机器人辅助上肢康复训练的量化评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人等自动化技术逐步引入到康复医学临床训练中,在康复机器人平台基础上实现对患者肌力的定量评价和提供针对性训练方案已经成为康学医学的研究重点。本文为解决肌力的定量评价问题,提出了同体对侧定量评价方法,完成了患者偏瘫上肢肘关节肌力建模及定量评价,针对偏瘫患者轨迹训练的机理进行了实验研究。本文主要内容如下:
     1、在对偏瘫患者上肢定量评价中的存在问题进行分析的基础上,对肌肉肌力定量评价模型及其用于临床可行性进行了讨论;
     2、提出了基于同体对侧的评价方法,完成了偏瘫患者健侧和患侧上肢运动学和肌电评价比较实验进行证明,并与健康人组上肢运动过程中的运动学和肌电特征进行对比分析。实验结果表明偏瘫患者的健侧肢体与健康人的生理特征有较高的相关性,而与患侧肢体有明显差异,采用患者健侧上肢生理学参数对患侧上肢进行评价具有可行性;
     3、完成了基于肌电信号的肌力模型的理论分析,并提出针对患者患侧肌力评定的改进方法,搭建了实验环境成功解决面临的软硬件问题,完成了初步实验,证明了实验方法和实验平台的可行性,最后讨论了建模的可能误差来源,为将来进一步利用基于肌电信号的肌力模型进行评价打下基础。
     4、针对目标轨迹下同体对侧肢体肌群的定量化分析进行了相关研究,在机器人平台的轨迹与临床量表评价对应关系的研究基础上,提出了基于机器人轨迹的评价指标,并完成相关患者实验,实验结果证明轨迹评价指标的可行性。完成了同体对侧上肢在不同轨迹运动下肌电分析,在此基础上提出了同体对侧上肢肌群的定量化评价指标,实验结果表明其与临床量表评价有直接对应关系。
With the introduction of robot automation technology to clinical training in rehabilitation medicine, the quantitative evaluation of muscle strength and targeted training program based on rehabilitation robot platform have became research Highlight in rehabilitation medicine. In order to solve these problems, a quantitative evaluation method for the contralateral limb characteristic provides quantitative assessment of muscle strength, we also conducted experiment for computing the elbow moment and related muscle strength of hemiplegic upper limb modeling in patients, and then we evaluated effect of different training tracks for the mechanism of hemiplegic patients. These main results in this paper are as follows:
     1. Including the tendency of rehabilitation industry, demand for clinical practice and basic theoretical research, we firstly introduced the status of rehabilitation medicine and the development in the future, then we analyzed quantitative evaluation model of muscle strength and confirmed the value of clinical application, which are based on problems that are the most frequently mentioned in Rehabilitation research.
     2. We proposed a kind of quantitative evaluation method which is based on contralateral limb physiological characteristic; we also have finished kinematics and electromyography evaluation tests on upper limb of clinical hemiplegic patients compared to upper limb movement kinematics and electromyography characteristics of healthy group of in a comprehensive analysis. Experimental results prove that the healthy sides of hemiplegic patients have higher correlation with the physiological characteristics of healthy people which are markedly different from another side of patients. We could get evaluation method in which physiological parameters can be used on the contralateral upper limb.
     3. Based on the evaluation method which is based on contralateral limb physiological characteristic, we proposed an EMG-driven musculoskeletal model to estimate muscle forces and elbow joint moments in patients, we made models of affected limb muscles and elbow joint in patients and counted muscle strength and moments by this model. The model adopts physiological measures of contralateral limb in patients to be calculated parameters in order to estimate affected limb muscle strength and moment. This EMG-driven musculoskeletal model will be the effective assessment methods for clinical quantitative evaluation of muscle strength.
     4. Using a quantitative relationship between the training track and activation of upper body muscles,we calculated the trajectories and EMG features of patients during the training mission in order to make a scientific, targeted rehabilitation of track design, which could provide different training track to different patients.
     In this paper, our research objective is to build the quantitative evaluation based on the robot training platform, we completed theoretical analysis and experiment verification on three related subject, including the evaluation method which is based on contralateral limb physiological characteristic, the quantitative evaluation of residual muscle strength and trajectory analysis, finally formed a complete quantitative evaluation system.
引文
[1]朱镛连.神经康复学.北京:人民军医出版社, 2001: 1-335
    [2]于兑生.偏瘫康复治疗技术图解(第2版).华夏出版社, 2005:1:240
    [3]缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论.中国康复理论与实践, 1995~1998
    [4] Emanuel Todorov, Michael I.Jordan, Optimal feedback control as a theory of motor coordination, nature neuroscience. volume 5 no 11.2002
    [5] Emanuel Todorov, Michael I.Jordan, Smoothness Maximization Along a Predefined Path Accurately Predicts the Speed Profiles of Complex Arm Movements, The American Physiological Society, 1998
    [6] Reza Shadmehr, Thomas Brashers-Krug,Functional Stages in the Formation of Human Long-Term Motor Memory, Society for Neuroscience, 1996
    [7] Reza Nezafat, Reza Shadmehr, Henry H. Holcomb, Long-term adaptation to dynamics of reaching movements:a PET study, Exp Brain Res (2001) 140:66–76
    [8] Scheidt, RA, Dingwell, JB & Mussa-Ivaldi, FA Learning to Move Amid Uncertainty, J Neurophysiol 86: 971-985.
    [9] Wei, Y, Patton, JL, Force Field Training to Facilitate Learning Visual Distortions: A Sensory Crossover Experiment, IEEE Haptics Symposium of the IEEE Virtual Reality Conference.2007
    [10] Wei, Y, Bajaj, P, Scheidt, R, Patton JL, "Visual Error Augmentation for Enhancing Motor Learning and Rehabilitative Relearning", Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA.
    [11] Scheidt, RA, Conditt, MA, Secco, EL & Mussa-Ivaldi, FA, Interaction of visual and proprioceptive feedback during adaptation of human reaching movements (opens new window) . Journal of Neurophysiology, 93, 3200-3213.
    [12] Hogan N, Krebs H I, Charnnarong J, et al. MIT-MANUS: A Workstation for Manual and TrainingⅠ. IEEE International Workshop on Robot and Human Communication. 1992, 161–165
    [13] Krebs H I, Hogan N, Aisen M L, Volpe B T. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1): 75-87
    [14]阳小勇,王子羲,季林红,毕胜.上肢肩肘关节运动功能的综合性运动学评价指标.清华大学学报(自然科学版),2006,46(2):172– 175
    [15]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人.机械设计与制造,2004,No.6:47-49
    [16]杨年峰.人体运动协调规律及其参数化描述:[博士学位论文].北京:清华大学精密仪器与机械学系,2001
    [17]杨义勇,王人成,贾晓红,金德闻.人体肘关节复合运动的建模及协调控制.清华大学学报(自然科学版). 2004,44:653-656
    [18]陈里宁.实现多位姿训练的上肢康复机器人平台的研制:[硕士学位论文].北京:清华大学精密仪器与机械学系,2008
    [19]张宇博.量化评估偏瘫患者上肢运动功能的肌电分析方法研究:[硕士学位论文].北京:清华大学精密仪器与机械学系,2006
    [20]郭立云.神经康复机器人辅助训练轨迹的评价与规划方法研究:[硕士学位论文].北京:清华大学精密仪器与机械学系,2006
    [21]姚重阳.上肢康复运动训练对关节运动与肌肉作用规律的研究:[硕士学位论文].北京:清华大学精密仪器与机械学系,2008
    [22]于兑生,康复医学评价手册,华夏出版社,1993
    [23] Toshiyuki Fujiwara,, Yuko Kasashima, Motor Improvement and Corticospinal Modulation Induced by Hybrid Assistive Neuromuscular Dynamic Stimulation (HANDS) Therapy in Patients With Chronic Stroke, Neurorehabilitation and Neural Repair, Volume 23 Number 2, February 2009
    [24] Gillen,李铁山,脑卒中康复基于功能的方法,北京大学医学出版社,2007年
    [25] H.S. Jorgensen, H. Nakayama, H.O. Raaschou, T.S. Olsen, Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1995, 76(1): 27-32
    [26] H.S. Jorgensen, H. Nakayama, H.O. Raaschou, T.S. Olsen, Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1995, 76(1): 27-32
    [27] Craig Carignan, Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation, 2005 IEEE Trans Biomed Eng.
    [28] Michael Bernhardt, Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT,2006 IEEE Trans Biomed Eng.
    [29] Song R, Variation of Muscle Coactivition Patterns in Chronic Stroke During Robot-Assited Elbow Training, Archives of Physical Medicine and Rehabilitation, 2007.
    [30]王子羲.生物技术系统在医疗及体育科学领域中的应用:[博士后研究报告].北京:清华大学精密仪器与机械学系,2005
    [31]黄松波,王茂斌.急性脑卒中偏瘫的康复评价(续一).现代康复, 1999, 3(2): 136-140
    [32]黄松波,王茂斌.急性脑卒中偏瘫的康复评价(续二).现代康复, 1999, 3(3): 262-263
    [33]黄松波,王茂斌.急性脑卒中偏瘫的康复评价(续三).现代康复, 1999, 3(4): 388-389
    [34]黄松波,王茂斌.急性脑卒中偏瘫的康复评价(待续).现代康复, 1999, 3(1): 7-9
    [35] Kwakkel G, Wagenaar R C, Koelman T W, et al. Effects of Intensity of Rehabilitation After Stroke. Stroke, 1997,28: 1550-1556
    [36] Patricia M.Davies,偏瘫患者的全面康复治疗,华夏出版社, 2007
    [37] M. C. Cirstea, MD, PhD, and M. F. Levin, PhD, Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors, Neurorehabil Neural Repair 2007
    [38] De Luca C J. The use of surface electromyography in biomechanics. Journal of applied biomechanics, 1997, 13: 135-163
    [39] Karlsson J S, Gerdle B, Akay M. Analyzing surface myoelectric signals recorded during isokinetic contractions. IEEE engineering in medicine and biology. 2001, 20(6): 97-105
    [40] K.N. An, B.M. Kwak, E.Y. Chao, B.F. Morrey, Determination of muscle and joint forces: a new techniques to solve the indeterminate problem, Trans. ASME J. Biomech. Eng. 106 (1984) 364–367.
    [41] M.G. Pandy, F.E. Zajac, E. Sim, W. Levine, An optimal control model for maximum-height human jumping, J. Biomech. 23(1990) 1185–1198.
    [42] H.H.C.M. Savelberg, W. Herzog, Artificial neural networks used for the prediction of muscle forces from EMG-patterns, in: K.Hakkinen, K.L. Keskinen, P.V. Komi (Eds.), Proceedings of the XVth Congress of the International Society of Biomechanics, Jyvaskyla, Finland,1995, pp. 810–811.
    [43] J. Feng, A.F.T. Mak, T.K.K. Koo, A surface EMG driven musculoskeletal model of the elbow flexion–extension movement in normal subjects and in subjects with spasticity, J. Musculoskeletal Res. 3 (1999) 109–123.
    [44] D.G. Lloyd, T.F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J.Biomech. 36 (2003) 765–776.
    [45] T.S. Buchanan, S.L. Delp, J.A. Solbeck, Muscular resistance to varus and valgus loads at the elbow, Trans. ASME J. Biomech. Eng. 120 (1998) 634–639.
    [46] J.J. Dowling, RW. Norman, The prediction of individual muscle forces at the human elbow, in: G de Groot, R Huiskes, P Huiting (Eds.), Biomechanics, vol. XI, 1988, p. 88–93.
    [47] B. Laursen, B.R. Jensen, A model predicting individual shoulder muscle forces based on relationship between electromyographics and 3D external forces in static position, J. Biomech. 31 (1998) 731–739.
    [48] D.G. Lloyd, T.F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J.Biomech. 36 (2003) 765–776.
    [49] D.G. Lloyd, T.S. Buchanan, A model of load sharing between muscles and soft tissues at the human knee during static tasks, Trans. ASME J. Biomech. Eng. 118 (1996) 367–376.
    [50] A.L. Hof, C.A.N. Pronk, J.A. Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, J. Biomech. 20 (1987) 167–178.
    [51] A.L. Hof, J. Van Den Berg, EMG to force processing I: an electrical analogue of the Hill muscle model, J. Biomech. 14 (1981) 747–758.
    [52] A.L. Hof, J. Van Den Berg, EMG to force processing II: estimation of parameters of the Hill muscle model for the human triceps surae by means of a calfergometer, J. Biomech. 14 (1981) 759–770.
    [53] A.L. Hof, J. Van Den Berg, EMG to force processing III: estimation of model parameters for the human triceps sure muscle and assessment of the accuracy by means of a torque plate, J. Biomech. 14 (1981) 771–785.
    [54] A.L. Hof, J. Van Den Berg, Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque, J.Biomech. 10 (1977) 529–539.
    [55] L.J. Ruijven, W.A. van Weijs, A new model for calculating muscle forces from electromyograms, Eur. J. Appl. Physiol. 61 (1990) 479–485.
    [56] K.P. Granata, W.S. Marras, An EMG-assisted model of trunk loading during free-dynamic lifting, J. Biomech. 28 (1995) 1309–1317.
    [57] J. Cholewicki, S.M. McGill, R.W. Norman, Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach, J. Biomech. 28 (1995) 321–331.
    [58] T.S. Buchanan, M.J. Moniz, J.P.A. Dewald, W.Z. Rymer, Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method, J. Biomech. 26 (1993) 547–560.
    [59] T.S. Buchanan, S.L. Delp, J.A. Solbeck, Muscular resistance to varus and valgus loads at the elbow, Trans. ASME J. Biomech.Eng. 120 (1998) 634–639.
    [60] J.J. Dowling, RW. Norman, The prediction of individual muscle forces at the human elbow, in: G de Groot, R Huiskes, P Huiting (Eds.), Biomechanics, vol. XI, 1988, p. 88–93.
    [61] Fugl-Meyer AR, Jaasko L, Leyman I, et al. The post-stroke hemiplegic patient: 1. A method for evaluation of physical performance. Scand J Rehabil Med.1975; 7:13-31.
    [62] Levin MF, Hui-Chan CW. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntarymotor functions. Electroencephalogr Clin Neurophysiol. 1992; 85:131-142.
    [63] Desrosiers J, Hebert R, Bravo G, Dutil E. Upper extremity performance test for the elderly (TEMPA): normative data and correlates with sensorimotor parameters. Testd’Evaluation des Membres Superieurs de Personnes Agees. Arch Phys Med Rehabil.1995; 76:1125-1129.
    [64] Deborah E. Kenney, and H. F. Machiel Van der Loos, Quantification of Force Abnormalities During Passive and Active-Assisted Upper-Limb Reaching Movements in Post-Stroke Hemiparesis, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL.46,NO.6,JUNE 1999.
    [65] MJ Johnson, HFM.Van der Loos, Principle for designing in motivation into a robotic stroke therapy device, the Second Joint EMBS/BMES Conference.
    [66] M. C. Cirstea, MD, PhD, and M. F. Levin, PhD. Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors, The American Society of Neurorehabilitation, 2007.
    [67] Levin MF, Michaelsen SM, Cirstea CM, Roby-Brami A.Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res. 2002;143:171-180.
    [68] Cirstea CM, Ptito A, Levin MF. Feedback and cognition in arm motor skill reacquisition after stroke. Stroke. 2006; 37:1237-1242.
    [69] www.motionanalysis.com
    [70] Joseph Langenderfer, Suzanne LaScalza, Amy Mellb, James E.Carpenter , An EMG-driven model of the upper extremity and estimation of long head biceps force, Computers in Biology and Medicine 35 (2005) 25–39.
    [71] Jonkers, A. Spaepen, G. Papaioannou, C. Stewart, An EMG-based, muscle driven forward simulation of single support phase of gait, Journal of Biomechanics 35 (2002) 609–619.
    [72] Terry K.K. Koo, Arthur F.T. Mak, Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow, Journal of Electromyography and Kinesiology 15 (2005) 12–26.
    [73] R.A.Bogey,J.Perry, and A.J.Gitter, An EMG-to-Force Processing Approach for determining Ankle Muscle Forces during Normal Human Gait, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING.VOL.13,NO.3,SEPTEMBER 2005.
    [74] Kurt Manal, Roger V. Gonzalez, David G.Lloyd, Thomas S. Buchanan, A real-time EMG-driven virtual arm, Computers in Biology and Medicine 32(2002) 25-36.
    [75] Zajac. F.E, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17, 359–411, 1989.
    [76]王健.sEMG信号分析及其应用研究进展.体育科学,2000,20(4):56一60
    [77] NAGAZA S, EMG power spectrum as a measure of muscular fatigue at different levels of contraction. Medical and Biological Engineering and Computing, 1990,28(4):374-37.
    [78] POTVIN J.R, NORMAN R.W, MCGILL S.M, Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting. European Journal of APPlied Physiology and Occupational Physiology,1996,74(l-2):119-132.
    [79] DELP S.L, LOAN J.R, HOY M.G,et al. An interactive graphics- based model of the lower extremity to study orthopedic surgical procedures. IEEE Transactions on Biomedical Engineering, 1990, 37(8):757-767.
    [80]陈恳,杨向东,机器人技术与应用,清华大学出版社, 2008
    [81] OHYAMA YuuKi, Development of system to Evaluate and training Reaching Movements with Rehabilitation Robot for Upper Limbs including Wrists.IECE technical report, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700