一类椭圆偏微分方程解的水平集的高斯曲率估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凸性作为一个重要的几何特征,长期以来一直是椭圆偏微分方程研究中的重要主题.本文的主要研究对象是椭圆偏微分方程解的水平集的凸性.利用经典的极大值原理,本文给出了p-调和函数水平集高斯曲率的最佳正下界估计,也给出了Rn:极小曲面水平集高斯曲率的最佳正下界估计和一类半线性方程解的水平集高斯曲率的正下界估计.另一方面,本文还研究了p-调和函数水平集的高斯曲率关于函数高度的凹性.具体地说.本文的主要结果如下
     Ⅰ.p-调和函数水平集高斯曲率的正下界估计定理0.0.1.设Ω(?)Rn(n≥2)是一个有界光滑区域,u∈C4(Ω)∩C2(Ω)是定义在Q上的p-调和函数,即u满足p-调和方程div(|▽u|p-2▽u)=0in Ω.设1     情形1:若n≥2,1     情形2:若n=2,1     情形3:若杀n:2,3/2≤p≤3;n=3,2≤p<+∞或n≥4,p=n=1/2则函数K边界上取到最小值.
     根据定理0.0.1,我们可以得到p-调和函数水平集高斯曲率的正下界估计推论0.0.2.设Ω0和Ω1是Rn(n≥2)中有界光滑凸区域,并且Ω1(?)Ω0.设u满足下述Dirichlet(?)问题其中1     特别地,对于调和函数,我们有下面的命题.命题0.0.3.设Ω是Rn(n≥2)中的区域,u是定义在Ω上的调和函数,并且u在Ω内没有临界点.记u的水平集的高斯曲率为K.定义函数ψ=|▽u|-1K.设u的水平集相对于梯度▽u的方向是严格凸的.那么,在模掉梯度项▽Ψ的意义下函数Ψ是Ω上的上调和函数,即成立下面的微分不等式△ψ≤C|▽ψ|inΩ,其中正常数C依赖于n和||u||C3(Ω).
     Ⅱ.极小曲面方程解的水平集的高斯曲率正下界估计定理0.0.4.设Ω是Rn(n≥2)中的有界光滑区域,u∈C4(Ω)∩C2(Ω)(?)茜足下述极小曲面方程设在Ω上|▽u|≠0.记u的水平集的高斯曲率为K.若u的水平集相对于梯度▽u的方向是严格凸的,那么我们有下面的结论.最小值.
     类似地,我们可以得到极小曲面方程解的水平集的高斯曲率正下界估计推论0.0.5.设Ω0和Q1是Rn(n≥2)中的有界光滑凸区域,并且Ω1(?) Ω0.记Ω=Ω0\Ω1.设u满足Dirichle(?)问题记u的水平集的高斯曲率为K.那么,我们有下述估计
     Ⅲ.半线性方程解的水平集的高斯曲率正下界估计定理0.0.6.设Ω是Rn(n≥2)中的有界光滑区域,u∈C4(Ω)∩C2(Ω);满足半线性方程△u=f(x,u,▽u) inΩ,其中f≥0,f∈C2(Ω×R×Rn)设在Ω上|▽u|≠0.记u的水平集的高斯曲率为K.设u的水平集相对于梯度Vu的方向是严格凸的.为表述方便,我们记下述两个断言分别为(A1)和(A2),即(A1)函数|▽u|-2K在边界上取到最小值(A2)函数|▽u|n-1K在边界上取到最小值.
     那么我们有如下结论.情形1:f=f(u).当fu≥0时,(A1)成立;当fu≤0时,(A2)成立.情形2:f=f(x).如果映射F:(0,+∞)×Ω→R,(t,x)→t3f(x)
     是凸的(当f>0时,等价于f-1/2是凹的),那么(A2)成立.情形3:f=f(x,u)设对每一个固定的u∈(0.1),映射Fu:(0,+∞)×Ω→R,(t,x)→t3f(x,u)
     是凸的.如果fu≤0,那么(A2)成立情形4:f=f(u,▽u)设对每一个固定的u∈(0,1),映射Fu:(0,+∞)×Sn-1→R,(t,p)→t3f(u,p/t)
     是凸的.当.九≥0时,(A1)成立;当fu≤0时,(A2)成立,情形Jf=f(x,u,▽u)设对每一个固定的u∈(0,1),映射Fu:(0,+∞)×Ω×Sn-1→R,(t,x,p)→t3f(x,u,p/t)
     是凸的.当fu≤0时,(A2)成立.
     推论0.0.7.设Ω0和Ω1是Rn(n≥2)中的有界光滑凸区域,并且Ω1(?)Ω0.记Ω=Ωu\Ω1设u满足Dirichlet边值问题这里f∈C2(R),单调递增,并且f(0)=0.记u的水平集的高斯曲率为K.那么,我们有下述估计
     Ⅳ.p-调和函数水平集的高斯曲率关于函数高度的凹性定理0.0.8.设u满足Dirichlet(?)司题
     其中Ω0和Ω1是Rn(n≥2)中的有界光滑严格凸区域,并且Ω1(?)Ω0,1Green函数时,相应的f(t)是仿射函数.
As one of the most important geometric properties, convexity is an issue in the study of elliptic partial differential equations for a long time. In the present paper, we are concerned on the convexity of level sets of solutions to elliptic partial differential equations. By the classical maximum principle, we obtain the sharp positive lower bound estimates of the Gaussian curvature of the convex level sets of p-harmonic functions and minimal graphs in R". Under certain structural con-ditions, we also give the positive lower bound estimates of the Gaussian curvature of the convex level sets of solutions to some semi-linear elliptic equations. On the other hand, we establish the sharp concavity of the Gaussian curvature of the level sets of p-harmonic functions with respect to the height of the functions. More precisely, the main results of the paper are as follows.
     I. Gaussian curvature estimates of level sets of jy-harmonic functions Theorem0.0.1. Let Q be a bounded smooth domain in M.n(n≥2) and u∈C4(Ω)∩C2(Ω) be a p-harmonic function, i.e. div(|▽u|p-2▽u)=0in Ω. Assume1gradient▽u, then we have the following statements.
     Case1; For n≥2,1     Case2: For n=2,1     Case3:For n=2,2/3≤p≤3; n=3,2≤p<+∞or n≥4, p=n+1/2, the function K attains its minimum on the boundary.
     By Theorem0.0.1, we can obtain the Gaussian curvature estimates of level sets of p-harmonic functions. Corollary0.0.2. Let u satisfy the following Dirichlet problem where1g estimates.
     Case1a: For1     Case1b: Forn+1/2     Case2: For n=2,1     Case3:Forn=2,3/2≤p≤3; n=3,2≤p<+∞or n≥4, p=n+1/2,we have Ωmin K≥δΩmin K.
     In particular, for the harmonic functions we have the following proposition. Proposition0.0.3. Let Ω Q be a domain in Rn(n≥2).Let u be a harmonic function defined in Q. Assume|▽u|≠0in Ω. Let K be the Gaussian curvature of the level sets. Let ψ=|▽u|-K.If the level sets of u are strictly convex with respect to the direction of gradient▽u, then the function ip is a super-harmonic function modulo the gradient terms▽ψ. Namely, we have the following differential inequality ε▽ψ≤C|▽ψ|in Ω, where the positive constant C depends on n and||u||c3(Ω)
     Ⅱ. Gaussian curvature estimates of level sets of minimal surfaces Theorem0.0.4. Let Ω1be a smooth bounded domain in Rn(n≥2). Let u∈C4(Ω)(?)C2(Ω1) satisfy the following minimal surface equation Assume|▽u|≠0on Ω. Let K be the Gaussian curvature of the level sets. If the level sets of u are strictly convex with respect to the direction of gradient Vu, then we have the following results.(ⅰ) For n=2, the function K attains its minimum and max-imum on the boundary.(ⅱ) For n≥3, the function attains its minimum on the boundary for
     In a similar way, we have the Gaussian curvature estimates of level sets of minimal surfaces.
     Corollary0.0.5. Let u satisfy the following Dirichlet problem
     where Ω0Ω1are bounded smooth convex domains in Rn(n≥2),Ω1(?)Ω0. Let K be the Gaussian curvature of the level sets. Then we have the following estimates
     Ⅲ. Gaussian curvature estimates of level sets of solutions to semi-linear elliptic equations Theorem0.0.6. Let Ωbe a bounded smooth domain in Rn(n≥2). Let u∈C4(Ω)∩C2(Ω1) satisfy the following semi-linear elliptic equation▽u=f(x,u,▽u) in Ω,
     where f≥0,f∈C2(Ω×R×Rn). Assume|▽u|≠0on Ω. Let K be the Gaussian curvature of the level sets. Assume the level sets of u are strictly convex with respect to the direction of gradient▽u. Denote the following two assertions by (A1) and (A2), i.e.
     (A1) The function|▽u|-2K attains its minimum on the boundary;
     (A2) The function|▽u|n-1K attains its minimum on the boundary. Then we have the following facts.
     Case1: f=f(u). If fu≥0, then (A1) is valid; if fu≤0, then (A2) is valid.
     Case2: f=f(x). If the map F:(0,+∞)×Ω→R,(t, x) h→t3f(x)
     is convex or f-1/2is concave for positive f), then (A2) is valid. Case3:f=f(x,u). Assume for every choice of u∈(0,1), the map Fu:(0,+∞)×Ω×R,(t, x)→t3(x, u)
     is convex. If fu≤0, then (A2) is valid. Case4:f=f(it,▽u). Assume/or e^/ery choice of u∈(0,1), the map Fu:(0,+∞)×Sn-1→R,(t, p)→t3f(u,p/t)
     is convex. If fu≥0, then (A1) is valid; if fu≤0, then (A2) is valid. Case5:f=f(x,u,▽u).Assume for every choice of u∈(0,1), t/je map Fu:(0,+∞)×Ω×Sn-1→R,(t, x,p)→t3f(x,u,p/t)
     is convex. If fu≤0, i/ien (A2) z
     Corollary0.0.7. Lei u satisfy the following Dirichkt problem
     where Ω0and Ω1are bounded smooth convex domains in Rn(n≥2), Ω1×Ω0and
     f∈C2(R), nondecreasing,f(0)=0. Let K be the Gaussian curvature of the level
     sets. Then we have the following estimates Ⅳ. Concavity of the Gaussian curvature of level sets ofp-harmonic
     functions with respect to the height of the functions
     Theorem0.0.8. Let u satisfy the following Dmchlet problem Xll
     where Ω0and Ω1are bounded smooth strictly convex domains in Rn(n≥2),Ω1(?) Ω0and1     Then f(t) is a concave function for t∈[0,1], Equivalently, for any point x∈Ωt, we have the following estimates (|▽u|n+1-2pK)1/n-1(x)≥(1-t)δΩ0max(|▽u|n+1-2pK)1/n-1=tδΩ1max(|▽u|n+1-2pK)1/n-1.
     Furthermore, the function f(t) is an affine function of the height t when the p-harmonic function is the p-Green function on the ball.
引文
[1]Ahlfors, Lars V.Conformal invariants:topics in geometric function theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-DUsseldorf-Johannesburg, 1973. ix+157 pp.
    [2]Alvarez, O.; Lasry, J.-M.; Lions, P.-L. Convex viscosity solutions and state con-straints. J. Math. Pures Appl. (9) 76 (1997), no. 3, 265-288.
    [3]Bian, Baojun; Guan, Pengfei A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177 (2009), no. 2. 307-335.
    [4]Bian, Baojun; Guan, Pengfei A structural condition for microscopic convexity prin-ciple. Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 789-807.
    [5]Bian, Baojun; Guan, Pengfei: Ma, Xi-Nan; Xu, Lu A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations. To appear on Indiana Univ. Math. J. http://www.iumj.indiana.edu/IUMJ/forthcoming.php
    [6]Bianchini, Chiara; Longinetti, Marco; Salani, Paolo Quasiconcave solutions to el-liptic problems in convex rings. Indiana Univ. Math. J. 58 (2009), no. 4, 1565-1589.
    [7]Brascamp, Herm Jan; Lieb, Elliott H. On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22 (1976), no. 4, 366-389.
    [8]Caffarelli, Luis A.; Friedman, Avner Convexity of solutions of semilinear elliptic equations. Duke Math. J. 52 (1985), no. 2, 431-456.
    [9]Caffarelli, Luis; Guan, Pengfei; Ma, Xi-Nan A constant rank theorem for solutions of fully nonlinear elliptic equations. Comm. Pure Appl. Math. 60 (2007), no. 12, 1769-1791.
    [10]Chang, Sun-Yung Alice; Ma, Xi-Nan; Yang, Paul Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1151-1164.
    [11]Caffarelli, Luis A.; Spruck, Joel Convexity properties of solutions to some classical variational problems. Comm. Partial Differential Equations 7 (1982), no. 11, 1337-1379.
    [12]Chen, Chuanqiang A constant rank theorem for partial convex solutions of partial differential equations, http://arxiv.org/abs/1005.0241
    [13]Chen, Chuanqiang; Hu, Bowen A constant rank theorem for spacetime convex so-lutions of fully nonlinear parabolic equations. Preprint, 2010.
    [14]Chen, Chuanqiang; Shi, Shujun Curvature estimates for the level set of spatial qua-siconcave solutions to a class of parabolic equations, http://arxiv.org/abs/1006.4787
    [15]Chiti, Giuseppe; Longinetti, Marco Differential inequalities for Minkowski func-tionals of level sets. General inequalities, 6 (Oberwolfach,1990), 109-127, Internat. Ser. Numer. Math., 103, Birkhauser, Basel, 1992.
    [16]Caffarelli, L.; Nirenberg, L.; Spruck, J. Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces. Current topics in partial differ-ential equations, 1-26, Kinokuniya, Tokyo, 1986.
    [17]Colesanti, Andrea; Salani, Paolo Quasi-concave envelope of a function and convexity of level sets of solutions to elliptic equations. Math. Nachr. 258 (2003), 3-15.
    [18]Cuoghi. Paola: Salani. Paolo Convexity of level sets for solutions to nonlinear el-liptic problems in convex rings. Electron. J. Differential Equations 2006, No. 124, 12 pp. (electronic).
    [19]do Carmo, Manfredo P. Differential geometry of curves and surfaces. Translated from the Portuguese. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. viii+503 pp.
    [20]Gabriel, R. M. A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc 32 (1957), 286-294.
    [21]Gergen, J. J.; Note on the Green Function of a Star-Shaped Three Dimensional Region. Amer. J. Math. 53 (1931), no. 4, 746-752.
    [22]Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.
    [23]Greco, Antonio; Porru, Giovanni Convexity of solutions to some elliptic partial differential equations. SIAM J. Math. Anal. 24 (1993), no. 4, 833-839.
    [24]Greco. Antonio Quasi-concavity for semihnear elliptic equations with non-monotone and anisotropic nonlinearities. Bound. Value Probl. 2006, Art. ID 80347, 15 pp.
    [25]Guan, Pengfei; Lin, Changshou; Ma, Xi-Nan The Christoffel-Minkowski problem. II. Wemgarten curvature equations. Chinese Ann. Math. Ser. B 27 (2006), no. 6, 595-614.
    [26]Guan, Pengfei; Ma, Xi-Nan The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151 (2003), no. 3, 553-577.
    [27]Guan, Pengfei; Ma, Xi-Nan; Zhou, Feng The Christofel-Minkowski problem. III. Existence and convexity of admissible solutions. Comm. Pure Appl. Math. 59 (2006), no. 9, 1352-1376.
    [28]Guan, Pengfei: Phong D. H. A maximum rank problem for degenerate elliptic fully nonlinear equations, http://arxiv.org/abs/1009.3975
    [29]Guan, Pengfei; Xu, Lu Convexity estimates for level sets of quasiconcave solutions to fully nonlinear elliptic equations, http://arxiv.org/abs/1004.1187
    [30]Han, Fei; Ma, Xi-Nan; Wu, Darain The existence of k-convex hypersurface with prescribed mean curvature. To appear on Cal. Var. DOI 10.1007/s00526-010-O374-7
    [31]Hormander, Lars Notions of convextty. Progress in Mathematics, 127. Birkhauser Boston, Inc., Boston, MA, 1994. viii+414 pp.
    [32]Hu, Bowen; Ma, Xi-Nan Constant rank theorem of the spacetime convex solution of heat equation. Preprint, 2010.
    [33]Huang, Kun; Zhang, Wei Convexity of the smallest principal curvature of the con-vex level sets of some quasi-linear elliptic equations with respect to the height. http://arxiv.org/abs/1005.1515
    [34]Jost, Jurgen; Ma, Xi-Nan; Ou, Qianzhong Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings. To appear on Trans. Amer. Math. Soc.
    [35]Kawohl, Bernhard Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985. iv+136 pp.
    [36]Kawohl, B. A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem. Math. Methods Appl. Sci. 8 (1986), no. 1, 93-101.
    [37]Kennington, Alan U. Power concavity and boundary value problems. Indiana Univ. Math. J. 34 (1985), no. 3, 687-704.
    [38]Korevaar, Nicholas J. Capillary surface convexity above convex domains. Indiana Univ. Math. J. 32 (1983), no. 1, 73-81.
    [39]Korevaar, Nicholas J. Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 32 (1983), no. 4, 603-614.
    [40]Korevaar, Nicholas J. Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differential Equations 15 (1990), no. 4, 541-556.
    [41]Korevaar, Nicholas J.; Lewis, John L. Convex solutions of certain elliptic equations have constant rank Hessians. Arch. Rational Mech. Anal. 97 (1987), no. 1, 19-32.
    [42]Lewis, John L. Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66 (1977), no. 3, 201-224.
    [43]Liu, Pan; Ma, Xi-Nan; Xu, Lu A Brunn-Minkowski inequality for the Hessian eigenvalue in three-dimensional convex domain. Adv. Math. 225 (2010), no. 3, 1616— 1633.
    [44]Longinetti, Marco Convexity of the level lines of harmonic functions. Boll. Un. Mat. Ital. A (6) 2 (1983), no. 1, 71-75.
    [45]Longinetti, Marco On minimal surfaces bounded by two convex curves in parallel planes. J. Differential Equations 67 (1987), no. 3, 344-358.
    [46]Longinetti M. A strong convexity principle for elliptic equations. Preprint, 2006.
    [47]Longinetti, Marco; Salani, Paolo On the Hessian matrix and Mmkowski addition of quasiconvex functions. J. Math. Pures Appl. (9) 88 (2007), no. 3, 276-292.
    [48]Ma, Xi-Nan; Ou, Qianzhong; Zhang, Wei Gaussian curvature estimates for the convex level sets of p-harmonic functions. Comm. Pure Appl. Math. 63 (2010), no. 7, 935-971.
    [49]Ma, Xi-Nan; Xu, Lu The convexity of solution of a class Hessian equation in bounded convex domain in R3. J. Funct. Anal. 255 (2008), no. 7, 1713-1723.
    [50]Ma, Xi-Nan; Ye, Jiang; Ye, Yunhua Principal curvature estimates for the level sets of harmonic functions and minimal graphs in R3. Commun. Pure Appl. Anal. 10, (2011), 225-243.
    [51]Ma, Xi-Nan; Zhang, Wei The concavity of the Gaussian curvature of the convex level sets of p-harmonic functions with respect to the height. Preprint, 2009.
    [52]Makar-Limanov, L. G. The solution of the Dirichlet problem for the equation Au = — 1 in a convex region. Math. Notes 9 (1971), 52-53.
    [53]Median, John Concavity, quasiconcavity, and quasilinear elliptic equations. Tai-wanese J. Math. 6 (2002), no. 2, 157-174.
    [54]Ou, Qianzhong On the convexity of the level sets of solutions to elliptic partial differential equations. Phd. thesis, 2008.
    [55]Pogorelov, A. V. On existence of a convex surface with a given sum of the principal radii of curvature. (Russian) Uspehi Matem. Nauk (N.S.) 8, (1953). no. 3(55), 127-130.
    [56]Pogorelov, A. V. Extrinsic geometry of convex surfaces. Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Mono-graphs, Vol. 35. American Mathematical Society, Providence, R.I., 1973. vi+669 pp.
    [57]Schneider, Rolf Convex bodies: the Brunn-Mmkowski theory. Encyclopedia of Math-ematics and its Applications, 44. Cambridge University Press, Cambridge, 1993. xiv+490 pp.
    [58]Shiffman, Max On surfaces of stationary area bounded by two circles, or convex curves, in parallel -planes. Ann. of Math. (2) 63 (1956), 77-90.
    [59]Singer, I. M.; Wong, Bun; Yau, Shing-Tung; Yau, Stephen S.-T. An estimate of the gap of the first two eigenvalues in the Schrodinger operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319-333.
    [60]Talenti, Giorgio On functions, whose lines of steepest descent bend proportionally to level lines. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 587-605.
    [61]Wang, Peihe; Zhang, Wei Gaussian curvature estimates for the convex level sets for some nonlinear partial differential equations, http://arxiv.org/abs/1003.2057vl.
    [62]Xu, Lu A microscopic convexity theorem of level sets for solutions to elliptic equa-tions, Cal. Var. 40, (2011), 51-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700