驱动关节在康复机器人中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑卒中等疾病通常会导致患者肢体运动功能障碍,因为上肢康复机器人能够为患者提供有效的康复运动,促进患者肢体运动功能的恢复,所以社会对上肢康复机器人有日益强大的需求。然而,现有的上肢康复机器人还存在很多不足,如康复运动不够柔顺、安全,或是康复运动类型不够丰富等,因此,本文提出了气动肌肉驱动的外骨骼可穿戴式上肢康复机器人,其各关节(即单自由度的气动肌肉驱动关节)均由两根气动肌肉以双端反向对拉方式驱动,并采取了多种康复运动模式,解决了康复运动不够柔顺、安全和运动类型不够丰富等问题。论文的主要研究内容为:
     分析了气动肌肉的结构,研究了气动肌肉的静态和动态驱动特性,并对气动肌肉的往返驱动特性作了研究。对气动肌肉驱动关节系统中的张紧装置、钢丝绳与柔性套管间的摩擦力作了分析,研究了气动肌肉驱动关节的单端驱动特性、往返驱动特性,并建立了气动肌肉驱动关节在双端驱动方式下的准静态模型。
     依据患者在康复期各阶段的不同症状,提出了气动肌肉驱动关节的位置-位置、位置-力矩、力矩-力矩控制模式,其中,前两者主要应用于人体被动-机器人主动的康复运动(简称人体被动运动,或被动运动),力矩-力矩控制模式则主要用于人体主动-机器人被动的康复运动(简称人体主动运动,或主动运动)。
     针对经典PID控制器在气动肌肉驱动关节控制中的响应慢、超调大等问题,采用神经元PID控制器,在线调节控制器参数,提高了气动肌肉驱动关节的控制性能。由于经典PID与神经元PID在气动肌肉驱动关节的阶跃位置与力矩控制中,很难同时达到响应快与超调小,因此采用模糊控制器,提高了响应速度,抑制了超调。并采用模糊神经网络控制器,进一步提高了气动肌肉驱动关节的响应速度。
     在气动肌肉驱动关节的轨迹控制中,当气动肌肉驱动关节运动方向改变时,所提出的各类控制器的超调均很大,甚至抖动严重。针对该问题,提出了神经元PID与局部前馈控制结合的复合控制器,有效地抑制了超调,且无抖动。
     开发了上肢康复机器人控制系统软件,能对康复机器人进行的主动、被动运动控制,同时记录患者的康复运动信息及数据。此外,采用非特定人语音识别技术,实现了康复机器人的语音控制。
Disease such as stroke often results in patients with hemiplegia. As upper limb rehabilitation robot can provide patients with effective rehabilitation exercise for recovery, the demand for upper limb rehabilitation robot is increasing nowadays. However, the existing upper limb rehabilitation robots are not compliant and secure enough, or can only provide simple rehabilitation exercises. Therefore, this dissertation proposes an exoskeleton wearable upper limb rehabilitation robot with pneumatic muscle driven, and in which each joint (a single degree of rehabilitation arm) is managed by two pneumatic muscles in antagonistic pairs. The issues that the rehabilitation exercises are not compliant, secure and rich enough are solved. The major works are organized as follows:
     The structure of pneumatic muscle and it's static and dynamic characteristics are analyzed. The reciprocating driving characteristics of pneumatic muscle are also studied. The tensioning device and friction between wire rope and flexible pipe of the rehabilitation arm system are analyzed. The driving characteristics and properties of the rehabilitation robot of single-ended driving and double-side are studied.
     Based on the symptoms in different phases of hemiplegic patients in rehabilitation, the control modes of position-position of the arm, location-torque and torque-torque are proposed. The first two are mainly used in the patient-passive-robot-active rehabilitation exercises (patient passive motion or passive motion for short). The torque-torque control mode is primarily used in patient-active-robot-passive motion (patient active motion or active motion for short) of the rehabilitation robot.
     For the limitations such as slow response and big overshoot of classic PID controller, neural PID controllers are applied to the control of rehabilitation arm and the control performances are increased, which are benefitted by the advantages of neural PID such as online regulating of its parameters. For classic PID and neural PID, the characteristics of responding quickly and overshoot of small control effect could not be achieved at the same time in control of rehabilitation arm. Fuzzy controllers are applied to position and torque control of rehabilitation arm, which improve the speed of response and almost eliminate overshoot. Furthermore, fuzzy neural network controller achieves more quick response in position control of rehabilitation arm.
     In tracking control of the rehabilitation arm, the overshoots of all the above controllers are greate when the direction of the rehabilitation arm is changing, and even with serious vibration. To address this problem, a new controller combines neural PID and feedforward control is proposed and the overshoot decreases to a acceptable value without vibration in tracking control of the rehabilitation arm.
     The control software of upper limb rehabilitation robot is developed, which enables the active and passive motion control of the rehabilitation robot. At the same time, the patient's rehabilitation information and data are recorded. In addition, speaker independent speech recognition technology is adopted which enables speech control of the rehabilitation robot.
引文
[1]Broeks J.G., Lankhorst G.J., Rumping K., Prevo A.J., The long-term outcome of arm function after stroke: results of a follow-up study. Disability and Rehabilitation, 1999.21(8):p.357-364.
    [2]National Institute of Neurological Disorders or Stroke. http://www.ninds.nih.gov /disorders/stroke/stroke.htm.
    [3]Michael P.B., Bruce H.D., Julien B., Recovery after Stroke. London: Cambridge University Press.2005. p.656.
    [4]卓大宏,中国康复医学.北京:华夏出版社.1990.p.31.
    [5]黄如训,苏镇培,脑卒中.北京:人名卫生出版社.2001.p.1-2,298.
    [6]陈景藻,康复医学.北京:高等教育出版社.2001.p.26-177.
    [7]Kwakkel G., Wagenaar R.C., Twisk J.W., Lankhorst G.J., Koetsier J.C., Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. The Lancet,1999.354(9174): p.191-196.
    [8]Kahn L.E., Rymer W.Z., Reinkensmeyer D.J., Adaptive assistance for guided force training in chronic stroke.26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2004. p.2722-2725.
    [9]Carr J.H., Shepherd R.B., Stroke Rehabilitation:Guidelines for Exercise and Training to Optimize Motor Skills. London: Butterworth-Heinemann.2003. p.1-8.
    [10]朱镛连,康复治疗应成为脑血管意外治疗的组成部分.中华内科杂志,1996.8:p.507.
    [11]Taub E., Miller N.E., Novack T.A., Cook E.W.3rd, Fleming W.C., Nepomuceno C.S., Connell J.S., Crago J.E., Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation,1993.74(4):p.347-354.
    [12]Porter R., The corticomotoneuronal component of the pyramidal tract: corticomoioneuronal connections and functions in primates. Brain ResRev,1985. 10:p.1-26.
    [13]倪朝民,博佳,韩瑞,高晓平,刘成英,陈和木,葛建平,康复治疗对脑卒中患者上肢功能的恢复.中华物理医学与康复杂志,2000.22(4):p.204-206.
    [14]高聪,蒲蜀湘,朱德仪,早期康复治疗对脑卒中偏瘫患者肢体功能及日常生活能力的影响.中国康复医学杂志,2001.16(1):p.27-29.
    [15]郑停停,脑卒中患者的康复疗效分析.中国康复理论与实践,1999.5(1):p.28-30.
    [16]Guerrero C.D.R., Marinero J.C.F., Turiel J.P., Robot adaptive behavior to suit patient needs and enable more intensive rehabilitation tasks IEEE International Conference on Mechatronics.2009. p.1-6.
    [17]N. Byl, J. Roderick, O.Mohamed, M. Hanny, J.Kotler, A. Smith, M. Tang, G. Abrams, Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: Patients stable poststroke. Neurorehabilitation and Neural Repair,2003.17(3):p.176-191.
    [18]Stevent P.Wise, Motor control. Encyclopedia of the Human Brain,2001.3:p.1-21.
    [19]李大年,缺血性脑血管病治疗进展.山东医药,2000.40(1):p.35-42.
    [20]Stokes M., Neurological Physiotherapy. London: Mosby International Limited. 1998.
    [21]任宇鹏,辅助上肢运动功能康复机器人的控制和评价系统研究.硕士学位论文.2004,清华大学:北京.p.54.
    [22]Cozens J.A., Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering,1999.7(2):p. 254-256.
    [23]Colombo R., Pisano F., Micera S., Mazzone A., Delconte C., Carrozza M.C., Dario P., Minuco G., Robotic techniques for upper limbs evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005.13(3):p.311-324.
    [24]N.J.A. Van Exel, M.A. Koopmanschap, W. Scholte Op Reimer, L.W. Niessen, R. Huijsman, Cost-effectiveness of integrated stroke services. QJM-J.Association of Physicians,2005.98(6):p.415-425.
    [25]B.T. Valpe, H.I. Krebs, N. Hogan, L. Edclstein, C. Diels, M.L. Aisen, A novel approach to stmke rehabilitation:Robataided sensorimotor stimulation. Nmrology, 2000.54:p.1938-1944.
    [26]S.D. Fasoli, H.I. Krebs, I. Stein, W.R. Frontera, R. Hughes, N.Hogan, Robotic therapy for chronic motor impairments after stroke:follow-up results. Archives of Physical Medicine and Rehabilitation,2004.
    [27]S.D. Fasoli, H.I. Krebs, J. Stein, W.R. Fmntera, N. Hogan, Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives of Physical Medicine and Rehabilitation,2003.84:p.477-482.
    [28]M. Ferraro, J.J. Palwmlo, I. Krol, H.I. Krebs, N. Hogan, B.T. Volpe, Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology,2003.61:p.1604-1607.
    [29]Sugar T.G., Jiping He, Koeneman E.J., Koeneman J.B., Herman R., Huang H., Schultz R.S., Herring D.E., Wanberg J., Balasubramanian S., Swenson P., Ward J.A., Design and Control of RUPERT:A Device for Robotic Upper Extremity Repetitive Therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007.15(3):p.336-346.
    [30]Caihua Xiong, Xianzhi Jiang, Ronglei Sun, Xiaolin Huang, Youlun Xiong, Control methods for exoskeleton rehabilitation robot driven with pneumatic muscles. Industrial Robot:,2009.36(3):p.210-220.
    [31]Young-Min Kim, Sung-Yoon Jung, Inhyuk Moon, Design of a Wearable Upper-Limb Rehabilitation Robot using Parallel Mechanism. ICCAS-SICE.2009. p. 785-789.
    [32]Culmer P.R., Jackson A.E., Makower S., Richardson R., Cozens J.A., Levesley M.C., Bhakta B.B., A Control Strategy for Upper Limb Robotic Rehabilitation With a Dual Robot System. IEEE/ASME Transactions on Mechatronics,2010.15(4):p. 575-585.
    [33]Umemura A., Saito Y., Fujisaki K., A Study on Power-Assisted Rehabilitation Robot Arms Operated by Patient with Upper Limb Disabilities. IEEE International Conference on Rehabilitation Robotics.2009. p.451-456.
    [34]Tondu B., Lopez P., Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Systems Magazine,2000.20(2):p.15-38.
    [35]B. Tondu, P. Lopez, Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Syst. Mag.,2000.20(2):p.15-38.
    [36]Xiaocong Zhu, Guoliang Tao, Bin Yao, Jian Cao, Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica,2008.44:p. 2248-2257.
    [37]Balasubramanian S., Ward J., Sugar T., Jiping He, Characterization of the Dynamic Properties of Pneumatic Muscle Actuators. IEEE 10th International Conference on Rehabilitation Robotics.2007. p.764-770.
    [38]Vo-Minh T., Tjahjowidodo T., Ramon H., Van Brussel H., A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model. IEEE/ASME Transactions on Mechatronics,2010. PP(99):p.1-10.
    [39]Plattenburg D.H., Pneumatic actuators:a comparison of energy-to-mass ratio's.9th International Conference on Rehabilitation Robotics.2005. p.545-549.
    [40]Tae-Tong Choi, Jeong-Jung Kim, Ju-Jang Lee, Study of the effect of stiffness modification at pneumatic muscle actuated manipulator. SICE Annual Conference. 2008. p.2007-2012.
    [41]Samarasekara A.P.K.G.S., Static analysis of the Pneumatic Muscles used in robot arms. International Conference on Industrial and Information Systems.2009. p. 516-519.
    [42]俞园峰,气动肌肉驱动特性研究及其嵌入式控制器的设计.硕士学位论文.2009,华中科技大学:武汉.p.7,11.
    [43]Aschemann H., Schindele D., Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators. IEEE Transactions on Industrial Electronics,2008.55(11):p.3855-3864.
    [44]Jia-Fan Zhang, Can-Jun Yanga, Ying Chena, Yu Zhanga, Yi-Ming Donga, Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics,2008.18:p.448-457.
    [45]Situm Z., Herceg S., Design and control of a manipulator arm driven by pneumatic muscle actuators.16th Mediterranean Conference on Control and Automation.2008. p.926-931.
    [46]V. L. Nickel, J. Perry, A. L. Garrett, Development of useful function in the severely paralysed hand. J. Bone Joint Surg,1963.45(5):p.933-952.
    [47]隋立明,王祖温,包钢,气动肌肉驱动仿人臂的设计.液压与气动,2004.9:p.7-8.
    [48]Xiaocong Zhua, Guoliang Tao, Bin Yao, Jian Cao, Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica,2008.44:p. 2248-2257.
    [49]Xuan-Yin Wang, Yang Zhang, Xiao-Jie Fu, Gui-Shan Xiang, Design and Kinematic Analysis of a Novel Humanoid Robot Eye Using Pneumatic Artificial Muscles. Journal of Bionic Engineering,2008.5:p.264-270.
    [50]K, Inoue, Rubbertuators and applications of robots.proeeedings of the 4th Symposium on Robotics Researeh.1987. p.57-63.
    [51]S., Kawamura K., Peters Ii R.A., Bagehi, Intelligent robotic systems in sevriee of the disabled. IEEE TransactionS on Rehabilitation Engineering,1995.3(1):p.14-21.
    [52]Alofrda., Northrup S., Kawamura K., Musie Playing robot. Proeeeding of the International Conefrenee on Field and Service Robotics.1999. p.174-178.
    [53]Deepak Trivedi, Dustin Dienno, Christopher D. Rahn, Optimal, Model-Based Design of Soft Robotic Manipulators. Journal of Mechanical Design,2008.130(9): p.091402
    [54]Michael Van Damme, Bram Vanderborght, Bjorn Verrelst, Ronald Van Ham, Frank Daerden,Dirk Lefeber, Proxy-based Sliding Mode Control of a Planar Pneumatic Manipulator. The International Journal of Robotics Research,2009.28:p.266.
    [55]Bram Vanderborght, Bjorn Verrelst, Ronald Van Ham, Michael Van Damme, Dirk Lefeber, Objective locomotion parameters based inverted pendulum trajectory generator. Robotics and Autonomous Systems,2008.56:p.738-750.
    [56]Inoue, K., Rubbertuators and applications for robots.in Proc.4th Symp. Robot. Res. 1987. p.57-63.
    [57]B. Tondu, V. Boitier, P. Lopez, Naturally compliant robot-arms actuated by McKibben artificial muscles.in Proc. IEEE-SMC Conf.1994. p.2635-2640.
    [58]B. Tondu, S. Ippolito, J. Guiochet, A. Daidie, A seven-degrees-of freedom robot arm driven by pneumatic artificial muscles for humanoid robots. The International Journal of Robotics Research 2005.24(4):p.257-274.
    [59]Ching-Ping Chou, Hannaford B., Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation,1996. 12(1):p.90-102.
    [60]D.G. Caldwell, N. Tsagarakis, G. A. Medrano-Cerda, Biomimetic actuators: Polymeric pseudo muscular actuators and pneumatic muscle actuators for biological emulation. Mechatronics,2000.10:p.499-530.
    [61]Carbonell P, Jiang Zp, Repperger Dw, A fuzzy backstepping controller for a pneumatic muscle actuator system. ISIC'01,2001.1:p.353-358.
    [62]Chen Sw, Lilly Jh, Fuzzy PD+I learning control for a pneumatic muscle. In:ICFS'03,2003.1:p.278-283.
    [63]Xing K., Jian Huang, Yongji Wang, Jiping He, Qi Xu, Jun Wu, Sliding Mode Tracking for Actuators Comprising Pneumatic Muscle and Torsion Spring. IEEE International Conference on Robotics and Biomimetics.2009. p.420-425.
    [64]Lilly, J.H., Liang Yang, Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration IEEE Transactions on Control Systems Technology, 2005.13(4):p.550-558.
    [65]Jh, Lilly, Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. IEEE Trans.Neural Systems and Rehabilitation Engineering,2003. 11(3):p.333-339.
    [66]Tu Diep Cong Thanh, Kyoung Kwan Ahn, Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics,2006.16:p.577-587.
    [67]张秀峰,季林红,王景新,辅助上肢运动康复机器人技术研究.清华大学学报(自然科学版),2006.46(11):p.1864-1867.
    [68]王岚,手臂康复训练机器人控制及实验研究.硕士学位论文.2007,哈尔滨工程大学:哈尔滨.p.9.
    [69]张立勋,杨勇,张今瑜,佟杰,手臂康复机器人阻抗控制实验研究.哈尔滨工程大学学报,2008.29(1):p.69-72,84.
    [70]Ming-Shaung Ju, Chou-Ching K. Lin, Dong-Huang Lin, Ing-Shiou Hwang, Shu-Min Chen, A rehabilitation robot with force-position hybrid fuzzy controller:hybrid fuzzy control of rehabilitation robot IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005.13(3):p.349-358.
    [71]Pin-Cheng Kung, Ming-Shaung Ju, Chou-Ching K. Lin, Design of a forearm rehabilitation robot. IEEE 10th International Conference on Rehabilitation Robotics. 2007. p.228-233.
    [72]Haraguchi M., Kikuchi T., Mihara M., Hatakenaka M., Miyai I., Furusho J., Development of evaluation system of the motor function for upper limbs using 3-D rehabilitation robot "EMUL" and near-infrared spectroscopy "NIRS". IEEE International Conference on Rehabilitation Robotics.2009. p.566-570.
    [73]Kikuchi T., Furusho J., Oda K., Ying Jin, Chengqiu Li, Morita T., Shichi N., Ohyama Y., Inoue A., Development of a 6-DOF Rehabilitation Robot and its Software for Clinical Evaluation Based on Virtual Reality. IEEE International Conference on Complex Medical Engineering.2007. p.1285-1288.
    [74]Jackson A.E., Holt R.J., Culmer P.R., Makower S.G., Levesley M.C., Richardson R.C., Cozens J.A., Williams M.M., Bhakta B.B., Dual robot system for upper limb rehabilitation after stroke:The design process. Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci.2007. p.845-857.
    [75]Loureiro R.C.V., Harwin W.S., Reach & Grasp Therapy:Design and Control of a 9-DOF Robotic Neuro-rehabilitation System. IEEE 10th International Conference on Rehabilitation Robotics.2007. p.757-763
    [76]Schmidt H., Hesse S., Werner C., Bardeleben A., Upper and lower extremity robotic devices to promote motor recovery after stroke-recent developments Proceedings of the 26th Annual International Conference of the IEEE EMBS (Engineering in Medicine and Biology Society).2004. p.4825-4828.
    [77]N. Hogan, H.I. Krebs, Interactive robots for neuro-rehabilitation. Restorative Neurology and Neuroscience,2004.22(3):p.349-358.
    [78]Lum P.S., Burgar C.G., Shor P.C., Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004.12(2):p.186-194.
    [79]Lum P.S., Burgar C.G., Van Der Loos M., Shor P.C., Majmundar M., Yap R., The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke IEEE 9th International Conference on Rehabilitation Robotics.2005. p.511-514.
    [80]王耀兵,季林红,黄靖远,一种神经康复机器人的研制.机械科学与技术,2005.24(2):p.139-141.
    [81]Xianzhi Jiang, Caihua Xiong, Ronglei Sun, Youlun Xiong, Characteristics of the Robotic Arm of a 9-DoF Upper Limb Rehabilitation Robot Powered by Pneumatic Muscles. ICIRA 2010, International Conference on Intelligent Robotics and Applications.2010. p.463-474.
    [82]Jiang Xianzhi, Xiong Caihua, Sun Ronglei, Xiong Youlun, Fuzzy Hybrid Force-Position Control for the Robotic Arm of an Upper Limb Rehabilitation Robot Powered by Pneumatic Muscles. ICEEE 2010, International Conference on E-Product, E-Service and E-Entertainment.2010. p.3785-3788.
    [83]王东岩,李庆玲,杜志江,孙立宁,外骨骼式上肢康复机器人及其控制方法研究.哈尔滨工程大学学报,2007.28(9):p.1008-1013.
    [84]Qingling Li, Dongyan Wang, Zhijiang Du, Yu Song, Lining Sun, sEMG Based Control for 5 DOF Upper Limb Rehabilitation Robot System. IEEE International Conference on Robotics and Biomimetics.2006. p.1305-1310.
    [85]Toth A., Fazekas G., Arz G., Jurak M., Horvath M., Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB:report of the first clinical test and the follow-up system improvement IEEE 9th International Conference on Rehabilitation Robotics.2005. p.127-130.
    [86]Alexandre Deneve, Said Moughamir, Lissan Afilal, Janan Zaytoon, Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine,2008.89(2):p.202-214.
    [87]Guidali M., Schmiedeskamp M., Klamroth V., Riener R., Assessment and training of synergies with an arm rehabilitation robot. IEEE International Conference on Rehabilitation Robotics.2009. p.772-776.
    [88]Yu-Peng Ren, Hyung-Soon Park, Li-Qun Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. IEEE International Conference on Rehabilitation Robotics.2009. p. 761-765.
    [89]Perry J.C., Rosen J., Burns S., Upper-Limb Powered Exoskeleton Design. IEEE/ASME Transactions on Mechatronics,2007.12(4):p.408-417.
    [90]Sanchez R.J., Jiayin Liu, Rao S., Shah P., Smith R., Rahman T., Cramer S.C., Bobrow J.E., Reinkensmeyer D.J., Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment. IEEE Transactions on Neural and Rehabilitation Engineering,2006.14(3):p.378-389.
    [91]王东岩,李庆玲,杜志江,孙立宁,5 DOF穿戴式上肢康复机器人控制方法研究.哈尔滨工业大学学报,2007.39(9):p.1383-1387.
    [92]Jiping He, Koeneman E.J., Schultz R.S., Herring D.E., Wanberg J., Huang H.,Sugar T., Herman R., Koeneman J.B., RUPERT:a device for robotic upper extremity repetitive therapy. IEEE 27th Annual International Conference of the Engineering in Medicine and Biology Society.2005. p.6844-6847.
    [93]Balasubramanian S., He Huang, Jiping He, Quantification of Dynamic Property of Pneumatic Muscle Actuator for Design of Therapeutic Robot Control. Proceedings of the 28th IEEE EMBS Annual International Conference.2006. p.2734-2737.
    [94]Norihiko Saga, Takashi Saikawa, Hideharu Okano, Flexor Mechanism of Robot Arm Using Pneumatic Muscle Actuators. IEEE International Conference on Mechatronics & Automation.2005. p.1261-1266.
    [95]Doumit M., Fahim A., Munro M., Analytical Modeling and Experimental Validation of the Braided Pneumatic Muscle. IEEE Transactions on Robotics,2009.25(6):p. 1282-1291.
    [96]S. Davis, N. Tsagarakis, J. Canderle, D.G. Caldwell, Enhanced modeling and performance in braided pneumatic muscle actuators. The International Journal of Robotics Research 2003.22(3):p.213-227.
    [97]Festo catalog. Fluidic muscle DMSP/MAS. http://www.festo.com.
    [98]杨叔子,杨克冲,吴波,熊良才,机械工程控制基础(第四版).武汉:华中科技大学出版社.2003.p.71,74,190.
    [99]顾德明,缪进昌,丁誉声,丁山,运动解剖学图谱.北京:人民体育出版社.2006.p.18,68-75,194-195.
    [100]摩擦系数.http://www.chinabaike.com/article/16/184/2007/2007021242558.html.
    [101]谢得利,现代康复护理.北京:科学技术文献出版社.2001.p.28-122.
    [102]何静杰,刘璇,脑卒中偏瘫侧上肢的评定与康复.中国康复理论与实践,2004.10(9):p.571-572.
    [103]王辉,王科俊,于立君,减摇鳍模糊免疫自适应PID控制器设计及仿真研究.汉军工程大学学报,2007.19(4):p.17-29.
    [104]阮勇,一类模糊PID控制器的设计与分析.信息与电子工程,2007.5(3):p.216-219.
    [105]Lee S.-H., Kim S.-G., Lim J.-T., Fuzzy-logic-based fast gain-scheduling control for nonlinear suspension systems. IEEE Transactions on Industrial Electronics,1998. 45(6):p.953-955.
    [106]Rugh W.J., Analytical framework for gain scheduling. IEEE Control Systems Magazine,1991.11(1):p.79-84.
    [107]Zhong-Li Xu, Gu Fang, Fuzzy-Neural Impedance Control for Robots. Lecture Notes in Control and Information Sciences,2004.299:p.263-275.
    [108]席爱明,模糊控制技术.西安:西安电子电子科技大学出版社.2008.p.3-4,86-91,206.
    [109]喻宗泉,喻晗,神经网络控制.西安:西安电子科技大学出版社.2009.p.9-12,53,138.
    [110]Yamada T., Yabuta T., Neural network controller using auto tuning method for nonlinear functions. IEEE Transactions on Neural Networks,1992.3(4):p.595-601.
    [111]Rong-Jong Wai, Chia-Ming Liu, Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to Path-Tracking Control of Nonholonomic Mobile Robot. IEEE Transactions on Industrial Electronics,2009.56(7):p.2667-2683.
    [112]Chaio-Shiung Chen, Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators IEEE Transactions on Industrial Electronics,2008.55(9):p.3402-3414.
    [113]Faa-Jeng Lin, Po-Huan Chou, Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network. IEEE Transactions on Industrial Electronics,2009.56(1):p.178-193.
    [114]Du Hai Ping, Zhang Nong, Application of evolving Takagi -Sugeno fuzzy model to nonlinear system identification. Applied Soft Computing Journal,2008.8(1):p. 676-686.
    [115]Takagi T., Sugeno M., Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern.,,1985. SMC-15:p. 116-132.
    [116]Lin C.-T., Lee C.S.G., Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers,1991.40(12):p.1320-1336.
    [117]贾立,陶鹏业,邱铭森,基于神经模糊系统的自适应前馈-反馈控制系统设计.华东理工大学学报(自然科学版),2009.35(3):p.435-441.
    [118]Qi Hao, Liwen Guan, Liping Wang, Hua Shao, Dynamic Feedforward Control of the 2-DOFs Parallel Manipulator of a Hybrid Machine Tool.8th IEEE International Conference on Control and Automation (ICCA).2010. p.528-533.
    [119]Mohammadzaheri M., Lei Chen, Behnia-Willison F., Aryan P., A design approach for feedback-feedforward control systems. IEEE International Conference on Control and Automation.2009. p.2266-2271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700