang W, Li L, et al. DNA hypomethylation induce by drinking water disinfection by products in mouse and rat kidney. Toxicol Sci, 2005; 87(2):344-352.
    [42] Ge R, Tao L, Kramer PM, et al. Effect of peroxisome proliferators on the methylation and protein level of the c-myc protooneogene in B6C3F1 mice liver. J Biochem Mol Toxicol, 2002; 16(1):41-47.
    [43]KanaiY, SaitoY, Ushijimas, etal. Alterations in gene expression associated with the overexpression of a splice variant of DNA mcthyltransferase3b, DNMT3b4, during human hepatocarcinogenesis. J Cancer Res Clin Oncol, 2004,130:636-44.
    [44] Esteller M. DNA methylation and cancer therapy: new developments and expectations.Crux Opin Oncol,2005; 17(1):55-60.
    [45] Das PM , Singal R. DNA methylation and cancer. J Clin Oncol, 2004; 22(22):4632-4642.
    [46] Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med, 2004; 229(10):988-995.
    [47] Cho M, Uemura H, Kim S, et al. Hypomethylation of the MN/CA9 promoter and up-regulated MN/CA9 expression in human renal cell carcinoma. Br J Cancer,2001;85(4):563-567.
    [48] Gupta A, Godwin AK, Vandmweer L, et al. Hypomethylation of the synuclein gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res, 2003; 63:664-673.
    [49] Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes over expressed in pancreatic ductal adenocarcinoma. Cancer Res, 2003; 63:4158-4 166.
    [50] Lin CH, Hsieh SY, Sheen IS, et al. Genome wide hypomethylation in hepatocellular carcinogenesis. Cancer Res, 2001; 61:423 8-4243.
    [51] Takai D, Yagi Y, Habib N, et al. Hypomethylation of LINE1 retrotransposon in human hcpateccllular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol, 2000; 30:306-309.
    [52] Michiko N, Kazuhiko A, Inaho D, et al. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res, 2005; 65:21 15-2124.
    [53] Habib M, Fares F, Bourgeois CA, et al. DNA global hypomethylation in EBV-transformed interphase nuclei. Exp Cell Res 1999;249:46-53.
    [54] Soares J, Pinto AE, Cunha CV, et al. Global DNA hypomethylation in breast carcinoma correlation with prognostic factors and tumor progression. Cancer 1999,85:112-118.
    [55] Cravo M, Fidalgo P, Pereira AD, et al. DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. 1994, Eur J Cancer Prev 3: 473 - 479.
    [56] Cravo M, Pinto R, Fidalgo P, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996, 39: 434 - 438.
    [57] Piyathilake CJ, Johanning GL, Macaluso MM, et al. Localized folate and vitamin B_(12) deficiencies in squamous cell lung cancer are associated with global DNA hypomethylation. Nutr Cancer 2000, 37: 99 - 107.
    [58] Piyathilake CJ, Bell WC, Johanning GL, et al. The accumulation of ascorbic acid by squamous cell carcinomas of the lung and larynx is associated with global methylation of DNA. Cancer 2000, 89: 171 - 176.
    [59] Piyathilake CJ, Henao O, Frost AR, et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control. 2003 Feb; 4(1):37-42.
    [60] Knox JD, Araujo FD, Bigey P, et al. Inhibition of DNA methyltransferase inhibits DNA replication. J Biol Chem, 2000,275(24): 17986-17990.
    [61] Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltrans ferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and over expression in tumors. Nucleic Acids Res, 1999, 27(11):2291-2298.
    [62] DeMarzo AM, Marchi VL, Yang ES, et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res, 1999, 59 (16): 3855-3860.
    [63] Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases. Crux Top DevBiol, 2004; 60:55-89.
    [64] Rhee I, Baehman KE, Park BH. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002; 416:552-556.
    [65] Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 2000; 404(6781): 1003-1007.
    [66] Jonathan ED, Masaki O, Fred D, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts result in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem, 2005; 280( 18): 17986-17991.
    [67] Robertson K. D. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors.Nucl. Acid. Res. 1999; 27 (11): 2291-2298.
    [68] Xie S, Wang Z, Okano M, et al. Cloning, exp ression and chromosome locations of the human DNMT3 gene family. Gene. 1999; 236: 87-95.
    [69] Mizuno S, Takahito Chijiwa, et al. Exp ression of DNA methyl - transferases DNMT1V, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood, 2001, 97 (5): 1172-1179.
    [70] Wang YA, Kamarova Y, Shen KC, et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther. 2005,4 (10):1138-1143.
    [71] Li H, Rauch T, Chen ZX, et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 2006, 281 (28): 19489 -19500.
    [72] Majumder S, Ghoshal K, Datta J, et al. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem. 2006, 281 (31): 22062-22072.
    [73] Scardocci A, Guidi F. Reduced BRCA1 exp ression due to promoter hypermethylation in therapy- related acute myeloid leukaemia. Br J Cancer. 2006, 95(8):1108-1113.
    [74] Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res, 2005, 65(19):8635-8639.
    [75] Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002,416:552-556.
    [76] Leu YW, Rahmatpanah F, Shi H, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res, 2003, 63(19):6110-6115.
    [77] Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol, 2000, 183 (2): 145-154.
    [78] Leone G, Voso MT, Teofili L, et al. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol, 2003,109(1): 89-102.
    [79] Hennessy BT, Garcia-Manero G, Kantarjian HM, et al. DNA methylation in hematological malignancies: the role of decitabine. Expert Opin Investig Drugs,2003, 12(12):1985-1993.
    [80] Jones PA. Altering gene repression with 5-azacytidine. Cell. 1985,40(3): 485- 486.
    [81] Jones PA, Taylor SM. Hemimethylated duplex DNAs prepared from 5-azacytidine treated cells. Nucleic Acids Res. 1981, 9(12):2933-2947.
    [82] Merlo A, Herman JG, Mao L, et al. 5'-CpG island methylation is associated with transcriptional silencing of the tumor suppressor pl6/CDKN2/MTS1 in human cancers. Nat Med, 1995,1 (7):686-692.
    [83] Nguyen CT, Weisenberger DJ, Velicescu M., et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing cancer cells and is rapidly reversed 5-aza-2'-deoxycytidine. Cancer Res, 2002, 62(22):6456-6461.
    [84] Ivanov MA, Lamrihi B, szyf M, et al. Enhanced antitumor activity of a combinationof MBD2-antiaense electrotransfer gene therapy and bleomycin clcctroehcmothcrapy.J Gene Med,2003;5:893-99.
    [85]Sansom OJ,Bcrgcr J,Bishop SM,et al.Deficiency of Mbd2 suppressesintestinal tumorigenesis.Nat Genct,2003;34:145-147.
    [86]Gaynon PS,Baum ES.Continuous infusion of 5-azacytidine as induction for acute nonlymphocytic leukemia in patients with previous exposure to 5-azacytidine.Oncology,1983,40(3):192-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700