BMP4与noggin在大鼠颞叶癫痫模型齿状回颗粒细胞异常增生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是一种由多种病因引起,脑部神经元高度同步化,且常有自限性的异常过度放电所致的突然、反复和短暂的中枢神经系统功能失常,常合并局部结构、代谢及局部脑血流改变,是神经科常见的一组慢性疾病。传统上将非继发于神经系统或其它系统疾病,仅有发作期或/和发作间期脑的电生理学改变者称为“原发性癫痫”。经正规抗癫痫药物治疗,大多数病人的癫痫发作可得到控制,但仍有20-30%的病人癫痫难以控制,最终发展为难治性癫痫,其中60%~70%为颞叶癫痫(temporal lobe epilepsy,TLE),目前颞叶癫痫的发病机制尚未完全阐明。长期反复发作及药物副作用严重威胁着颞叶癫痫病人的日常生活,因此,对于颞叶癫痫发病机制的研究,具有重要意义。
     海马是颞叶癫痫的主要致痫灶,是其它类型癲痫放电扩散的中继站和放大器。同时海马齿状回(dentate gyrus,DG)及室下区(Subventricular zone,SVZa)也是成年哺乳动物脑内两个神经发生最集中的部位。颞叶癫痫最常见且最主要的病理变化为海马硬化(hippocampus sclerosis),包括神经细胞脱失,胶质增生和突触重组。苔藓纤维芽生(mossy fiber sprouting,MFS)是颞叶癫痫突触重组的主要形式,以齿状回颗粒细胞、内嗅区及CA3区常见。大量颞叶癫痫患者病灶标本和动物模型研究均观察到,癫痫所致的脑损伤发生后,齿状回颗粒细胞轴突(苔藓纤维)出芽,海马神经发生增加,门区异位颗粒细胞形成等现象。海马CA1、CA3区锥体细胞和门区神经元致痫损伤后,内分子层失神经传入同时苔藓纤维也与靶细胞断离,因而触发苔藓纤维出芽进入内分子层并与颗粒细胞建立突触联系。越来越多的研究表明:苔藓纤维出芽与慢性癫痫反复的自发性发作有关,同时又可增强癫痫的反复发作。但新生颗粒细胞增殖、迁移、分化并参与癫痫发作的病理机制及MFS的确切功能,目前尚不清楚。
     研究表明,在海人酸(Kainic acid,KA)致海马损伤后,海马齿状回下颗粒层神经发生增加,并伴有神经细胞迁移和神经细胞突触可塑性的增加。我们和国外同行近期均观察到颞叶癫痫发病过程中存在海马神经发生异常,主要表现在发生癫痫持续状态后,自发反复性癫痫发作出现前,海马齿状回下颗粒层细胞增殖能力明显增强,新生细胞大多分化为神经元(颗粒细胞),它们大多数向颗粒层迁移,成为成熟颗粒细胞,颗粒细胞产生新的轴突形成MFS。此后在不同的癫痫模型中,均发现癫痫形成伴有齿状回神经发生增加和异位颗粒细胞形成MFS,但不同癫痫模型神经发生增加的程度、时序有所不同。癫痫持续状态后,自发反复性癫痫发作出现前,增强的海马齿状回颗粒细胞为何没有定向迁移到神经元丢失区并补充和替代丢失的细胞,增殖的海马齿状回干细胞的迁移途径如何,最终定位于何处,目前尚不清楚。
     Noggin与骨成形蛋白4(Bone morphogenetic protein 4,BMP4)是胚胎期神经发生的重要调控分子,在原肠胚期共同参与了神经板与神经管的发生过程,其中BMP4抑制分离的外胚层细胞向神经元分化,促进这些细胞向上皮细胞分化;而Noggin作为BMP4的拮抗结合蛋白,与BMP4的亲和性较高,可阻滞BMP4与其相应的受体结合,从而抑制BMP受体信号通路,促进这些细胞向神经元分化。Noggin对成年中枢神经系统(Central Nervous system, CNS)神经干细胞的增殖、分化、迁移及维持神经元的正常功能有重要的作用。我们还发现,癫痫持续状态增强的海马神经干细胞增殖与海马的BMP4的过表达有关。在KA诱发的癫痫模型,海马CA3、CA4区还存在显著的神经元丢失。在KA致海马损伤后,Noggin在增强的齿状回颗粒细胞增殖中发挥何种作用,目前未见相关报导。
     为此,本实验采用KA侧脑室注射(intracerebroventricular,I.C.V.)致海马损伤模型,采用原位杂交、免疫组化、细胞培养等技术,观察海马齿状回Nestin阳性细胞的分布与BMP4的表达,探讨神经干细胞的增殖、迁移和分布与癫痫发病机制的关系;同时观察成年大鼠在KA侧脑室注射1天到30天内,海马神经元丢失情况,海马齿状回BrdU标记细胞数与Noggin表达的关系,为阐明Noggin对海马齿状回颗粒细胞增殖与胶质增生的作用提供依据。并通过培养永生化神经干细胞系,在体外实验中进一步证实BMP4/noggin可能对c17.2神经干细胞增殖、分化的作用。主要结果如下:
     1. KA侧脑室注射诱发SE后,注射侧海马CA3、CA4区神经元丢失明显并维持在整个实验观察阶段,没有细胞数量的恢复迹象,而注射对侧海马神经元丢失不明显。
     2. KA侧脑室注射致海马损伤后,成年大鼠海马齿状回颗粒下区Nestin阳性细胞异常增殖和迁移,主要分布在海马齿状回门区,同期观察到BMP4-mRNA阳性细胞在该部位有较多分布,提示成年大鼠海马齿状回颗粒细胞异常增殖和迁移可能与BMP4在该区的过表达有关。
     3.KA侧脑室注射致海马损伤后,成年大鼠海马齿状回颗粒细胞异常增殖,主要分布在齿状回颗粒下层,同期观察到Noggin mRNA阳性细胞主要分布于海马齿状回的门区、颗粒下层、CA3、CA1区;海马Noggin mRNA阳性细胞在3天时升高,7天时下降。提示成年大鼠海马齿状回颗粒下层细胞异常增殖可能与Noggin表达波动有关。
     4.体外实验证明:BMP4能抑制c17.2神经干细胞增殖及其向神经元分化,noggin通过拮抗BMP4的作用,促进c17.2神经干细胞增殖及其向神经元分化。
     总之,本实验研究了BMP4/noggin在颞叶癫痫形成过程中在海马的表达,以及在海马神经干细胞异常增殖及分化中可能所起的作用;并在体外实验中观察了BMP4/noggin对于c17.2神经干细胞的增殖和分化的影响。结果表明:KA侧脑室注射致海马损伤后,成年大鼠海马齿状回颗粒细胞异常增殖和迁移,主要分布在海马齿状回门区,可能与BMP4在该区的过表达及Noggin表达波动有关。
Epilepsy is caused by multiple etiopathogenisis and characterized by the high degree synchronization of neurons in brain accompanied with an abnormal over-firing-induced self-limited dysfunction of CNS. Epilepsy is a group of common chronic diseases of neurology, typically combined with the alteration of local structure, metabolism and local cerebral blood flow. Idiopathic epilepsy displays the electrophysiological change of the brain during the seizure of onset or/and interphase, which is not secondarily affected from nervous system or other system disorders. Given the regular antiepileptic treatment, seizure in most patients may become under control. However, the seizure of 20%-30% of patients is difficult to be controlled and develops ultimately into intractable epilepsy, 60%-70% of which is temporal lobe epilepsy (TLE). By now, the pathogenesis of TLE is not clear. The long time repeated seizure and drug side-effects pose severe threat to the daily life of TLE patients. Therefore, it is of much consequence to investigate the pathogenesis of TLE.
     Hippocampus is the main epileptogenic focus of TLE, and is also the relay station and amplifier of the firing diffusion of other types of epilepsy. Meanwhile, both the dentate gyrus (DG) and subventricular zone (SVZ) are the main neurogenesis sites in the adult mammalian brain. The main pathological change of TLE is hippocampus sclerosis, which includes neuron loss, gliosis and synapse reorganization. The main type of TLE synapse reorganization is the mossy fiber sprouting (MFS) in the DG granule cells, entorhinal and CA3 areas. Studies in TLE patients’specimens and animal models have demostrated that the seizure-induced brain injury including MFS in DG granule cells, increased hippocampus neurogenesis and hilar-ectopic granule cells generation. Followed by the seizure-induced injury of the pyramidal cells in the CA1, CA3 and the neurons in the hilus of hippocampus, the inner molecular layer lost the fiber afference and mossy fibers disconnected from the target cells. Consequently, mossy fibers are triggered to sprout into the inner molecular layer and, establish the synaptic connection with granule cells. There is a mount of evidences indicated that the mossy fiber sprouting contributed to the spontaneous repeated seizure of the chronic epilepsy, meanwhile, reinforced the repeated seizures. However, the mechanisms of adult hippocampus neurogenesis under seizure, as well as the function of MFS, are still unclear.
     Evidences have showed that adult hippocampus DG neurogenesis increased by kainic acid (KA) induced hippocampus injury, and accompanied with increased abnormal neuron migration and synapse plasticity. Recently, both the foreign researchers and our group found that abnormal hippocampus neurogenensis observed in process of TLE onset, which mainly occurred following statural epilepticus and before the spontaneous repeated seizures. Hippocampus DG granule cells proliferation was significantly increased, most of newly born cells differentiated into neuron (granule cells), migrated into granule layer and became the mature granule cells as well as generated new axon to form the MFS. In addition, it has been reported that varies types of animal epilepsy model were accompanied by the seizure generation, the neurogenesis of DG granule cells increased and ectopia granule cells formatted MFS. However, the extent and time curve of increased hippocampus DG neurogenesis are different among all kinds of epilepsy models. After the status epilepticus and spontaneous repeated seizure, the reason why the increased DG granule cells in the hippocampus does not automatically migrate into the neuron-loss zone and supplement or substitute for the lost cells, the route by which proliferative DG stem cells in hippocampus migrated, and the position where those newly born cells located are still under investigation.
     Noggin and the bone morphogenetic protein 4 (BMP4) are the key regulatory molecules in the embryonic neurogenesis, and contribute to the development of the neural plate and neural tube. BMP4 inhibited the ectoderm cells differentiated into neurons, but facilitated these cells differentiated into epithelial cells. As an antergic binding protein of BMP4, noggin has more affinity with BMP4 and can prevent BMP4 from binding with its receptors. Accordingly, noggin inhibited the signal transduction of BMP receptor, and promoted these cells differentiated into neurons. In the adult CNS, noggin plays an important role in the neural stem cells proliferation and differentiation and maintaining the normal function of neurons. We also demonstreated that KA-induced status epilepticus caused tonic proliferation of hippocampus neural stem cells was related to the hippocampus BMP4 over-expression, and accompanied with mount of neurons in the CA3 and CA4 areas lost. There are still no reports about the function of noggin in the proliferation of the increased DG granule cells followed the KA-induced hippocampus injury.
     Therefore, to approach the relationship between the epilepsy pathogenesis and proliferation, migration and distribution of the neural stem cells, hippocampus injury animal model induced by KA intracerebroventricular (I.C.V.) injection was used in this study. We observed the expression of nestin and BMP4 in DG of hippocampus by a series of techniques, such as in-situ hybridization, immunohistochemistry and cell culture, etc. Meanwhile, in order to elucidate the effect of noggin on the proliferation of DG granule cells in hippocampus and the gliosis, we detected the neuron loss in the hippocampus of adult rats within 1 day to 30 days after KA I.C.V. injection and disclosed the relationship between the number of BrdU labeled cells in DG of hippocampus and the expression of noggin. Furthermore, we tried to confirm the effect of BMP4/noggin on the proliferation and differentiation of c17.2 neural stem cells in vitro culture of immortalization neural stem cell line. The main results are listed as following:
     1. Adult rats given KA I.C.V injection induced SE, the neuron loss in the hippocampal CA3 and CA4 areas of the injection side was notable throughout the whole experimental observation phase. There were no detectable cells to recover from injury; otherwise, few cells lost in the opposite side.
     2. Adult rats given KA I.C.V injection, the nestin positive cells in the DG sub-granular zone were abnormally proliferated and migrated, and those newly born neurons mainly located in the dentate hilus. At the same time, we observed that BMP4 mRNA positive cells increased significantly in this area, which indicated that the abnormal proliferation and migration of the adult DG granule cells may relate to the over-expression of BMP4 mRNA.
     3. Adult rats given KA I.C.V injection, the DG granule cells in the hippocampus were abnormally proliferated, and those newly born neurons mainly located in the DG sub-granular zone. Meanwhile, we observed that noggin mRNA positive cells distributed in the hippocampal DG hilus, sub-granule layer, CA3, and CA1 areas. The noggin mRNA positive cells in the hippocampus increased 3 days post lesion, while decreased 7 days post-lesion. It suggested that the abnormal proliferation of the DG granule cells in the KA-lesioned hippocampus may be related to the fluctuation of the noggin expression in the hippocampus.
     4. In vitro study, we demonstrated that the ability of proliferation and differentiation into neurons in the c17.2 neural stem cells was inhibited by BMP4, while noggin facilitated these processes.
     In conclusion, here we have showed the expression pattern of BMP4/noggin and its potential role in the proliferation and differentiation of hippocampal neural stem cells during the formation process of TLE. Furthermore, in vitro study, we observed the effect of BMP4/noggin on the ability of proliferation and differentiation in the c17.2 neural stem cells. All of these results indicate that KA-lesioned hippocampus promote the DG granule cells abnormally to proliferate and migrate, and those newly born neurons mainly locate in the hippocampus DG hilus area. This may be related to over-expression of BMP4 and the fluctuation of the noggin expression in the hippocampus.
引文
1. Bernasconi N, Natsume J, Bernasconi A. Progression in temporal lobe epilepsy: differential atrophy in mesial temporal structures. Neurology. 2005,65(2): 223-228.
    2. Rao MS, Hattiangady B, Reddy DS, Shetty AK. Hippocampal neurogeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J Neurosci Res. 2006,83(6):1088-1105.
    3. Parent JM. The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res. 2002,50(1-2):179-189.
    4. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998, 4:1313–1317.
    5. Yin JB, Ma YX, Yin Q, Xu HW, An N, Liu SY, Fan XT, Yang H. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats. Biochem Biophys Res Commun. 2007, 355(1): 54–60.
    6. Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res. 1998, 790(1-2): 52–59.
    7. Lim AD, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000, 28(3): 713-726.
    8. Loscher W. Animal models of intractable epilepsy. Prog Neurobiol. 1997,53(2): 239-258.
    9. Kempermann G. They are not too excited: the possible role of adult-born neurons in epilepsy. Neuron. 2006,52(6):935-937.
    10. Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol. 2006,295(2):647-663.
    11. Paxinos G,Watspm C.The rat brain in stereotaxic coordinates.New York:Academic Press;1982.
    12.王伯云,李玉松,黄高升,等.病理学技术.第一版,北京:人民卫生出版社, 2000.
    13. Le Duigou C, Wittner L, Danglot L, Miles R. Effects of focal injection of kainic acid into the mouse hippocampus in vitro and ex vivo. J Physiol. 2005,569:833-847.
    14. Sperk G. Kainic acid seizures in the rat. Prog Neurobiol. 1994, 42(1):1-32.
    15. Sundstrom LE, Mitchellb J, Wheala HV. Bilateral reorganisation of mossy fibers in the rat hippocampus after a unilateral intracerebroventricular kainic acid injection. Brain Research. 1993, 609(1-2):321-326.
    16. Golden GT, Smith GG, Ferraro TN. Strain differences in convulsive response to the excitotoxin kainic acid. Neurol Report. 1991, 2: 141-144.
    17. Dawson RJ, Wallace DR. Kainic acid-induced seizures in aged rats: neurochemical correlates. Brain Res Bull.1992, 29(3-4):459-468.
    18. Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci. 2005, 25(37):8390-8401.
    19. Riban V, Bouilleret V, Pham-Le BT, Fritschy JM, Marescaux C, Depaulis A. Evolution of hippocampus epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neurosci. 2002, 112(1):101-111.
    20. Simantov R,Crispino M,Hoe W, Broutman G, Tocco G, Rothstein J D, Baudry M. Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainite–induced seizure activity.Mol Brain Res.1999,65(1):112–123.
    21. Holtmaat AJ , Gorter JA , Wit J D, Tolner E A, Spijker S, Giger R J, Lopes da Silva F H, Verhaagen J.Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy:A novel molecular event potentially contributing to mossy fiber sprouting. Exp Neurol. 2003, 182(1):142-150.
    22. Uwe H. Basic mechanisms of partial epilepsies. Curr Op in Neurol. 2004, 17(2): 155-159.
    23. Pierce JP, Melton J, Punsoni M, McCloskey DP, Scharfman HE. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures.Exp Neurol.2005, 196(2): 316-331.
    24. Scharfman HE, Goodman JH, Scllas AL. Granule-like Neurons at the Hiar/CA3 Border after Status Epilepticus and Their Synchrony with Area CA3 Pyramidal Cells: Functional Implications of Seizure-Induced Neurogenesis. J Neurosci. 2002, 20(16): 6144-6158.
    25. Scharfman HE, Sollas AE, Berger RE, Goodman JH, Pierce JP. Perforant pathactivation of ectopic granule cells that are born after pilocarpine-induced seizures. Neurosci. 2003, 121(4):1017-1029.
    26. Takeda K. Expression of serinelthreonine kainic receptors during ectopic bone formation induced by bone morphogenetic protein (BMP). Kokubyo Gakkai Zasshi.1994, 61(4):512-526.
    27. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, Mckay RD. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev.2001, 15(16):20.
    28. Lim DA,Tramontin AD,Trevejo JM,Herrera DG, García-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000, 28(3):713-726.
    29. Fan XT, Xu HW, Cai WQ, Yang Z, Zhang J. Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus. Dev Brain Res. 2003, 146(1-2):51-58.
    30. Liu SY, Zhang ZY, Song YC, Qing KJ, Zhang KC, An N, Zhou Z, Cai WQ, Yang H. SVZa neural stem cells differentiate into distinct lineages in response to BMP4. Exp Neurol. 2004, 190(1):109–121.
    1. Eriksson PS, Perfilieva E, Bjork-Eriksson T. Neurogenesis in the adult human hippocampus.Nat Med.1998, 4:1313–1317.
    2. Ledergerber D, Fritschy JM, Kralic JE. Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp Neurol. 2006, 199(1):130-142.
    3. Pierce JP, Melton J, Punsoni M, McCloskey DP, Scharfman HE. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures.Exp Neurol.2005, 196(2):316-331.
    4. Scharfman HE, Goodman JH, Scllas AL. Granule-like neurons at the hiar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci. 2002, 20(16): 6144-6158.
    5. Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol. 2006, 295(2):647-663.
    6. Enzmann GU, Benton RL, Woock JP, Howard RM, Tsoulfas P, Whittemo SR. Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol. 2005, 195(2):293-304.
    7.范晓棠,蔡文琴,徐海伟,杨忠,张金海. Noggin在大鼠中枢神经系统发育过程中的表达.解剖学报,2003,34(6):573-577.
    8.范晓棠,蔡文琴,徐海伟,杨忠,张金海. Noggin mRNA与BMP4 mRNA在不同发育年龄大鼠海马与大脑皮层的表达.第三军医大学学报,2003,25(16):1421-1423.
    9. Paxinos G,Watson C(ed).The rat brain in stereotaxic coordinates.2nd ed New York:Academic Press;1998, 67-135.
    10.蔡文琴、王伯云主编。实用免疫细胞化学.第一版.成都:四川科技出版社,1994.
    11. Miyagawa M, Katsuta O, Tsuchitani M, Yoshikawa K. Measurement of replicative DNA synthesis(RDS) by a 5-bromo-2’-deoxyuridine(BrdU) labeling technique for detection of hepatocyte proliferation. J Vet Med Sci. 1997, 59(1):45-49.
    12. Carbajo S, Orfao A, Alberca V, Ciudad J, Lopez A, Hernandez LC, Carbajo-Perez E. In vivo bromodeoxyuridine (BrdU) -labelling index of rat thymus: influence of different BrdU doses and exposure times as analyzed both in tissue sections and in single cell suspensions. Anal Cell Pathol. 1995, 8(1):15-25.
    13. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations and validation. Brain Res Rev. 2007, 53(1):198-214.
    14. Nakamura S, Takena Y, Yanno M. Application of bromodeoxyuridine (BrdU) and anti- BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemin cells in bone marrow. Oncology. 1991, 48(4):285-189.
    15. Gratzner HG. Monoclonal antibody to 5-bromo and 5-iodo-deoxyuridine: a new reagent for detection of DNA replication. Science.1982, 218(4571):474-475.
    16. Parent JM. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res. 2007, 163:529-540.
    17. Taupin P. Neurogenesis in the adult central nervous system. Comptes Rendus Biologies. 2006, 329(7):465-475.
    18. Bingham B, Liu D, Wood A, Cho S. Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells. Brain Res. 2005, 1058(1-2):167-177.
    19. Okazaki MM, Molnar P, Nadler JV. Related Articles. Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induces growth. J Neurophysiol.1999, 81(4):1645-1660.
    20. Parent JM. The role of seizure-induced neurogenesis in epileptogenesis and brainrepair. Epilepsy Res. 2002; 50(1-2):179-189.
    21. Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci.2005, 25(37):8390-8401.
    22. Schauwecker PE, Ramirez JJ, Steward O. Gentic dissection of the signals that induce synaptic reorganization. Exp Neurol. 2000, 161(1):139-152.
    23. Shetty AK,Turner DA.Fetal hippocampal cells grafted to kainite- lesioned CA3 region of adult hippocampus Suppress aberrant supragranular sproting of host mossy fibers. Exp Neurol.1997, 143(2): 231-245.
    24. Reeben M, Lauurikainen A, Hiltunen JO. The messengener RNAs for both glial cell line-derived neurotrophic factor receptors. C-ret and GDNFRαare induced in the rat brain in response to kainite–induced excitation. Neurosci.1998, 83(1):151-159.
    25. Gorter JA, van Vliet EA, Aronica E. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin immunoreactive neurons. Eur J Neurosci. 2001,13(4): 657-669.
    26. Zhang X, Cui SS, Wallace AE. Relations between brain pathology and temporal lobe epilepsy. J Neurosci. 2002, 22(14):6052-6061.
    27. Longo B, Mello LE. Blockade of pilocarpine-or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Let. 1997, 226:163-166.
    28. Scharfman HE, Sollas AE, Berger RE, Goodman JH, Pierce JP. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neurosci. 2003, 121(4):1017-1029.
    29. Chipperfield H, Cool S M, Bedi K, Nurcombe V. Adult CNS explants as a source of neural progenitors.Brain Research Protocols. 2005, 14 (3): 146-153.
    30. Balu DT, Lucki I. Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology, Neuroscience & Biobehavioral Reviews .In Press, Corrected Proof, Available online 19 August 2008.
    31. Seri B, Alvarez-Buylla A. Neural stem cells and the regulation of neurogenesis in the adult hippocampus. Clinical Neuroscience Research. 2002, 2(1-2):11-16.
    32. Fan XT, Xu HW, Cai WQ, Yang H, Liu S. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats. Neurosci Lett. 2004, 366(1):107-111.
    33. Lim AD,Tramontin AD,Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron.2000, 28(3): 713-726.
    34. Valenzuela DM, Economides AN, Rojas E, Lamb TM, Nunez L, Jones P, Lp NY, Espinosa R 3rd, Brannan CI, Gilbert DJ. Identification of mammalian Noggin and its expression in the adult nervious system. J Neurosci. 1995, 15(9):6077-6084.
    35. Oanchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, Mckay RD. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev.2001, 15(16):20.
    36. Busch C, Oppitz M, Sailer MH. BMP-2-dependent integration of adult mouse subventricular stem cells into the neural crest of chick and quail embryos. J Cell Sci. 2006, 119(Pt 21):4467-4474.
    37. Fan XT, Xu HW, Cai WQ,Yang Z,Zhang JH. Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus. Develop Brain Res. 2003,146(1-2):51-58.
    38. Cai Y, Wu P, Ozen M, Yu Y, Wang J, Ittmann M, Liu M. Gene expression profiling and analysis of signaling pathways involved in priming and differentiation of human neural stem cells. Neurosci. 2006, 138(1):133-148.
    39.阴金波,马玉新,徐海伟,等.海人酸致癫痫大鼠海马结构中noggin表达变化.解剖学杂志.2007, 30(4): 442-445.
    1. Christie BR, Cameron HA. Neurogenesis in the adult hippocampus. Hippocampus. 2006, 16(3):199-207.
    2. Bingham B, Liu D, Wood A, Cho S. Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells. Brain Res. 2005, 1058(1-2):167-177.
    3. Wiskott L, Rasch MJ, Kempermann G. A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus. 2006, 16(3): 329-343.
    4. Valenzuela DM, Economides AN, Rojas E, Lamb TM, Nunez L, Jones P, Lp NY, Espinosa R 3rd, Brannan CI, Gilbert DJ. Identification of mammalian Noggin and its expression in the adult nervious system. J Neurosci. 1995, 15(9):6077-6084.
    5. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, Mckay RD. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev.2001, 15(16):20.
    6. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000, 28(3):713-726.
    7. Liu SY, Zhang ZY, Song YC, Qing KJ, Zhang KC, An N, Zhou Z, Cai WQ, Yang H. SVZa neural stem cells differentiate into distinct lineages in response to BMP4. Exp Neurol. 2004, 190(1):109-121.
    8. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy.Pharmacology & Therapeutics. 1998, 80(1): 35-47.
    9. Chartier C, Degryse E, Gantzer M. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol. 1996, 70(7): 4805-4810.
    10. Bett AJ, Haddara W, Prevec L. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994, 91(19):8802-8806.
    11. Graham FL, Prevec L. Methods for construction of adenovirus vectors. Mol Biltechnol. 1995,3(3):207-220.
    12. He TC, Zhou S, da Costa LT. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998, 85(5): 2509-2514.
    13. Kremer EJ, Boutin S, Chillon M. Canine Adenovirus Vectors: an Alternative for Adenovirus-Midiated Gene Transfer. J Virol. 2000, 74(1):505-512.
    14. Spector JA, Mehrara BJ, Luchs JS. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg.2000, 44(5):522-528.
    15. Spector JA, Mehrara BJ, Luchs JS. Expression of adenovirally delivered gene products in healing osseous tissues. Ann Plast Surg.2000, 44(5):522-528.
    16. Martinez-Serrano A, Bjorklund A. Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 1997, 20(11): 530 - 538.
    17. Liu Y, Himes BT, Solowska J . Intraspinal delivery of neurotrolphin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol.1999, 158:9226.
    18. Fan XT, Xu HW, Cai WQ, Yang Z, Zhang J. Spatial and temporal patterns of expression of Noggin and BMP4 in embryonic and postnatal rat hippocampus. Dev Brain Res. 2003, 146(1-2):51-58.
    19. Kim AS, Pleasure SJ. Expression of the BMP antagonist Dan during murine forebrain development. Develop Brain Res. 2003, 145(1):159-162.
    20. Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides A N, Kwiatkowski W, Affolter M, Vale W W, Belmonte J C I, Choe S. Structural basis of BMP signalling inhibition by the cystine knot proten Noggin. Nature. 2002, 420(6916):636-642.
    21. Anderson RM, Stottmann RW, Choi M, Klingensmith J. Endogenous bone morphogenetic protein antagonists regulate mammalian neural crest generation andsurvival. Dev Dyn. 2006, 235(9):2507-2520.
    22.范晓棠,蔡文琴,徐海伟,杨忠,张金海. Noggin在大鼠中枢神经系统发育过程中的表达.解剖学报. 2003,34(6):573-577.
    23. Fan XT, Xu HW, Cai WQ, Yang H, Liu S. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats. Neurosci Lett. 2004, 366(1):107-111.
    24. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001, 21(17):6706-6717.
    25. Parent JM. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res. 2007, 163:529-540.
    26. Zhao C, Deng W, Gage FH. Mechanisms and Functional Implications of Adult Neurogenesis. Cell. 2008, 132(4): 645–660.
    1. Jessberger S, Aimone JB, Gage FH. Neurogenesis. Learning and Memory: A Comprehensive Reference. 2008, 4(41):839-858.
    2. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998, 18(19):7768-7778.
    3. Chipperfield H, Cool SM, Bedi K, Nurcombe V.Adult CNS explants as a source of neural progenitors.Brain Res Proto. 2005, 14 (3):146–153.
    4. Balu DT, Lucki I. Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Reviews.In Press, Corrected Proof, Available online 19 August 2008.
    5. Seri B, Alvarez-Buylla A. Neural stem cells and the regulation of neurogenesis in the adult hippocampus. Clinic Neurosci Res. 2002, 2(1-2):11-16.
    6. Alvarez-Buylla A, Seri B,Doetsch F. Identification of neural stem cells in the adult vertebrate brain. Brain Res Bulle. 2002,57(6):751-758.
    7. Praag HV, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in hippocampus. Nature. 2002, 415(6875): 1030-1034.
    8. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001, 410(6826): 372-376.
    9. Ninkovic J, G?tz M.Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Current Opinion in Neurobiology. 2007, 17(3):338-344.
    10. Lie DC, Colamarino SA, Song HJ, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH. Wnt signaling regulates adult hippocampal neurogenesis. Nature. 2005, 437:1370-1375.
    11. Toledo EM, Colombres M, Inestrosa NC. Wnt signaling in neuroprotection and stem cell differentiation. Progress in Neurobiology. 2008, 86(3):281-296.
    12. Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. Peripheral infusion of IGF-Ⅰselectively induces neurogenesis in the adult rat hippocampus. J Neurosci. 2000, 20(8):2896-2903.
    13. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ. Opiates inhibit neurogenesis inthe adult rat hippocampus. Proc Natl Acad Sci USA. 2000,97:7579-7584.
    14. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001, 21(17):6706-6717.
    15. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2003, 2(3):175-183.
    16. Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev. 2007, 54(1):1-18.
    17. Parent JM. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res. 2007;163:529-540
    18. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008, 132(4): 645–660.
    19. Gray WP, Sundstrom LE. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res.1998, 790(1-2): 52–59.
    20. Parent JM, Lowenstein DH. Seizure-induced neurogenesis: are more new neurons good for an adult brain. Prog Brain Res. 2002; 135:121-131.
    21. Hunsberger JG, Bennett AH, Selvanayagam E, Duman RS, Newton SS. Gene profiling the response to kainic acid induced seizures. Molecul Brain Res. 2005, 141(1):95–112.
    22. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experim Neuro.2005, 192 (2): 348–356.
    23. Nacher J, Alonso-Llosa G, Rosell DR, McEwen BS. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobio Aging. 2003, 24(2):273-284.
    24. Kitabatake Y, Sailor KA, Ming GL, Song H. Adult neurogenesis amd hippocampal memory function: new cells, more plasticity, new momories? Neurosurg Clin N Am. 2007, 18(1):105-113.
    25. Mlodzikowska-Albrecht J, Steinborn B, Zarowski M. Cytokines, Epilepsy and antiepileptic drugs-is there a mutual influence? Pharmacolog Reports.2007, 59: 129-138.
    26. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience.2008, In Press, Corrected Proof, Available online 3 July 2008.
    27. Scharfman H, Goodman J, McCloskey D. Ectopic granule cells of the rat dentate gyrus. Dev Neurosci. 2007, 29(1-2):14-27.
    28. Zhang L, Gu ZL, Qin ZH. Regulatory genes controlling neural stem cells differentiation into neuron. Neurosci Bullet. 2006, 22(5): 294-300.
    29. Ge S, Goh ELK, Sailor KA, Kitabatake Y, Ming GL, Song HJ. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature. 2006, 439(7076): 589-593.
    30. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. GABAergic Excitation Promotes Neuronal Differentiation in Adult Hippocampal Progenitor Cells. Neuron. 2005,47(6):803–815.
    31. Kempermann G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 2008, 31(4):163-169.
    32. Borges K, Shaw R , Dingledinea R.Gene expression changes after seizure preconditioning in the three major hippocampal cell layers. Neurobiolo Disease. 2007, 26 (1) :66–77.
    33. Elliott RC, Khademi S, Pleasure SJ, Parent JM, Lowenstein DH. Differential regulation of basic helix-loop-helix mRNAs in the dentate gyrus following status epilepticus. Neurosci. 2001.106(1):79-88.
    34. Shapiro LA, Korn MJ, Shan Z, Ribak CE. Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Reviews.2005, 48 (1):43–56.
    35. Sebastian Jessberger, Chunmei Zhao, et al. Seizure-Associated, Aberrant Neurogenesis in Adult Rats Characterized with Retrovirus-Mediated Cell Labeling.The Journal of Neuroscience. 2007, 27(35):9400–9407.
    36. Gong C, Wang TW, Huang HS, Parent JM. Reelin Regulates Neuronal ProgenitorMigration in Intact and Epileptic Hippocampus. Neurosci. 2007, 27(8):1803–1811.
    37. Lei Li.Direct-Current Electrical Field Guides Neuronal Stem/Progenitor Cell Migration. Stem Cells. 2008;26:2193–2200
    38. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell.2007, 130(6):1146–1158.
    39. Parent JM. The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res. 2002, 50 (1-2):179–189.
    40. Leung LS, Shen B. Hippocampal CA1 kindling but not long-term potentiation disrupts spatial memory performance. Learn Mem. 2006, 13(1):18-26.
    41. Crespel A, Rigau V, Coubes P, Rousset M C, Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M. Increased number of neural progenitors in human temporal lobe epilepsy. Neurobio Disease. 2005, 19(3):436-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700