稀土掺杂激光晶体中无辐射机制的研究及其对离子发光性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子发光性质的研究,是稀土发光和激光材料和器件研究的基础。在稀土离子发光研究中,无辐射机制的研究是和辐射跃迁研究同等重要的。无辐射机制对离子发光的影响是双方面的:有些无辐射机制只是以热的形式消耗激发光能量,是不利的;但有些无辐射机制却对光子吸收、能量传递、以及特殊能级上的粒子数布居有着重要的辅助作用。因此,要实现理想波长的高效光辐射,不仅要研究稀土离子的辐射特性,还要分析其内部的无辐射机制。本论文从“离子与基质间无辐射相互作用”和“离子间无辐射相互作用”两个方面对稀土激光晶体中的无辐射机制及其对离子发光性质的影响进行了较为系统的理论和实验研究。具体研究内容分为以下两个部分:
     一、以Er~(3+)-Yb~(3+)共掺Gd_2SiO_5(GSO)、Lu_2SiO_5(LSO)和(Lu_(0.5)Gd_(0.5))_2SiO_5(LGSO)晶体为研究对象,研究了三种样品的上转换发光、红外发光特性、以及各波段发射强度对温度的依赖关系。分析了多声子辅助弛豫(MPR)和多声子辅助能量传递(MPET)两种“离子与基质间无辐射相互作用”对离子发光的影响。主要研究结果和创新点有:
     (1)研究了Er~(3+)-Yb~(3+)共掺GSO、LSO和LGSO晶体的上转换和红外发光性质。三种样品都具有较强的红绿光上转换发射,它们在975 nm半导体激光二极管(LD)激发下的上转换发射效率分别为:0.58×10~(-3)cm~2/W(GSO绿光),1.16×10~(-3)cm~2/W(GSO红光),0.89×10~(-3)cm~2/W(LSO绿光),1.04×10~(-3)cm~2/W(LSO红光),0.83×10~(-3)cm~2/W(LGSO绿光),0.93×10~(-3)cm~2/W(LGSO红光)。三种晶体的1.5μm附近红外发光性质也比较突出,它们在975 nm LD激发下1540 nm附近的发射截面分别达到:1.03×10~(-20)cm~2(GSO),0.793×10~(-20) cm~2(LSO)和0.994×10~(-20) cm~2(LGSO)。
     (2)通过分析温度变化对各波段发射强度的影响,着重研究了“离子与基质间无辐射相互作用”对Er~(3+)-Yb~(3+)共掺体系上转换和红外发光的影响。实验结果显示三种晶体的可见和红外波段发射都呈现出有规律的温度依赖特性。另外,三个样品的1.5μm附近红外发光在高温下仍然保持较高的发射效率,在实际应用中是非常具有研究意义的。我们在综合考虑无辐射MPR和MPET机制的基瓷?建立了较完整的速率方程组,较合理地解释了实验结果。
     二、以不同浓度Tm~(3+)单掺和Tm~(3+)(高浓度)-Yb~(3+)共掺NaY(WO_4)_2(NYW)晶体为研究对象,研究了离子浓度变化、不同掺杂体系(Tm~(3+)单掺和Tm~(3+)-Yb~(3+)共掺)、以及激发波长对样品蓝色上转换发光的影响。通过对不同情况下发光情况的比较,分析了“离子间无辐射相互作用”交叉弛豫(CR)过程对上转换发光的影响。主要研究结果和创新点有:
     (1)测量了不同浓度Tm~(3+)单掺NYW晶体的吸收谱、荧光谱、800 nm LD激发下上转换光谱和红外荧光光谱,结合Judd-Ofelt(J-O)理论和Miyakawa-Dexter's(M-D)理论,分析了Tm~(3+):NYW晶体中的上转换机制和离子浓度对上转换发光的影响。推断出四种影响上转换发光效率的无辐射CR过程:~3H_5+~1G_4→~3H_6+~1D_2,~3H_5+~3H_5→~3H_6+~3F_3,~1G_4+~3H_6→~3F_4+~3F_3,~1G_4+~3H_6→~3F_3+~3F_4,并较好地解释了实验结果。
     (2)研究了800 nm和975 nm LD激发下Tm~(3+)(高浓度)-Yb~(3+):NYW晶体的发光性质。通过与同浓度单掺样品的上转换和红外发光结果进行比较,并结合两种情况下CR几率的M-D理论计算结果,得出:共掺Yb~(3+)离子,除了能够提高激发光吸收效率外,还具有减弱激活离子间无辐射CR机制的效果,从而提高蓝光上转换发射效率;改变激发光的波长,虽然不影响CR过程的发生几率,但会改变上转换机制的整体步骤,从而减弱或消除某些不利的CR过程,或者将其变为对某些能级粒子数布居有利的机制,实现了控制离子间无辐射相互作用来提高发射效率的目的。
     以上研究结果表明,无论是“离子与基质间无辐射相互作用”(MPR和MPET),还是“离子间无辐射相互作用”(CR),对稀土离子发光都有重要的影响。这些过程都具有一定的发生规律和影响因素,因此,适当地控制外界条件,能够使这些无辐射机制对某些频率的发射起到积极的作用。
Non-radiative mechanisms in rare-earth ions doped crystals were researched from two aspects:"non-radiative interaction between ions and host material" and "non-radiative interaction between doped ions".The main research includes two parts.
     Upconversion(UC),infrared emission(near 1540 nm),and the temperature dependent luminescence properties of Er~(3+)-yb~(3+) co-doped Gd_2SiO_5(GSO),Lu_2SiO_5 (LSO) and(Lu_(0.5)Gd_(0.5))_2SiO_5(LGSO) laser crystals are researched.The UC emission bandwidth is very broad containing multiple peaks,and the normalized UC efficiencies can reach up to 0.58×10~(-3) cm~2/W(GSO,green emission),1.16×10~(-3) cm~2/W(GSO,red emission),0.89×10~(-3) cm~2/W(LSO,green emission),1.04×10~(-3) cm~2/W(LSO,red emission),0.83×10~(-3) cm~2/W(LGSO,green emission),and 0.93×10~(-3) cm~2/W(LGSO,red emission).Broad infrared emission(1540 nm) in Er~(3+)-yb~(3+) co-doped LSO and LGSO crystals are measured under excitation of 975 nm.The emission cross-section near 1540 nm can reach up to 0.793×10~(-20) cm~2(LSO) and 0.994×10~(-20) cm~2(LGSO),respectively.The temperature-dependent luminescence properties of these crystals are also investigated.Upconversion near The rate equations considering the multi-phonon assistant relaxations(MPR) and multi-phonon assistant energy transfer(MPET) as the temperature-dependent functions were adopted to analyze the results.Our study indicates that Er~(3+)-Yb~(3+) co-doped GSO,LSO and LGSO crystals are promising gain media for developing the solid-state 1.5μm optical amplifiers and tunable UC lasers.
     Upconversion blue emissions of Tm~(3+) ions doped NaY(WO_4)_2(NYW) crystals are investigated with different doping concentration and three different near-infrared pump mechanisms(800 nm pump Tm~(3+):NYW,800 nm pump Tm~(3+)-Yb~(3+):NYW,980 nm pump Tm~(3+)-Yb~(3+):NYW).The dependence of upconversion efficiency on ion concentration and pump mechanisms is analyzed from the scope of concentration quenching effect.Four cross relaxation(CR) processes:~3H_5 +~1G_4→~3H_6 +~1D_2,~3H_5+ ~3H_5→~3H_6 +~3F_3,~1G_4 +~3H_6→~3F_4 +~3F_3,~1G_4 +~3H_6→~3F_3 +~3F_4,which influence the upconversion dominantly in Tm~(3+) heavy-doped system,are demonstrated theoretically and experimentally.The results indicate that Yb~(3+) ions can weaken the concentration quenching effect of Tm~(3+) ions significantly so that the blue emission efficiency can be enhanced by one order of magnitude.At the same time,the wavelength of pump source also has considerable influence on both the population of some crucial energy levels and the upconversion mechanism.Experiments show that the upconversion blue emission in Tm~(3+)/Yb~(3+) co-doped NaY(WO_4)_2 crystal under 980 nm LD excitation is the most intensive of these three different near-infrared pump mechanisms.The conclusions are confirmed by spectra measurements and calculations of Judd-Ofelt(J-O) theory and Miyakawa -Dexter's(M-D) theory.
     Our work shows that both "non-radiative interaction between ions and host material"(MPR and MPET) and "non-radiative interaction between ions"(CR) are the improtant influencing factors to the luminescence properties.The rules of these non-radiative energy transfer mechanisms can be investigated and found,and they can be controlled to be benefitial to some specifical radiation.
引文
[1]Auzel F.Competeur Quantique Par Transfert d'energie Entre Deuxions de Terres RaresDans un Tungstate Mixte et'dans un Verre,C R Acad Science(Paris),1966,Vol.262:1016-1019
    [2]Martin R,Yanes A C.Cooperative energy transfer in yb~(3+)-Tb~(3+) codoped silica sol-gel glasses,J.Appl.Phys.,2001,Vol.89(5):2520-2524
    [3]Maciel G S,Biswas A,Prasad P N.Infrared-to-visible Eu~(3+) energy upconversion due to cooperative energy transfer from an Yb~(3+) ion pair in a sol-gel processed multi-component silica glass,Opt.Comm.,2000,Vol.178(1-3):65--69
    [4]Oliveira A S,Gouveia E A,Araujo M T,et al.Twentyfold blue upconversion emission enhancement through thermal effects in Pr~(3+)/Yb~(3+) -codoped fluoroindate glasses excited at 1.064 μm,J.Appl.Phys.,2000,Vol.87(9):4274-4278
    [5]Goh S C,Pattie R,Byrne C,et al.Blue and red laser action in Nd~(3+):pr~(3+)co-doped fluorozirconate glass,Appl.Phys.Lett.,1995,Vol.67(6):768-770
    [6]Jouart J P,Bouffard M,Duvaut T,et al.Photon avalanche upconversion in LiKYF_5 crystals doubly doped with Tm~(3+) and Er~(3+),Chem.Phys.Lett.,2002,Vol.366(1-2):62-66
    [7]Qiu J,Kawamoto Y.Blue up-conversion luminescence and energy transfer process in Nd~(3+)-yb~(3+)-Tm~(3+) co-doped ZrF_4-based glasses,J.Appl.Phys.,2002,Vol.91(3):954-959
    [8]Hebert T,Wannemacher R,Macfarlane R M,et al.Blue continuously upconversion lasing in Tm:LiYF_4,Appl.Phys.Lett.,1992,Vol.60:2592-2594
    [9]Heumann E,Bar S,Kretschmann H,et al.Diode-pumped CW green upconversion lasing of Er:LiLuF_4 using multipass pumping,Opt.Lett.,2002,Vol.27(19):1699-1701
    [10]Song F,Zhang K,Su J,et al.Three-photon indirect sensitization in 550nm green upconversion luminescence of Er~(3+)/Tm~(3+) codoped NaY(WO4)2 crystal,Opt.Express,2006,Vol.14:12584
    [11]Song F,Han L,Tan H,et al.Spectral performance and intensive green upconversion luminescence in Er~(3+)/yb~(3+)-codoped NaY(WO4)2 crystal.Opt.Commun.,2006,Vol.259:179-186
    [12]宋峰。Er~(3+)/Yb~(3+)共掺磷酸盐玻璃的发光与1.54μm激光性能,激光与光电子学进展,2007,名家讲坛约稿:15-25
    [13]Song F,Cheng Z,Zou C,et al.Compact high power broadband Er~(3+)-yb~(3+)-codoped superfluorescent fiber source,Appl.Phys.Lett.,Vol.93:091108
    [14]Song F,Liu S J,Cai H,et al.Determination of the thermal loading in laser diode pumped erbium ytterbium codoped phosphate glass microchip laser,J.Opt.Soc.Am.B,2007,Vol.24:2327-2332
    [15]苏锵。稀土化学,河南科学技术出版社,1992
    [16]Wybourne B G.Spectroscopic Properties of Rare Earths,Wiley-Interscience,New York,1963
    [17]Alexandra R,Karine A,Eyitope S,et al.Visible light emission from dyes excited by simultaneous absorption of two different frequency beams of light,Appl.Phys.Lett.,1999,Vol.74(3):329-331
    [18]Alexandra R,Ferenc S,Michael B.Dependence of two-photon-absorption-excited fluorescence on the angle between the linear polarizations of two intersecting beams,Appl.Phys.Lett.,2003,Vol.82(26):4642-4644
    [19]Aleksey G R,Youichi S,Shu N,et al.Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol,Appl.Phys.Lett.,2006,Vol.88,051118
    [20]Wong W H,Pun E Y,Chan K S.Er~(3+)-Yb~(3+) codoped polymeric optical waveguide amplifiers,Appl.Phys.Lett.,2004,Vol.84(2):176-178
    [21]1.5μm波长人眼安全的军用激光测距机及其进展,激光与光电子学进展,2005,Vol.42(3):32-35
    [22]苏静,李传起,陈玉林。Er:YSGG激光晶体的晶体结构和光谱性能,功能材料,2008,Vol.5:717-720
    [23]Booth I J,Mackechnie C J,Ventrudo B F.Operation of diode laser pumped Tm~(3+):ZBLAN upconversion fiber laser at 482nm,IEEE J.Quantum Electron.,1996,Vol.32(1):118-123
    [24]So S,Mackenzie J I,Shepherd D P,et al.A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers Appl.Phys.B,2006,Vol.84(3):389-393
    [25]Tian W,Reddy B R.Ultraviolet upconversion in thulium-doped fluorozirconate fiber observed under two-color excitation,Opt.Lett.,2001,Vol.26(20):1580-1582
    [26]白光,晴天。波长2.69μm的医用YAG:Cr:Tm:Er激光器,激光与光电子学进展,1999,Vol.4:14-15
    [27]Hehlen M,Kuditcher A,Lenef A L,et al.Nonradiative dynamics of avalanche upconversion in Tm:LiYF4,Phys.Rev.B,2000,Vol.61:1116-1128
    [28]Jackson S D,Mossman S.Efficiency Dependence on the Tm~(3+) and Al~(3+) Concentrations for Tm~(3+)-Doped Silica Double-Clad Fiber Lasers,Applied Optics,2003,Vol.42(15):2702-2707
    [29]Su L B,Zhang D,Li H J,et al.Passively Q-switched Yb~(3+) laser with yb~(3+)-doped CaF_2crystal as saturable absorber,Opt.Express,2007,Vol.15:2375-2379
    [30]Ostby E P,Yang L,Vahala K J,et al.Ultraiow-threshold yb3+:SiO2 glass laser fabricated by the solgel process,Optics Letters,2007,Vol.32(18):2650-2652
    [31]徐军,徐晓东,苏良碧。掺镱激光晶体材料,上海科学普及出版社,上海,2005
    [32]刘光华。稀土材料学,化学工业出版社,北京,2007
    [33]邱关明。稀土光学玻璃,兵器工业出版社,北京,1989
    [34]Yan Y C,Faber A J,et al.Erbium-doped phosphate glass waveguide on silicon with 4.1dB/cm gain at 1535 nm.Appl.Phys.Lett.,1997,Vol.71(20):2922-2924
    [35]M de Barros.Performance of a High Concentration Er~(3+)-Doped Alumino Silicate Fiber Amplifiers.IEEE Photon.Tech.Lett.,1996,Vol.8(6):761-763
    [36]Myslinski P,Szubert C,et al.Performance of High-Concentration Erbium-Doped Fiber Amplifiers.IEEE Photon.Tech.Lett.,1999,Vol.11(8):973-975
    [37]Jiang S,Tao L.Er~(3+) doped phosphate glasses for fiber amplifiers with high gain per unit length.J.Non-Cryst.Solids,2000,Vol.263&264:364-368
    [38]Zeller M,Limberger H G,Lasser T.Tunable pr~(3+)-Yb~(3+)-doped all-fiber upconversion laser,IEEE Photonics Technology Letters,2003,Vol.15(2):194-196
    [39]Tsang Y,Richards B,Binks D,et al.A Yb~(3+)/Tm~(3+)/Ho~(3+) triply-doped tellurite fibre laser,Optics Express,2008,Vol.16(14):10690-10695
    [40]Ghisler C,Luthy W,Weber H P.Tuning of a Tm~(3+):Ho~(3+):silica fiber laser at 2μm,IEEE Journal of Quantum Electronics,1995,Vol.31(11):1877-1879
    [41]曹余惠。稀土激光晶体的发展,光电子技术与信息,1994,Vol.06:2-5
    [42]侯印春。光功能晶体,中国计量出版社,北京,1991
    [43]B.B.奥西科著,屠海令,杨英等译。激光材料(俄),冶金工业出版社,北京,2006
    [44]K.L.Kompa,H.Walther著,陈大庆,傅德棣译。大功率激光器及应用,科学出版社,北京,1983
    [45]北京光电技术研究所编。可调谐激光器,北京光电技术研究所,北京,1976
    [46]戴特力。半导体二极管泵浦固体激光器,四川大学出版社,成都,1993
    [47]中国科学技术情报研究所重庆分所编。激光,第十一集激光晶体专集,科学技术文献出版社重庆分社,重庆,1978
    [48]Ryba-Romanowski W,Golab S,Dominiak-Dzik G,et al.Conversion of infrared radiation into red emission in YVO_4:Yb,Ho,Appl.Phys.Lett.,2001,Vol.79(19):3026-3028
    [49]Johnson L F,Guggenheim G J.Infrared-Pumped Visible Laser,Appl.Phys.Lett,1971,Vol.19(2):44-47
    [50]Tong F,Risk W P,Macfarlane R M,et al.551 nm diode-laser-pumped upconversion laser,Electron.Lett,1989,Vol.25(20):1389-1391
    [51]Mefarlane R A.Dual wavelength visible upconversion laser,Appl.Phys.Lett,1989,Vol.54(23):2301-2302
    [52]Xie P,Rand S C.Continuous-wave trio upconversion laser,Appl.Phys.Lett,1990,Vol.57(12):1182-1184
    [53]Heine F,Heumann E,Danger T,et al.Green upconversion continuous wave Er:LiYF_4 laser at room temperature,Appl.Phys.Lett.,1994,Vol.65(4):383-384
    [54]Heine F,Heumann E,Mobert P,et al.Technical Digest of the ASSL Conference,1995,WD2
    [55]Riseberg L A,Moos H W.Multi-phonon Orbit-Lattice Relaxation in LaBr3,LaCl3,and LaF3,Phys.Rev.Lett.,1967,Vol.19:1423-1426
    [56]Riseberg L A,Moos H W.Multi-phonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals,Physical Review,1968,Vol.174(2):429-438
    [57]Partlow W D,Moos H W.Multi-phonon Relaxation in LaCl3:Nd~(3+),Physical Review,1967, Vol. 157(2): 252-256
    [58] Layne C B, Weber M J. Multi-phonon relaxation of rare-earth ions in beryllium-fluoride glass, Phys. Rev. B, 1977, Vol.16: 3259-3261
    [59] Layne C B, Lowdermilk W H, Weber M J. Multi-phonon relaxation of rare-earth ions in oxide glasses, Physical Review B, 1977, Vol.16(1): 10-20
    [60] Auzel F, Pelle F. Bottleneck in multiphonon nonradiative transitions, Phys. Rev. B, 1997,Vol.55: 11006-11009
    [61] Pelle F, N. Gardant N, Auzel F. Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions, J. Opt. Soc. Am. B, 1998, Vol.15: 667-679
    [62] Auzel F, Pelle F. Excitation effects in non-radiative multi-phonon decays of rare earth doped laser materials, Optical materials, 1997, Vol.8(1-2): 15-20
    [63] Pelle F, Auzel F. Saturation effect on multi-phonon relaxation rates of rare earth ions in glasses at high excitation power, Journal of alloys and compounds, 2000, Vol. 300:131-140
    [64] Pukhov K K, Basiev T T, Orlovskii Y V, er al. Multi-phonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals, Journal of luminescence,1998, Vol. 76-77:586-590
    [65] Orlovskii Y V, Pukhov K K, Basiev T T, er al. Nonlinear mechanism of multi-phonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions, Optical materials, 1995, Vol. 4: 583-595
    [66] Miyakawa T, Dexter D L. Phonon sidebands, Multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids, Physical Review B, 1970, Vol.1:2961-2969
    [67] Oliveira A S, Gouveia E A, de Araujo M T, et al. Twentyfold blue upconversion emission enhanced through thermal effects in Pr~(3+)/Yb~(3+) codoped fluoroindate glasses excited at 1.064μm. J. Appl. Phys., 2000, Vol.87(9): 4274-4278
    [68] dos Santos P V, Gouveia E A, de Araujo M T, et al., Thermally induced threefold upconversion emission enhancement in nonresonant excited Er~(3+)/Yb~(3+)-codoped chalcogenide glass, Appl. Phys. Lett., 1999, Vol.74: 3607-3609
    [69] da Silva C J, de Araujo M T, Gouveia E A, et al. Thermal Effect on Multiphonon-Assisted Anti-Stokes Excited Upconversion Fluorescence Emission in Yb~(3+)-Sensitized Er~(3+)-Doped Optical Fiber Appl. Phys. B, 2000, Vol.70:185-194
    [70] Miyakawa T, Dexter D L. Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb~(3+)-sensitized crystals, Physical Review B, 1970, Vol.1:70-80
    [71] Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence, The Journal of Chemical Physics, 1965, Vol.43: 1978-1989
    [72] Vasquez S O, Flint C D. A shell model for cross relaxation in elpasolite crystals: application to the 3P 0 and 1G 4 states of Cs2NaYIxPrxC16, Chemical Physics Letters, 1995, Vol.238:378-386
    [73] Luxbacher T, Fritzer H P, Flint C D. Cross relaxation from the 4G5/2 state of Sm~(3+) in CszNaSm,YI-,Cls and CsZNaSm,Gdl-,C16: a comparison of multipol+multipole and anisotropic dielectric shell models, J. Phys.: Condens. Matter, 1995, Vol.7: 9683-9692
    [74] Luxbacher T, Fritzer H P, GrantR S, et al. Fast cross relaxation in lanthanide hexachloroelpasolites: application of the shell model, Chemical Physics Letters, 1995,Vol.241: 103-108
    [75] Huang L H, Liu X R, Xu W, et al. Infrared and visible luminescence properties of Er~(3+) and Yb~(3+) ions codoped Ca_3Al_2Ge_3O_(12) glass under 978nm diode laser excitation, J.Appl.Phys.,2001,Vol.90(11):5550-5553
    [76] Song F, Han L, Tan H, et al. Spectral performance and intensive green upconversion luminescence in Er~(3+)/Yb~(3+)-codoped NaY(WO4)2 crystal, Opt.Commun., 2006, Vol.259:179-186
    
    [77] Wyatt R. Spectroscopy of rare earth doped fibers, Proc. SPIE, 1989, Vol.54: 1171
    [78] Dexter D L. A theory of sensitized luminescence in solids, Journal of Chemical Physics,1953, Vol.21: 836-850
    [79] Vermelho M V D, Gouveia-Neto A S, Amorim H T, et al. Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited at 1540nm, Journal of luminescence, 2003, Vol.755: 102-103
    [80] da Silva C J, de Araujo M T. Thermal effect on upconversion fluorescence emission in Er~(3+)-doped chalcogenide glasses under anti-stokes, stokes and resonant excitation, Optical Materials, 2003, Vol.22(3): 275-282
    [81] Li C R, Li S F, Dong B. Significant temperature effects on up-conversion emissions of Nd~(3+):Er~(3+):Yb~(3+) co-doped borosilicate glass and its thermometric application, Sensors and Actuators B: Chemical, 2008, Vol.134(1): 313-316
    [82] Dong B, Xu X S, Wang X J, et al. Infrared-to-visible up-conversion emissions and thermometric applications of Er 3 +-doped Al 2 O 3, Appl. Phys. B, 2007, Vol.89(2-3):281-284
    [83] Su J, Song F, Tan H, et al. Phonon-assisted mechanisms and concentration dependence of Tm~(3+) blue upconversion luminescence in codoped NaY(WO4)2 crystals, J. Phys. D: Appl.Phys., 2006, Vol.39: 2094-2098
    [84] Tanabe S, Tamai K, Hirao K, et al. Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm~(3+)-doped fluoroaluminate glass,Physical Review B, 1993, Vol.47(5): 2507-2514
    [85] Balda R, Fernandez J, Arriandiaga M A, et al. Infrared to visible upconversion of Er~(3+) and Er~(3+)/Yb~(3+) codoped lead-niobium-germanate glasses, Optical Materials, 2004, Vol.25(2):157-163
    [86] Wang D Y, Yin M, Xia S D, et al. Upconversion fluorescence of Er~(3+) trace impurity ions and Raman study in K2YF5:0.1 mol% Tm~(3+) single crystal, Journal of Alloys and Compounds, 2004, Vol.368: 337-341
    [87]Wybourne B G.Spectroscopic Properties of Rare Earths,Wiley-Interscience,New York,1963
    [88]Judd B R.Optical absorption intensities of rare earth ions,Phys.Rev.,1962,Vol.127:750-761
    [89]Ofelt G S.Intensities of crystal spectra of rare earth ions,J.Chem.Phys.,1962,Vol.37:511-524
    [90]Kaminskii A A.Laser Crystals:their physics and properties,Springer-Verlag Berlin Heidelberg New York,1981
    [91]Weber M J.Probabilities for radiative and nonradiative decay of Er~(3+) in LaF3,Phys.Rev.,1967,Vol.157:262-272
    [92]Jayasankar C K,Devi A R.Optical properties of Tm~(3+) ions in lithium borate glasses,Opt.Mat.,1996,Vol.6(3):185-201
    [93]Tanabe S.Optical transitions of rare earth ions for amplifiers:how the local structure works in glass J.Non-Cryst.Solids,1999,Vol.259(1-3):1-9
    [94]Tanabe S,Ohyagi T,Todoroki S.Relation between the Ω6 intensity parameter of Er~(3+) ions and the 151Eu isomer shift in oxide glasses J.Appl.Phys.,1993,Vol.73(12):8451-8454
    [95]Tanabe S,Tamai K,Hirao K,et al.Branching ratio of uv and blue upconversions of Tm~(3+)ions in glasses,Phys.Rev.B.,1996,Vol.53(13):8358-8362
    [96]Rangareddy A V,Balaji T,Baddhudu S.Absorption and photoluminescence spectra of Tm~(3+)-doped fluorophosphate glasses,Spec.Acta.,1992,Vol.48(12):1515-1521
    [97]Jiang H D,Wang J Y,Hu X B,et al.Optical transition properties of Er~(3+) ions in YA13(BO3)4 crystal,Chem.Phys.Lett.,2002,Vol.365(3-4) 279-284
    [98]Auzel F.Upconversion and Anti-Stokes Processes with f and d Ions in Solids,Chem.Rev.2004,Vol.104:139-173
    [99]张德宝,戴能利,祁长鸿等。掺铒铝硅酸盐玻璃光谱和上转换荧光性质研究,光学学报,2003,Vol.23(4):505-510
    [100]Santos P V,Gouveia E A,Araujo M T,et al.Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3 +/Yb3 + -codoped chalcogenide glass.Appl.Phys.Lett.,1999,Vol.74(24) 3607-3609
    [101]Chen X B,Zhang G Y,Chen J K,et al.The ultraviolet upconversion luminescence of noncrystalline ErP5014,Acta.Phys.Sin.,1993,Vol.2(9):695-701
    [102]Rothacher T,L(u|¨)thy W,Weber H P.Spectral properties of a Tm:Ho:YAG laser in active mirror configuration Appl.Phys.B,1998,Vol.66(13):543-546
    [103]Jeong H,Oh K,Han S R,et al.Characterization of broadband amplified spontaneous emission from a Er~(3+)-Tm~(3+) co-doped silica fiber,Chem.Phys.Lett.,2003,Vol.367:507-551
    [104]Rakov N,Araujo C B,Messaddeq Y.Avalanche upconversion in Er3 + doped fluoroindate glass,Appl.Phys.Lett.,1997,Vol.70(23):3084-3086
    [105]Xu S Q,Wang G N,Dai S X,et al.Infrared to visible upconversion in Er~(3+)-doped lead oxyfluorosilicate glasses, Jouranl of Luminescence, 2004, Vol.109: 187-192
    [106] Xu S Q, Wang G N, Dai S X, et al. Infrared to visible upconversion in Er~(3+)-doped lead oxyfluorosilicate glasses, Jouranl of Luminescence, 2004, Vol.109: 187-192
    [107] Alexandra R, Ferenc S, Michael B. Dependence of two-photon-absorption-excited fluorescence on the angle between the linear polarizations of two intersecting beams, Appl.Phys. Lett., 2003, Vol.82(26): 4642-4644
    [108] Ju J J, Lee M H, Cha M, et al. Energy transfer in clustered sites of Er3+ ions in LiNbO3 crystals, J. Opt. Soc. Am. B, 2003, Vol. 20(9): 1990-1995
    [109] Li W X, Hao Q, Ding L, et al. Continuous-Wave and Passively Mode-Locked Yb:GYSO Lasers Pumped by Diode Lasers, IEEE J. Quantum Electron., 2008, Vol.44: 567-572
    [110] Han L, Song F, Chen S Q, et al. Intense upconversion and infrared emissions in Lu2SiO5 and (Lu0.5Gd0.5)2SiO5 crystals co-doped with Er~(3+) and Yb~(3+), Appl. Phys. Lett., 2008,Vol.93: 011110
    [111] Thibault F, Pelenc D, Druon F, et al. Efficient diode-pumped Yb~(3+):Y2SiO5 and Yb~(3+):Lu2SiO5 high-power femtosecond laser operation, Opt. Lett., 2006, Vol.31:1555-1557
    [112] Chen Y H, Liu B, Shi C S, et al. Luminescent properties of Gd2SiO5 powder doped with Eu~(3+) under VUV-UV excitation, J. Phys.: Condens. Matter, 2005, Vol.17: 1217-1224
    [113] de Camargo A S S, Davolos M R, Nunes L A O. Spectroscopic characteristics of Er~(3+) in the two crystallographic sites of Gd2SiO5, J. Phys.: Condens. Matter, 2002, Vol.14: 3353-3363
    [114] Yan C F, Zhao G J, SuL B, et al. Growth and spectroscopic characteristics of Yb:GSO single crystal, J. Phys.: Condens. Matter, 2006, Vol.18: 1325-1333
    [115] Li W X, Hao Q, Zhai H. Low-threshold and continuously tunable Yb:Gd2SiO5 laser, Appl.Phys. Lett., 2006, Vol.89: 101125
    [116] Zong Y H, ZhaoG J, Yan C F, et al. Growth and spectral properties of Gd2SiO5 crystal codoped with Er and Yb, J. Cryst. Growth, 2006, Vol.294: 416-419
    [117] Li W X, Hao Q, Zhai H, et al. Diode-pumped Yb:GSO femtosecond laser, Optics Express,2007, Vol. 15(5): 2354-2359
    [118] Li W X, Pan H F, Ding L E, et al. Efficient diode-pumped Yb:Gd2SiO5 laser, Appl. Phys.Lett., 2006, Vol.88: 221117
    [119] Li W X, Xu S X, Pan H F, et al. Efficient tunable diode-pumped Yb:LYSO laser, Optics Express, 2006, Vol. 14(15): 6681-6686
    [120] Li W X, Hao Q, Ding J X, et al. Continuous-wave multi-wavelength diode-pumped Yb: GYSO laser, J. Opt. A: Pure Appl. Opt., 2008, Vol.10: 095307-4
    [121] Song F, Han L, Tan H, et al. Spectral performance and intensive green upconversion luminescence in Er~(3+)/Yb~(3+)-codoped NaY(WO4)2 crystal, Optics Communications, 2006,Vol.259: 179-186
    [122] Biswal S, O'Connor S P, Bowman S R. Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate, Applied Optics, 2005, Vol.44: 3093 -3097
    [123] Zaldo C, Rico M, Cascales C, et al. Optical spectroscopy of Pr~(3+) in KGd(WO4)2 single crystals, J. Phys.: Condens. Matter, 2000, Vol.12: 8531-8550
    [124] A.A. Kaminskii. Laser Crystal, Springer, Berlin, Heidelberg, 1981
    [125] Bjurshagen S, Hellstrom J E, Pasiskevicius V, et al. Fluorescence dynamics and rate equation analysis in Er~(3+) and Yb~(3+) doped double tungstates, Applied Optics, 2006,Vol.45:4715-4725
    [126] Tu C Y, Li J F, Zhu Z J, et al. Spectra and intensity parameters of Tm~(3+):KGd (WO4)2 laser crystal, Optics Communications, 2003, Vol. 227: 383-388
    [127] Vatnik S, Balashov E, Pavljuk A, et al. Measurement of gain and evaluation of photon avalanche efficiency in 10% Tm:KY(WO4)2 crystal pumped by free-running Nd:YAG laser,Optics Communications, 2003, Vol.220: 397-400
    [128] Giiell F, Sole R, Gavalda J. Upconversion luminescence of Tm~(3+) sensitized by Yb~(3+) ions in monoclinic KGd(WO4)2 single crystals, Optical Materials, 2007, Vol.30: 222-226
    [ 129] Cheng Z X, Zhang S J, Han J R. Growth of NaKY(WO4)2 crystals, J.CrystalGrowth., 2001,Vol.222: 409-412
    
    [130] Risebery L A, Weber M J. Progress in Optics, 1976, Vol.14: 91
    [131] Gan F X. Ceramics: Toward the 21sr Century, ed. N. Soga and A. Kato 1992, 567
    [132] Fu C Y, Liao J S, Luo W Q, et al. Emission of 1.53 μm originating from the lattice site of Er~(3+) ions incorporated in TiO2 nanocrystals. Opt. Lett., 2008, Vol.33: 953-955.
    [133] Singh A K, Rai S B, Rai D K, et al. Upconversion and thermometric applications of Er~(3+)-doped Li:TeO2 glass. Appl. Phys. B, 2006, Vol.82,289-294.
    [134] Gallis S, Huang M B, Kaloyeros A E. Efficient energy transfer from silicon oxycarbide matrix to Er ions via indirect excitation mechanisms. Appl. Phys. Lett., 2007, Vol.90:161914.
    [135] Jin Z, Nie Q H, Xu T F, et al. Optical transitions and upconversion luminescence of Er~(3+)/Yb~(3+) codoped lead-zinc-tellurite oxide glass. Mater. Chem. Phys., 2007, Vol.104:62-67.
    [136] Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev.,2004, Vol.104: 139-174.
    [137] Quimby R S, Drexhage M G, Suscavage M J. Efficient frequency up-conversion via energy transfer in fluoride glasses. Electron. Lett., 1987, Vol.23: 32-34.
    [138] Man S Q, Pun E Y B, Chung P S. Upconversion luminescence of Er~(3+) in alkali bismuth gallate glasses. Appl. Phys. Lett., 2000, Vol.77: 483-485.
    [139] Lin H, Meredith G, Jiang S B, et al. Optical transitions and visible upconversion in Er~(3+) doped niobic tellurite glass. J. Appl. Phys., 2003, Vol.93: 186-191.
    [140] dos Santos P V, Gouveia E A, de Araujo M T, et al. Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3 + /Yb3 + -codoped chalcogenide glass, Appl. Phys. Lett., 1999, Vol.74: 3607-3609
    [141] de S Menezes L, Maciel G S, de Araujo Cid B, et al. Thermally enhanced frequency upconversion in Nd~(3+)-doped fluoroindate glass. J. Appl. Phys., 2001, Vol.90: 4498-4501.
    [142] da Silva C J, de Araujo M T, Gouveia E A, et al. Thermal effect on ultiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb~(3+)-sensitized Er~(3+)-doped optical fiber. Appl. Phys. B, 2000, Vol.70: 185-193
    [143] Ohtsuki T, Honkanen S, Najafi S I, et al. Cooperative upconversion effects on the performance of Er~(3+)-doped phosphate glass waveguide amplifiers, J. Opt. Soc. Am. B, 1997,Vol.14, 1838-1845.
    [144] Auzel F. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions. Phys. Rev. B, 1976, Vol.13: 2809-2817.
    [145] Weber M J. Two-Magnon Processes in Ferromagnetic Relaxation. Phys. Rev. B, 1973 Vol.8:54-55.
    [146] Auzel F. Materials and devices using double-pumped phosphors with energy transfer. Proc.IEEE Vol.61, 758-786 (1973)
    [147] Miyakawa T, Dexter D L. Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids. Phys. Rev. B, 1970, Vol.1:2961-2969.
    [148] Han L, Song F, Chen S, et al. Intense upconversion and infrared emissions in Er~(3+)-Yb~(3+) codoped Lu2SiO5 and (Lu0.5Gd0.5)2SiO5 crystals, Appl. Phys. Lett., 2008, Vol.93:011110
    [149] Rangareddy A V, Balaji T, Baddhudu S. Absorption and photoluminescence spectra of Tm~(3+)-doped fluorophosphate glasses, SpecActa., 1992, Vol.48(12): 1515-1521
    [150] Tanabe S, Optical transitions of rare earth ions for amplifiers: how the local structure works in glass J.Non-Cryst.Solids., 1999, Vol.259(1-3): 1-9
    [151] Walsh B M, Barnes N P, di Bartolo B. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm~(3+) and Ho~(3+) ions in LiYF4. J. Appl.Phys., 1998, Vol.83: 2772-2787.
    [152] Zong Y H, Zhao g J, Yan C F, et al. Growth and spectral properties of Gd2SiO5 crystal codoped with Er and Yb. J Cryst. Growth, 2006, Vol.294: 416-419.
    [153] Wong S F, Pun E Y B, Chung P S. Er~(3+)-Yb~(3+) codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange IEEE Photonic. Tech. Lett., 2002, Vol.14: 80-82.
    
    [154] Zhang L, Hu H F, Lin F Y. Emission properties of highly doped Er~(3+) fluoroaluminate glass.Mater. Lett., 2001, Vol.47:189-193.
    [155] Han L, Song F, Zou C, et al. Investigation of Concentration Quenching Effect in Tm~(3+)-doped NaY(WO4)2 Crystal, Acta Phys. Sin., 2007, Vol.56: 4187-4194
    [156] Zhang Q Y, Li T, Jiang Z H, et al. 975 ran laser-diode-excited intense blue upconversion in Tm~(3+)/Yb~(3+)-codoped gallate-bismuth-lead glasses. Appl. Phys. Lett., 2005, Vol.87: 171911.
    [157] Rapaport A, Milliez J, Szipocs F, et al. Properties of a New, Efficient, Blue-Emitting Material for Applications in Upconversion Displays: Yb, Tm:KY3F10. Applied Optics, 2004,Vol.43:6477-6480.
    [158]Tian W,Reddy B R.Ultraviolet upconversion in thulium-doped fluorozirconate fiber observed under two-color excitation.Opt.Lett.,2001,Vol.26:1580-1582.
    [159]Hehlen M P,Kuditcher A,Lenef A L,et al.Nonradiative dynamics of avalanche upconversion in Tm:LiYF4.Phys.Rev.B,2000,Vol.61:1116-1118.
    [160]Jackson S D,Mossman S.Efficiency Dependence on the Tm~(3+) and Al~(3+) Concentrations for Tm~(3+)-Doped Silica Double-Clad Fiber Lasers.Applied Optics,2003,Vol.42:2702-2707.
    [161]G(u|¨)ell F,Mateos X,Gavalda Jna,et al.Blue luminescence in Tm~(3+)-doped KGd(WO4)2single crystals.Journal of Luminescence,2004,Vol.106:109-114.
    [162]Rapaport A,Milliez J,Bass M.Role of pump duration on temperature and efficiency of up-conversion in fluoride crystals co-doped with ytterbium and thulium.Optics Express,2004,Vol.12:5215-5220.
    [163]Hwang B C,Jiang S B,Luo T,et al.Cooperative upconversion and energy transfer of new high Er~(3+)- and Yb~(3+)-Er~(3+)-doped phosphate glasses,J.Opt.Soc.Am.B,2000,Vol.17:833-839.
    [164]Wyss C P,Kehrli M,Huber Th,et al.,Excitation of the thulium 1G4 level in various crystal hosts.Journal of Luminescence,1999,Vol.82,137-144.
    [165]Song F,Han L,Zou C,et al.Upconversion blue emission dependence on the pump mechanism for Tm~(3+) heavy-doped NaY(WO4)2 crystal,Appl.Phys.B,2007,Vol.86:653-661
    [166]Martin I R,Mendez-Ramos J,Rodriguez V D,et al.Increase of the 800 nm excited Tm~(3+)blue upconversion emission in fluoroindate glasses by codoping with Yb~(3+) ions.Optics Materials,2003,Vol.22:327-333.
    [167]Sun H T,Zhang L Y,Wen L,et al.Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass.Physica B,2005,Vol.358:50-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700