稀土离子掺杂钛酸盐荧光粉的合成及发光性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(WLED)是一种寿命长、节能、环保、工作电压低和响应速度快的新型固态照明光源,被誉为第四代照明光源,近年来备受科研人员的广泛关注。实现WLED主要有两大途径,一种是将红、绿、蓝三基色LED芯片组装实现白光发射,另一种是将蓝/紫光LED芯片与稀土荧光粉相结合产生白光发射。荧光粉制备技术的进步对WLED的发展起着重要的推动作用,本论文针对紫外光芯片激发的钛酸盐荧光材料展开研究。
     三价稀土离子具有丰富的能级,其掺杂的发光材料在绿色照明、生物荧光标识、短波长激光器、信息显示以及光电子学等领域有着广阔的应用前景。钛酸盐具有良好的热稳定性和化学稳定性,是一种很好的发光基质材料。本论文采用传统的高温固相法,成功制备了稀土钛酸盐体系发光材料,运用X射线衍射、荧光光谱等测试分析手段,对样品的物相组成、发光性能以及热稳定性等进行了分析。主要内容和结果如下:
     采用高温固相法,制备了Eu3+掺杂NaGdTiO4红光发射荧光粉。对合成NaGdTiO4:Eu3+的工艺条件进行了实验研究,确定了最佳的原料配比。荧光光谱测试结果表明,样品可被紫外光有效激发,基质到激活离子存在有效的能量传递,且样品具有质量较好的红光发射和良好的热稳定性。通过对不同温度下样品荧光光谱和衰减曲线的测试分析,得出能量传递是Eu3+发生荧光热猝灭的主要机理。
     采用高温固相法,制备了Dy3+掺杂NaGdTiO4白光发射荧光粉。研究了反应原料、助熔剂含量、激活剂浓度对荧光粉发光性质的影响。测试结果表明,激活离子的掺杂浓度不影响样品的晶体结构,样品具有质量较好的白光发射,且随着温度的上升,样品发光出现热猝灭现象。通过对不同温度下样品荧光衰减曲线与发射强度的分析,确定cross-over效应是引起Dy3+发生荧光热猝灭的主要原因。
     采用高温固相法,成功制备了Er3+/Yb3+共掺杂NaGdTiO4上转换荧光粉。确定在NaGdTiO4:Er3+/Yb3+荧光粉中Er3+的绿光发射和红光发射均为两光子过程,分析了Er3+掺杂浓度对上转换发光的影响,最后对上转换发光的具体过程进行了讨论。
As a solid state lighting source, white light emitting diodes (WLEDs), which are known as the forth-generation lighting source, have many advantages such as long serving longevity, energy saving, environmental amity, requirement of low voltage support and fast response, etc. and have received extensive attention. Generally, there are two major routes to achieve WLED:one is by assembling red, green and blue LED chips to achieve white light emission; another is by combining blue or ultraviolet LED chip with rare earth doped phosphors to achieve white light emission. The progress in preparation technology of phosphors greatly drives the development of WLED. In this dissertation, the rare earth ions doped titanate materials for UV chip-based WLEDs were investigated.
     Trivalent rare earth ions (RE3+) possess many levels, and RE3+ doped luminescent materials have broad application prospects in the lighting, biological fluorescence labling, short wavelength lasers, information displays and optoelectronics. Titanates have good thermal and chemical stability and are excellent matrics for RE3+ luminescence centers. In this dissertation, rare earth doped titanate luminescent materials were successfully synthesized through traditional high temperature solid-state method. The synthesis conditions, luminescence properties and thermal stability of the titanate phosphors were analyzed by means of x-ray diffraction (XRD), fluorescence spectroscopy, and chromatric calculations. The main contents and results are as follows.
     The Eu3+ doped NaGdTiO4 red phosphors were synthesized through high temperature solid-state method. The optimal preparation condition of NaGdTiO4:Eu3+ phosphors was studied, and that the optimized ratio of raw materials was determined. The results showed that there is a strong energy transfer from the matrix to the Eu3+ ions; the samples can be effectively excited by UV light and have intense red light emission. The analysis of fluorescence decay curves at different temperatures confirmed that energy transfer from Eu3+ to quenching center is the major mechanism of fluorescence thermal quenching of Eu3+ ions in NaGdTiO4 phosphors.
     The Dy3+ doped NaGdTiO4 white light phosphors were synthesized through high temperature solid-state method. The influences of the raw materials, flux content and the activator concentration on the properties of the phosphors were studied in detail. It was found that the doping concentration of Dy3+ ions does not affect the crystal structure of the samples and there is an effective energy transfer from the matrix to the Dy3+ ions; the high quality white light emission can be achieved from the studied phosphors. With the increase of temperature the thermal quenching phenomenon happened. Analysis on the temperature-dependent fluorescence decay curves and the emission intensity indicated that the cross-over process is the major mechanism of fluorescence thermal quenching of Dy3+ ions in NaGdTiO4 phosphors.
     The Er3+/Yb3+ co-doped NaGdTiO4 upconversion phosphors were synthesized through high temperature solid-state reaction method. It was found that the two-photon process is responsible for both green and red upconversion emissions of Er3+ in NaGdTiO4:Er3+/Yb3+ phosphors. The relationship between Er3+ doping concentration and upconversion luminescence intensity was studied. Finally, the specific process of upconversion luminescence of NaGdTiO4:Er3+/Yb3+ phosphor was discussed.
引文
[1]吕开明.固相法合成Sr2AL6O11:Eu2-蓝色发光材料:(硕士学位论文).成都:西华大学,20l0.
    [2]张希艳.稀土发光材料.北京:国防工业出版社,2005.
    [3]张盈.Sm3-,Eu3-掺杂稀土化合物纳米晶的光致发光性能研究:(硕士学位论文).郑州:河南大学,2006.
    [4]孙家跃.固体发光材料.北京:化学工业出版社,2003.
    [5]徐叙瑢.发光学与发光材料.北京:化学工业出版社,2004.
    [6]张思远.稀土光谱理论.吉林:科学技术出版社,1991.
    [7]徐光宪.稀L.北京:冶金出版社,1995.
    [8]刘娟.稀土掺杂羟基磷灰石的上转换发光及机制研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2010.
    [9]毛国娟.稀土铕掺杂的纳米发光材料的合成与性质研究:(硕士学位论文).大连:辽宁师范大学,2011.
    [10]Bloembergen N. Solid State Infrared Quantum Counters. Phys. Rev. Lett.1959,2(3):84-85.
    [11]张希艳,刘全生,王晓春等.红外上转换材料CaS:Eu3+,Sm3+的制备[J].红外与毫米波学报.2005,24(4):301-303.
    [12]Chivian J. S., Case W. E. and Eden D. D. The Photon Avalanche:A New Phenomenon in Pr3+-based Infrared Quantum Counters. Appl. Phys. Lett.1979,35(2):124-125.
    [13]刘博林.稀士发光材料的研究进展:(硕士学位论文).长春:东北师范大学,2007.
    [14]陈仁.稀土离子掺杂对SrAl2O4:Eu2+, Dy3长余辉发光材料发光性能的影响:(硕士学位论文).广州:广东工业大学,2008.
    [15]潘杏平.稀土功能材料应用的新进展.科技情报开发与经济.2008,18(5):130-131.
    [16]苟丽宁.苯甲酰胺衍生物及其铕配合物的合成与荧光性能:(硕士学位论文).长沙:湖南大学,2010.
    [17]王美媛.Fu2-激活的氮氧化物荧光粉的发光及其长余辉性质的研究:(博士学位论文)长春:长春光学精密机械与物理研究所,2010.
    [18]李成宇,苏锵,邱建荣等.稀土元素掺杂长余辉发光材料研究的最新进展[J].发光学报.2003,24(1):19-27.
    [19]陈恒智.铕掺杂的铟铌酸锂晶体的发射光谱特性研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2008.
    [20]杨勇.燃烧法合成稀土离子掺杂荧光材料:(硕士学位论文).保定:河北大学,2006.
    [21]李桂芳.稀土掺杂Y3Al3O12、YAl3(BO3)4材料的制备及性能研究:(博士学位论文).西安:西安电子科技大学,2009.
    [22]孙维.SiO2掺稀土Eu3+发光材料的制备与性能表征:(硕士学位论文).沈阳:东北大学,2008.
    [23]张婉.新型稀土发光配合物的合成及与高分子材料复合制备发光材料的研究:(硕士学位论文).北京:北京化工大学,2006.
    [24]张小丽.稀土发光材料BaWO4:Eu3的制备与表征:(硕士学位论文).沈阳:东北大学,2009.
    [25]李小亮.稀土掺杂Y203红色荧光粉的制备及发光性质研究:(硕士学位论文).大连:大连海事大学,2010.
    [26]时艳美.低维纳米材料的低热固相法合成与表征:(硕士学位论文).哈尔滨:黑龙江大学,2011.
    [27]符远翔.铕离子掺杂核壳结构稀土红色发光材料的制备与性能表征:(硕士学位论文)广州:华南师范大学,2008.
    [28]全国稀土荧光粉,灯协作网.我国稀土发光材料行业未来发展前景.新材料产业.2010,8(14),58-63.
    [29]夏磊.荧光纤维用稀土发光材料的合成及其性能研究:(硕士学位论文).天津:天津工业大学.2008.
    [30]李俊峰.燃烧法合成铝酸盐稀土发光材料及其发光性研究:(硕士学位论文).成都:成都理工大学,2005.
    [31]李群,滕晓明,庄卫东.稀土长余辉发光材料的研究现状和发展趋势[J].稀土.2005,26(4):62-68.
    [32]PARK J. K., CHOI K. J., KANG H. G, et al. Electrochemical and solid-state letters. Electrochem. solid-state lett. ISSN 1099-0062.
    [33]Jennifer W., Vojislav S. Cerium doped garnet phosphors in white InGaN-based LEDs, Mater. Res. soc. Symp. Proc,2001, (667):511-516.
    [34]刘其鹏.白光LED荧光粉的研制与光谱特性研究:(硕士学位论文).长春:长春理工大学材料学,2008.
    [35]Okamoto S., Yamamoto H. Luminescent properties of praseodymium-doped alkaline-earth titanates. J. Lumin.2003,102-103:586-589.
    [36]徐为为.稀土硼铝酸盐荧光材料的发光性质及其机理的研究:(硕士学位论文).长春:吉林大学,2009.
    [37]武秀兰,任强,郝蕴祥等.共沉淀法制备Sr4Al14O25:Eu2+,Dy3+长余辉发光材料[J].稀有金属材料与工程.2005,34(z2):710-712.
    [38]杨应国,胡小华,袁曦明.纳米稀土发光材料的研究与展望.矿业快报.2004,426:5-7.
    [39]程丹.Eu2-掺杂碱土金属卤磷酸盐蓝色荧光粉的制备与性质研究:(硕士学位论文).长春:东北师范大学,2010.
    [40]姜涛.固相燃烧法合成稀土铝酸盐发光材料及发光性质研究:(硕士学位论文).大连:大连海事大学,2007.
    [41]Lee D., Nishikawa A., Terai Y., et al. Eu luminescence center created by Mg codoping in Eu-doped GaN, Appl. Phys. Lett.2012,100(17):171904
    [42]Chen W., Sammynaiken R., Huang Y. Photoluminescence and photostimulated luminescence of Tb3+and Eu3+in zeolite-Y, J. Appl. Phys.2000,88(3):1424-1431.
    [43]Hu Y S, Zhuang W D, Ye H Q, et al. A novel red phosphor for white light emitting diodes [J]. J. Alloys Comp.2005,390(1-2):226-229.
    [44]Pang M L, Lin J, Fu J, et al. Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithography [J]. Opt. Mater.2003,23:547-558.
    [45]Wang Z L, Liang H B, Gong M L, et al. Luminescence investigation of Eu3+activated double molybdates red phosphors with scheeelite structure [J]. J. Alloys Comp.2007, 432(1-2):308-312.
    [46]Blasse G., Bril A. Fluorescence of Eu3+-Activated Sodium Lanthanide Titanates (NaLn1-xEuxTiO4) [J]. J. Chem. Phys.1968,48(8):3652-3659.
    [47]Conde-Gallardo A., Garcia-Rocha M., Palomino-Merino R., et al. Photoluminescence Properties of Tb and Eu Ions Hosted in TiO2 Matrix [J]. Appl. Surf. Sci.2003, 212-213:583-588.
    [48]Lin C. C, Lin K. M., Li Y. Y. Sol-gel synthesis and photoluminescent characteristics of Eu3+-dopedGd2O3 nanophosphors [J]. J. Lumin.2007,126(2):795-799.
    [49]徐秀珍.Y2O2S;Eu3+发光材料的水热制备与性能研究.(硕士学位论文).杭州:浙江大学,2007.
    [50]Van U. Characterization of energy transfer interactions between rare earth ions [J]. J. Electrochem. Soc.1967,114(10):1048-1053.
    [51]Song H, Wang J, Chen B, et al. Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chem. Phys. Lett.2003,376:1-5.
    [52]Peng H, Song H, Chen B, et al. Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu3-. J. Chem. Phys.2003,118(7):3277-3281.
    [53]Kuang J., Liu Y., Zhang J. White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3. J. Solid State Chem.2006,179:266-269.
    [54]Martinez-Martinez R., Lira A. C., Speghini A., et al. Blue-yellow photoluminescence from Ce3→Dy3+energy transfer in HfO2:Ce3+:Dy3+films deposited by ultrasonic spray pyrolysis. J. Alloys Compd.2011,509:3160-3165.
    [55]Cheng L H, Li X P, Sun J S, et al. Investigation of the luminescence properties of Dy3+-doped a-Gd2(MoO4)3 phosphors. Phys. B.2010,405:4457-4461.
    [56]Inokuti M., Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys.1965,43:1978-1985.
    [57]Hong Z, Li W L, Zhao D, et al. White light emission from OEL devices based on organic dysprosium-complex. Synth. Metals.2000, (111-112):43-45.
    [58]Lu W L, Cheng L H, Zhong H Y, et al. Dependence of upconversion emission intensity on Yb3+concentration in Er3+/Yb3+co-doped flake shaped Y2(MoO4)3 phosphors. J. Phys. D: Appl. Phys.2010,43(8):540-544.
    [59]Xu W, Li C R, Cao B S, et al. Optical temperature sensor based on up-conversion fluorescence emission in Yb3+:Er3+co-doped ceramics glass. Phys. B.2010,19(12):780-784.
    [60]Li C R, Dong B, Ming C G, et al. Application to Temperature Sensor Based on Green Up-Conversion of Er3+Doped Silicate Glass. Sensors.2007,7:2652-2659.
    [61]Ronda C. Luminescence from Theory to Applications. Weinheim:Wiley-VCH,2008.
    [62]Tang Y S, Hu S F, Ke W C, et al. Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2:Eu2+phosphor for potential application in light-emitting diodes. Appl. Phys. Lett.2008,93:131114.
    [63]Tian Y, Chen B J, Hua R N, et al. Optical transition, electron-phonon coupling and fluorescencent quenching of La2(MoO4)3:Eu3+phosphor. J. Appl. Phys.2011,109:053511.
    [64]Struck C. W., Fonger W. H. Quantum-mechanical treatment of Eu3+4f-4f and 4fn charge-transfer-state transitions in Y2O2S and La2O2S. J. Chem. Phys.1976, 64(4):1784-1790.
    [65]Chambers M. D., Rousseve P. A., Clarke D. R. Decay pathway and high temperature luminescence of Eu3+in Ca2Gd8Si6O26. J. Lumin.2009,129:263-269.
    [66]Chang Y. C., Liang C. H., Yan S. A., et al. Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+red phosphors. J. Phys. Chem. C. 2010,114:3645-3652.
    [67]Fang Y. C., Chu S. Y., Kao P. C., et al. Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+, Eu3+red phosphors. J. Elec.2011, Soc.158:J1-J5.
    [68]Fonger W. H., Struck C. W. Eu+3 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl. J. Chem. Phys.1970,52:6364-6372
    [69]万继敏.红外——可见光上转换寻的技术研究:(硕士学位论文).哈尔滨:哈尔滨工业大 学,2007.
    [70]Meng Z., Nagamatsu K., Higashihata M., et al. Energy transfer mechanism in Yb3+:Er3+-ZBLAN:macro-and micro-parameters. J. Lumin.2004,106(3-4):187-194.
    [71]Federighi M., Di Pasquale F. The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+concentrations, IEEE Phot. Tech. Lett.1995, 7(3):303-305.
    [72]Sun H, Dai S, Xu S, et al. Efficient frequency upconversion emission of Er3+/Yb3+-codoped potassium-magnesium-lead-bismuth glasses pumped at 975 nm. Phys. B.2004, 352(1-4):366-371.
    [73]卢伟丽.稀土掺杂的Y2(MoO4)3蓝、绿上转换荧光粉的合成与光谱性质研究.(硕士学位论文).大连:大连海事大学,2010.
    [74]Zhang Q Y, Feng Z M, Yang Z M, et al. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses. J. Quant. Spect. Ra. 2006,98(2):167-179.
    [75]Zheng Z, Li X, Liu J, et al. Optical properties of Er3+/Yb3+-codoped transparent PLZT ceramic, Phys. B.2008,403(1):44-49.
    [76]Garskaire E., Lindgren M., Einarsrud M, et al. Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol-gel tech. J. Euro. Cera. Soci.2010,30:1707-1715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700