稀土掺杂氟化物纳米材料的制备及多色上转换发光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂荧光纳米晶独特的光学特性引起了人们广泛的研究兴趣。由于外层5s和5p轨道的有效屏蔽,稀土离子内层4f电子能级间跃迁产生的吸收和发射谱线具有高量子产率、长寿命和高稳定性。此外,稀土离子梯状的能级分布特征使它能在红外激光器激发下吸收两个或多个低能长波光子然后将其转换成高能短波光子。因此,稀土掺杂纳米晶在全固态激光器、红外探测、三维立体显示特别是生物荧光标签等方面有着广泛的应用价值。近年来,随着生物科技和纳米技术的发展,高强度蓝、紫、紫外以及多色彩(含白光)上转换荧光纳米晶由于其在光动力学治疗、可调紫外激光器、纳米光源器件以及同步多通道探测、分子荧光探测等领域的潜在应用价值逐渐成为了人们竞相追逐的热点。本文在课题组前几年工作的基础之上,通过调节基质材料组分和稀土离子组合,在蓝、紫、紫外和多色上转换荧光发射研究上取得了一些重要结果。主要内容如下:
     1.采用水热法使用不同比例的油酸和氢氧化钠分别制备了不同比表面积的Yb3+/Tm3+共掺杂单一六角相NaYF4纳米晶。在980 nm激光器激发下,通过改变激光器激发功率,在强蓝光和红外光发射的Yb3+/Tm3+共掺杂β-NaYF4纳米棒材料中,我们观察到了800 nm、475 nm和450 nm发射波段可控的荧光转变。
     2.通过引入Gd3+离子,采用水热法制备了Yb3+/Tm3+/Gd3+三掺杂NaYF4纳米棒。XRD测试结果表明改变Gd3+离子浓度可以有效调节纳米晶的尺寸。在980 nm激光的激发下,除了观察到Tm3+离子从紫外光、蓝光、红光到红外光的上转换发射以外,还观察到了Gd3+离子深紫外270~330 nm波段发射。光谱分析结果表明深紫外上转换发射是通过Yb3+到Tm3+然后再到Gd3+的高效的能量传递实现的。
     3.采用水热法制备了不同稀土离子掺杂的直径约为12 nm的立方相KGdF4纳米晶。在980 nm激光的激发下,Yb3+/Er3+、Yb3+/Ho3+和Yb3+/Tm3+双掺杂KGdF4纳米晶发出肉眼可见明亮的红色、黄色和蓝色上转换荧光。透射电镜(TEM)、上转换光谱和X射线衍射(XRD)研究表明,样品经过低温热处理后发光强度得到显著的增强,且不会导致晶粒尺寸明显增大。通过调节Yb3+/Ho3+/Tm3+掺杂浓度控制红、绿、蓝三基色荧光强度实现了白色上转换荧光输出。考虑到Gd3+离子常用于磁共振成像,我们的结果表明KGdF4荧光纳米晶在生物医学,防伪和光磁多功能纳米探针等方面有很好的应用前景。
The interest in lanthanide (Ln3+)-doped nanocrystals have renewed by their unique optical properties at the end of the 20th century. These nanomaterials have sharp absorption and emission lines arising from the intra 4f transitions with high quantum yields, long lifetimes, and superior photostability, due to the effective shielding of the 4f orbitals by the higher lying 5s and 5p orbitals, thereby minimizing the effect of the outer ligand field. In particular, owing to the ladder-like arranged energy levels of Ln3+ ions, high efficiency of the photon upconversion (UC) that absorb one or more low-energy near-infrared (NIR) photons and subsequently convert them to high-energy emissions can be obtained under the excitation of infrared lasers with moderate excitation densities. Therefore, the Ln3+ doped nanocrystals are envisioned to have extensively potential applications in solid-state lasers, infrared detection, multicolor three dimensional displays,and especially biological fluorescent labels. In recent years, obtaining highly efficient and strong blue, purple, ultraviolet (UV) and multicolor (including white light) nanocrystals become a research focus. The former can especially be used to produce singlet oxygen for photodynamic therapies in the field of biomedicine and develop solution-based scintillator materials besides tunable UV laser, while the latter can especially serve as lighting sources in nano-optics devices and fluorescent biolabels offering more simultaneous detection channels or allowing molecular fluorescence detection independent of the color of solution. On the basis of our group’s previous studies, we achieved some important conclusions on blue, purple, UV and multicolor UC luminescence by changing matrix and rare-earth ions. The major contents of our study as follows:
     1. Yb3+/Tm3+ codoped hexagonal NaYF4 nanocrystals were fabricated via changing dosage of oleic acid and sodium hydroxide using a facile hydrothermal method. Intense infrared-to-visible UC emissions were obtained in these nanocrystals under excitation at 980 nm. Especially, luminescent switching among different UC emissions wavelengths at 800, 475 and 450 nm were observed by adjusting excitation powers.
     2. Deep UV UC emissions in the region of 270~330 nm of Gd3+ under the excitation of 980 nm laser diode in hexagonal Yb3+/Tm3+/Gd3+ triply doped NaYF4 nanorods synthesized using hydrothermal method were studied. Spectral analyses indicate that the UV UC emissions originate from highly efficient energy-transfer from Yb3+ to Tm3+, then to Gd3+ ions, and the intensity of the emission as well as the ratios of the emission peaks are strongly dependent on the doping concentrations and pump power. XRD results indicate that crystallite size can be controlled by changing concentration of Gd3+.
     3. Ln3+ doped cubic KGdF4 (Ln= Yb, Er, Ho, Tm) nanocrystals, approximately 12 nm in diameter, synthesized via a hydrothermal method with multicolor UC emissions including red, yellow, blue and white, under the excitation of a 980 nm diode laser was studied. The transmission electron microscopy (TEM),X-ray diffraction (XRD) and UC spectra results indicated that the UC fluorescence intensity is remarkably enhanced after low-temperature heat treatment, but the gain size dose not increased obviously. The calculated color coordinate demonstrated that white UC emission including nearly standard white light (CIE-X=0.351, CIE-Y=0.346) can be tuned through controlling the intensities of red, green and blue emissions by adjusting the dopant concentration in Yb3+/Ho3+/Tm3+ triply doped nanocrystals. Keeping in mind that the Gd3+ ion is a paramagnetic relaxation agent extensively used in magnetic resonance imaging, our results suggest that these Ln3+ doped KGdF4 nanocrystals have promising applications in optical and magnetic dual modal nanoprobes for biomedicine besides anti-counterfeiting, color displays and back light sources.
引文
[1]张中太,张俊英.无机光致发光材料及应用[M].北京:化学化工出版社,2005
    [2] Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans. Unverre [J]. C.R. Acad. Sci. (Paris), 1966, 2623: 1016-1019.
    [3] Auzel F. Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germinate [J]. C.R. Acad. Sci. (Paris), 1966, 263: 819-821.
    [4] Chivian J S, Case W E, Eden D D. The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters [J]. Appl. Phys. Lett., 1979, 35:124-126.
    [5]徐国财.纳米技术导论[M].北京:北京高等教育出版社, 2005
    [6]邱关明,耿秀娟,陈永杰,孙彦彬,田一光,张明.纳米稀土发光材料的光学特性及软化学制备[J].中国稀土学报, 2003, 21:109-114.
    [7] Yi G S and GanMoog Chow. Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence [J]. J. Mater. Chem., 2005, 15: 4460-4464.
    [8] Jan W. Stouwdam and Frank C. J. M. van Veggel. Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles [J]. Nano Lett., 2002, 2: 733-737.
    [9] S. Heer, K. K?mpe, H. U. Güdel and M. Haase. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals [J]. Adv. Mater., 2004, 16: 2102-2105.
    [10] S. Heer, O Lehmann, M. Haase and H. U. Güdel. Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LuPO4 and YbPO4 Nanocrystals in a Transparent Colloidal Solution [J]. Angew. Chem. Int. Ed., 2003, 42: 3179– 3182
    [11] Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P and Guo L H. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphor[J]. Nano Lett., 2004, 4: 2191-2196.
    [12] Zeng J H, Su J, Li Z H, Yan R X and Li Y D. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb,Er3+ Phosphors of Controlled Size and Morphology [J]. Adv. Mater., 2005, 17: 2119-2123.
    [13] Li Z Q and Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission [J]. Angew. Chem., 2006, 118: 7896–7899.
    [14] Wang F and Liu X G. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticle [J]. J. Am. Chem. Soc., 2008, 130: 5642–5643
    [15] Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B and Zhao D Y. Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence [J]. Angew. Chem., 2007, 119:1-5.
    [16] Wang L Y and Li Y D. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals [J]. Chem. Mater., 2007, 19: 727 734.
    [17] Zhao J W, Sun Y J, Kong X J, Tian L J, Wang Y, Tu L P, Zhao J L and Zhang H. Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+,Er3+ Nanocrystals/Submicroplates at Low Doping Level [J]. J. Phys. Chem. B., 2008, 112: 15666–15672.
    [18] Li C X, Quan Z W, Yang J, Yang P P, and Lin J. Highly Uniform and Monodisperseβ-NaYF4:Ln3+ (Ln, Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties [J]. Inorg. Chem., 2007, 46: 6329?6337
    [19] Li Y P, Zhang J H, Zhang X, Luo Y S, Ren X G, Zhao H F, Wang X J, Sun L D and Yan C H. Near-Infrared to Visible Upconversion in Er3+ and Yb3+ Codoped Lu2O3 Nanocrystals: Enhanced Red Color Upconversion and Three-Photon Process in Green Color Upconversion [J]. J. Phys. Chem. C., 2009, 113: 4413- 4418.
    [20] Yang Kuisheng, Zheng F, Wu R N, Li H S and Zhang X Y. Upconversion Luminescent Properties of YVO4:Yb3+, Er3+ Nano-Powder by Sol-Gel Method [J]. Journal of Rare Earths. 2006, 24:162-166.
    [21] Venkataramanan Mahalingam, Francesca Mangiarini, Fiorenzo Vetrone, Vemula Venkatramu, Marco Bettinelli, Adolfo Speghini and John A. Capobianco. Bright White Upconversion Emission from Tm3+/Yb3+/Er3+-Doped Lu3Ga5O12 Nanocrystals [J]. J. Phys. Chem. C., 2008, 112: 17745–17749.
    [22] R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini and F. Piccinelli. Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+ [J]. J. Phys. Chem. C., 2009, 113: 12195–12200.
    [23] Liu Y S, Luo W Q, Li R F, Zhu H M and Chen X Y. Near-infrared luminescence of Nd3+ and Tm3+ ions doped ZnO nanocrystals [J]. Opt. Express., 2009, 17: 9748-9753.
    [24]张晓顺,翟秀静,邱竹贤,符岩,储刚.燃烧合成法制备纳米氧化锌[J].分子科学学报., 2005, 21:12-15.
    [25] R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini and F. Piccinelli. Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+ [J]. J. Phys. Chem. C., 2009, 113: 12195–12200.
    [26] Han H L, Yang L W, Liu Y X, Zhang Y Y, Yang Q B. Up-conversion luminescence switching in Er3+-containing ZnO nanoparticles [J]. Opt. Mater., 2008, 31:338-341.
    [27] John. C. Boyer, Fiorenzo Vetrone, Louis A. Cuccia and John A. Capobianco. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+,Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J. Am. Chem. Soc., 2006, 128: 7444-7445.
    [28] Oliver Ehlert, Ralf Thomann, Masih Darbandi and Thomas Nann. A Four-Color Colloidal Multiplexing Nanoparticle System [J]. ACS Nano., 2008, 2: 120-124
    [29] Chen G Y, Gabriel Somesfalean, Liu Y, Zhang Z G, Sun Q and Wang F P. Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals [J]. Phys. Rev. B., 2007, 75: 195204.
    [30] Neralagatta M. Sangeetha and Frank C. J. M. van Veggel. Lanthanum Silicate and Lanthanum Zirconate Nanoparticles Co-Doped with Ho3+ and Yb3+: Matrix-Dependent Red and Green Upconversion Emissions [J]. J. Phys. Chem. C., 2009, 113: 14702–14707.
    [31] Wang G F, Qin W P, Xu Y, Wang L L, Wei G D, Zhu P F, Ryongjin Kim. Size-dependent upconversion luminescence in YF3:Yb3+/Tm3+ nanobundles [J]. J. Fluorine Chem., 2008, 129:1110-1113.
    [32] Mai H X, Zhang Y W, Sun L D and Yan C H. Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals [J]. J. Phys. Chem. C., 2007, 111: 13721-13729.
    [33] Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu X Z, Dong B, Dai Q L and Fan L B. Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects [J]. J. Phys. Chem. C., 2007, 111: 13611-13617.
    [34] Zhao Y X. An analytical model for Pr3+-doped fluoride fibre upconversion lasers [J]. Opt. Commun., 1997, 134: 470-478.
    [35] A.M. Tkachuk, S.E. Ivanov, M.-F. Joubert, Y. Guyot, L.I. Isaenko, V.P. Gapontseve. Upconversion processes in Er3+:KPb2Cl5 laser crystals [J]. J. Lumin., 2007, 125: 271-278.
    [36] Dantelle G, Mortier M, Vivien D. Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics[J]. J. Mater. Res., 2005, 20(2): 472-481.
    [37] Elizabeth Downing, Lambertus Hesselink, John Ralston, Roger Macfarlane. A Three-Color, Solid-State, Three-Dimensional Display [J]. Science, 1996, 273: 1185-1189.
    [38]贺丽英.一种红外-可见上转换防伪材料.中国专利, CN03122018.5, 2003.
    [39] Zhao D L, Qiao X S, Fan X P, et al. Local vibration around rare earth ions in SiO2–PbF2 glass and glass ceramics using Eu3+ probe[J]. Physica B: Condens. Matter, 2007, 395: 10-15.
    [40] H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala and H. J. Tanke. Detection of Cell and Tissue Surface Antigens Using Up-Converting Phosphors: A New Reporter Technology [J]. Anal. Biochem., 1999, 267: 30-36.
    [41] Johannes Hampl, Michael Hall, Naheed A. Mufti, Yung-mae M. Yao, D. Brent MacQueen, William H. Wright and David E. Cooper. Upconverting Phosphor Reporters in Immunochromatographic Assays [J]. Anal. Biochem., 2001, 288:176-187.
    [42] Rufaihah Abdul Jalil and Yong Zhang. Biocompatibility of silica coated NaYF4 upconversion ?uorescent nanocrystals [J]. Biomaterials 2008, 29: 4122–4128.
    [43] Xiong L Q, Chen Z G, Yu M X, Li F Y, Liu C and Huang C H. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors [J]. Biomaterials., 2009, 30: 5592–5600.
    [44] Scott A. Hilderbrand, Fangwei Shao, Christopher Salthouse, Umar Mahmoodb and Ralph Weissleder. Upconverting luminescent nanomaterials: application to in vivo bioimaging [J]. Chem. Commun., 2009, 4188–4190.
    [45] J.E.C. da Silva, G.F. de Sa′, P.A. Santa-Cruz White light simulation by up-conversion in fluoride glass host [J]. Journal of Alloys and Compounds 2002,344:260–263.
    [46] Frans van de Rijke, Henry Zijlmans, Shang Li, Tim Vail, Anton K. Raap, R. Sam Niedbala, Hans J. Tanke. Up-converting phosphor reporters for nucleic acid microarrays [J]. Nat. Biotechnol., 2001, 19: 273-279.
    [47] John-Christopher Boyer, Fiorenzo Vetrone, Louis A. Cuccia and John A. Capobianco. Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J. Am. Chem. Soc., 2006, 128: 7444-7445.
    [48] John-Christopher Boyer, Louis A. Cuccia, and John A. Capobianco. Synthesis of Colloidal Upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals [J]. Nano Lett., 2007, 7: 847-852.
    [49] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, and Yan C H. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties [J]. J. Am. Chem. Soc., 2006, 128: 6426-6436.
    [50] Wang L Y, and Li Y D. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials [J]. Nano Lett., 2006, 6: 1645-1649.
    [51] Chen D Q, Wang Y S, Yu Y L, and Huang P. Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett., 2007, 91: 051920.
    [52] Wang G F, Qin W P, Wang L L, Wei G D, Zhu P F, Ryongjin Kim. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals [J]. Opt. Express. 2008, 16: 11907-11914.
    [53] Chen D Q, Wang Y S, Zheng K L, Guo T L, Yu Y L, Huang P. Bright upconversion white light emission in transparent glass ceramice mbedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals [J]. Appl. Phys. Lett., 2007, 91: 251903.
    [54] C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso. Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses [J]. Appl. Phys. Lett., 2007, 91: 071102.
    [55] Suyver J F, Grimm J, Van Veen M K, Biner D, Kramer K W, Güdel H U, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ [J]. J. Lumin., 2006, 117:1-12.
    [56] Suyver J F, Grimm J, Kr?mer K W, Güdel H U. Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+, Yb3+ [J]. J. Lumin., 2005, 114: 53-59.
    [57] Xiao S G. Yang X L, Ding J W, Yan X H, Up-conversion in Yb3+/Tm3+ Co-Doped Lutetium Fluoride Prepared by a Combustion-Fluroization Method [J].J. Phys. Chem. C ,2007,111: 8161
    [58] Qin G S, Qin W P, Wu C F, Huang S H, Zhao D, Zhang J S and Lu S Z. Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous ?uoride particles synthesized by pulsed laser ablation. Opt. Commun., 2004, 242: 215-219.
    [59] Xiao S G, Yang X L, Liu Z W, and Yan X H. Up-conversion in Er3+:Y2O3 Nanocrystals Pumped at 808 nm. J. Appl. Phys., 2004, 96: 1360-1364.
    [60] Cao C Y, Qin W P, Zhang J S, Wang Y, Zhu P F, Wei J D, Wang G F, Ryongjin Kim, and Wang L L. Ultraviolet upconversion emissions of Gd3+ [J]. Opt. Lett. 2008, 33: 857-859.
    [61] Venkataramanan Mahalingam, Rafik Naccache, Fiorenzo Vetrone, and John A. Capobianco. Sensitized Ce3+ and Gd3+ Ultraviolet Emissions by Tm3+ in Colloidal LiYF4 Nanocrystals [J]. Chem. Eur. J., 2009, 15: 9660-9663.
    [62] Zhang Y Y, Yang L W, Han H L, Zhong J X. Excitation power controlled luminescence switching in Yb3+–Tm3+ co-doped hexagonal NaYF4 nanorods [J]. Opt. Commun., 2009, 282: 2857-2860.
    [63] Qin W P, Cao C Y, Wang L L, Zhang J S, Zhang D S, Zheng K Z, Wang Y, Wei G D, Wang G F, Zhu P F, and Ryongjin Kim. Ultraviolet upconversion ?uorescence from 6DJ of Gd3+ induced by 980 nm excitation [J]. Opt. Lett., 2008, 33: 2167-2169.
    [64] Fiorenzo Vetrone, Venkataramanan Mahalingam, and John A. Capobianco. Near-Infrared-to-Blue Upconversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals [J]. Chem. Mater., 2009, 21: 1847-1851.
    [65] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Güdel, M. P. Hehlen. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B., 2000, 61: 3337-3346.
    [66] E. D. Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez. Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals [J]. Appl. Phys. Lett. 2005, 87: 241912.
    [67] Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, and Li Y D. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44: 6054–6057.
    [68] Liu J F, Yao Q H, and Li Y D. Effects of downconversion luminescent film in dye-sensitized solar cells [J]. Appl. Phys. Lett., 2006, 88: 173119.
    [69] Chen G Y, Liu Y, Zhang Y G, G. Somesfalean, Zhang Z G, Sun Q and Wang F P. Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals [J]. Appl. Phys. Lett., 2007, 91: 133103.
    [70] Bai Y F, Wang Y X, Peng G Y, Zhang W, Wang Y K, Yang K, Zhang X R, Song Y L. Enhanced white light emission in Er/Tm/Yb/Li codoped Y2O3 nanocrystals [J]. Opt. Commun., 2009, 282: 1922–1924.
    [71] Chen D Q, Wang Y S, Yu Y L, Huang P, Weng F Y. Novel rare earth ions-doped oxy?uoride nano-composite with efficient upconversion white-light emission [J]. J. Solid State Chem., 2008, 181:2763–2767.
    [72] Yu Z Z, Yang Q B, Xu C F, Liu Y X. Upconversion white-light emitting of Tm3+ and Er3+ codoped oxy?uoride and its achieving mechanism [J]. Mater. Res. Bull., 2009, 44: 1576-1580.
    [73] Pan Y X, Zhang Q Y. White upconverted luminescence of rare earth ionscodoped Gd2(MoO4)3 nanocrystals [J]. Mater. Sci. Eng., B. 2007, 138: 90–94.
    [74] Liao M S, Hu L L, Fang Y Z, Zhang J J, Sun H T, Xu S Q, Zhang L Y. Upconversion properties of Er3+, Yb3+ and Tm3+ codoped ?uorophosphate glasses [J]. Spectrochimica Acta Part A, 2007, 68: 531-535.
    [75] Won Jin Kim, Marcin Nyk and Paras N Prasad. Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security [J]. Nanotechnology, 2009, 20:185301.
    [76] You F T, Huang S H, Liu S M and Tao Y. VUV excited luminescence of MGdF4:Eu3+ (M=Na, K, NH4) [J]. J. Lumin., 2004, 110:95-99.
    [77] Marek Adam Gusowski, Anna Gagor, Monika Trzebiatowska-Gusowska and Witold Ryba-Romanowski. Crystal structure and vibrational properties of new luminescent hosts K3YF6 and K3GdF6[J]. J. Solid State Chem., 179 2006, 179:3145-3150.
    [78] M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier and H. Sato. Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal[J]. J. Opt. Soc. Am. B., 2007, 24:3023-3033
    [79] Rajiv Kumar, Marcin Nyk, Tymish Y. Ohulchanskyy, Christopher A. Flask and Paras N. Prasad. Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals [J]. Adv. Funct. Mater., 2009,19: 853–859
    [80] Guo H, Dong N, Yin M, Zhang W P, Lou L R and Xia S D. Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals [J]. J. Phys. Chem. B., 2004, 108: 19205-19209.
    [81] Fiorenzo Vetrone, John-Christopher Boyer, John A. Capobianco, Adolfo Speghini and Marco Bettinelli. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3 :Er3+,Yb3+ nanocrystals [J]. J. Appl. Phys., 2004, 96: 661-667.
    [82] Song H W, Sun B J, Wang T, Lu S Z, Yang L M, Chen B J, Wang X J and Kong X G. Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria [J]. Solid State Commun., 2004, 132:409-413.
    [83] Daisuke Matsuura. Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals [J]. Appl. Phys. Lett., 2002, 81: 4526-4528.
    [84] Zhang J, An L Q and Wang S W. Preparation and upconversion luminescence of Y2O3:Yb3+, Ho3+ nanocrystalline powders coated with SiO2 [J]. J. Alloys Compd., 2009, 471: 201-203.
    [85]韩海龙.稀土掺杂纳米发光材料的合成及上转换特性研究[D].湘潭:湘潭大学材料与光电物理学院, 2009: 34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700