金纳米粒子及其复合材料的可控合成与结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米粒子具有优异的生物相容性以及独特的光学、电学和催化特性,在生物医学、传感器、光电器件和催化等诸多领域具有广阔的应用前景。金纳米粒子液相合成中的形核、长大规律和机理,特定尺寸和形貌的可控合成原理和方法以及多功能修饰和组装等是金纳米粒子研究与应用的重点和热点。本论文采用改进的Brust法制备了性能稳定的单分散Au_(11)纳米团簇和水溶性金纳米晶,以纳米粒子自组装的方式制备了金纳米粒子超晶格,研究了反应条件对纳米粒子形核、长大以及有序组装的影响规律和机理。并以金纳米粒子为基本组成单元,制备了多功能NaYF_4:Yb~(3+)/Ho~(3+)@SiO_2/Au和Fe_3O_4/Au纳米复合粒子,阐明了金纳米粒子及其复合材料微观结构与性能之间的内在联系。
     以巯基丙酸为配体,采用Brust双相法,通过控制Au~(3+)与巯基丙酸的摩尔比值、还原剂添加速度以及反应温度,合成出具有良好稳定性的单分散Au_(11)(SCH_2CH_2COO-)_7(TOA~+)_7纳米团簇。Au_(11)纳米团簇在355 nm光激发下产生蓝色荧光,最大荧光发射峰在417 nm处,荧光量子效率高达8.6%。Au_(11)纳米团簇具有高荧光量子效率的主要原因为:团簇尺寸的高度单分散性避免了其他粒径纳米粒子的干扰,同时类树枝状(SCH_2CH_2COO-)(TOA~+)作为稳定配体阻止了溶剂的猝灭效应。以单分散Au_(11)纳米团簇为构筑单元,通过自组装制备出Au_(11)纳米团簇超晶格。超晶格也发射蓝色荧光,但与稀溶液中Au_(11)纳米团簇的荧光发射峰相比,其荧光发射峰红移了56 nm。
     系统研究了Brust单相法的合成条件及中间体的尺寸分布对金纳米晶单分散性的影响规律和机理,发现Au0均一形核和均匀生长是获得粒子尺寸单分散的必要条件。分别通过控制Au1+中间体尺寸分布和反应搅拌速度实现Au0均一形核和均匀生长。在此基础上,调节还原剂滴加速度制备出不同尺寸的单分散水溶性金纳米晶。在0.2 mol/L的浓度下,尺寸为6.6 nm的金纳米晶的X射线衰减值为1663 HU,明显高于目前临床使用的欧苏造影剂X射线衰减值(826 HU)。巯基丙酸作为稳定配体的金纳米晶具有优异的稳定性,以干粉存放14个月,其性质基本保持不变;分散于浓度为240 mmol/L的NaCl溶液中,依然保持良好的胶体稳定性。
     采用层层组装方法制备了NaYF_4:Yb~(3+)/Ho~(3+)@SiO_2/Au纳米复合粒子,纳米粒子具有上转换荧光性能、表面等离子共振效应和丰富的表面修饰途径。金纳米粒子的负载不改变NaYF_4:Yb~(3+)/Ho~(3+)纳米晶的上转换发光机制,但降低了上转换荧光强度,主要原因为NaYF_4:Yb~(3+)/Ho~(3+)纳米晶与Au纳米粒子发生了能量共振转移。
     利用Au与巯基之间强的化学键合作用,设计并合成出结合牢固的Fe_3O_4/Au纳米复合粒子。研究发现,随金负载量增加,~521 nm处的紫外-可见光吸收峰明显宽化和红移,饱和磁化强度降低。Fe_3O_4/Au纳米复合粒子在室温下具有超顺磁性和表面增强拉曼散射特性。用于水中的硝基苯检测,灵敏、快捷且具有选择性,检测限为10~(-7) mol/L,低于现行国家规定的饮用水质标准限值。
Gold nanoparticles are one of the most promising nanomaterials for numerous applications in biomedicine, sensor, optoelectronic devices, and catalysis, due to their superior biocompatibility, special optical, electronic, and catalytic properties. The mechanism of nucleation and growth of gold nuclei in solution-based synthesis, the principle and routes of controllable synthesis of gold nanoparticles with well-defined size and morphology, as well as multifunctional modification and assembly are the focus and hot topics of gold nanoparticles. In this dissertation, stable monodisperse Au_(11) nanoclusters and water-soluble gold nanocrystals have been successfully prepared via the modified Brust synthesis. The influence of the reaction parameters on the formation and growth of gold nuclei as well as the ordered assembly of nanoparticles has been investigated. Furthermore, using the prepared gold nanoparticles as building blocks, multifunctional NaYF_4:Yb~(3+)/Ho~(3+)@SiO_2/Au and Fe_3O_4/Au nanocomposites have been fabricated. The relationship between properties and microstructures of gold nanoparticles and their nanocomposites have been clarified.
     By employing 3-mercaptopropionic acid (MPA) as ligand and adjusting the mole ratio of Au3+ to MPA, the adding rate of NaBH4 and the reaction temperature, one-sized stable Au_(11)(SCH_2CH_2COO-)_7(TOA~+)_7 nanoclusters are prepared by a modified Brust biphasic synthesis. The blue luminescence with excitation and emission maxima at 355 and 417 nm, respectively, is observed from the Au_(11) nanoclusters. The luminescence quantum yield is determined to be as high as 8.6 %, which is attributed to the protection of nanoclusters from quenchers in the solution by the high-density (SCH_2CH_2COO-)(TOA~+) ligands and one-sized nanoclusters prepared to eliminate the influence of other sized nanoclusters. By using the uniform Au_(11) nanoclusters as building blocks, well-defined ordered Au_(11) nanocluster superlattices have been fabricated. Compared to the emission maximum of diluted solutions of Au_(11) nanoclusters, the superlattices exhibit a red-shift of 56 nm.
     The highly stable monodisperse water-soluble gold nanocrytals are prepared by a modified Brust single-phase method. It is found that the formation of homogeneous Au0 nuclei and uniform growth rate for every nucleus are key to obtain monodisperse gold nanocrystals. The homogeneous Au0 nuclei can be prepared by controlling the size distribution of Au1+ intermediates. The fast stirring speed can make every gold nuclei have a uniform growth rate. By tuning the adding rate of NaBH4, the different-sized gold nanocrystals can be obtained. The MPA-stabilized gold nanocrytals prepared exhibit a high X-ray attenuation and superior stability. When the concentration being 0.2 mol/L, 6.6nm-sized gold nanocrystals have an X-ray attenuation value of 1663 HU, while the commercial computed tomography iodinated contrast agent, Ousu, only has a value of 826 HU. The gold nanocrystals can be stored for as long as 14 months as a powder state and can keep stable in a solution containing NaCl, even with the concentration of NaCl being 240 mmol/L.
     A new type of bifunctional NaYF_4:Yb~(3+)/Ho~(3+)@SiO_2/Au nanocomposites is successfully fabricated by a layer-by-layer technology. The prepared nanocomposites possess upconversion (UC) luminescence, surface plasmonic resonance and easy modification. The gold nanoparticles loaded on the nanocomposites only decrease the intensity of UC luminescence, but have no influence on the UC mechanism. The main reason for the decrease of the intensity of UC luminescence is that NaYF_4:Yb~(3+)/Ho~(3+) nanocrystals and gold nanoparticles constitute a fluorescence resonant energy transfer system.
     A novel and simple layer-by-layer assembly method is proposed to fabricate bifunctional Fe_3O_4/Au nanocomposites which are formed by a strong chemical Au-S bond linkage. With the increase of the gold content in the nanocomposite, the absorption peak is broadened and exhibits a red shift, and the magnetization decreases. The nanocomposites possess superparamagnetic property and exhibit high surface enhanced Raman scattering activity. When employing the nanocomposite as a probe to detect the nitrobenzene in water, the nanocomposites exhibit high selectivity of nitrobenzene and the process is facile with high sensitivity. The detection limit for nitrobenzene is 10-7 mol/L, which is lower than the maximum level of nitrobenzene in water permitted by the Chinese government.
引文
1张立德,牟季美.纳米材料与纳米结构.科学出版社. 2001: 1~22
    2朱静.纳米材料和器件.清华大学出版社. 2003: 1~34
    3 C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research. 2008, 41(12): 1721~1730
    4 Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, I. Willner. "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle. Science. 2003, 299(5614): 1877~1881
    5 C. T. Campbell, S. C. Parker, D. E. Starr. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science. 2002, 298(5594): 811~814
    6 S. J. Park, T. A. Taton, C. A. Mirkin. Array-based electrical detection of DNA with nanoparticle probes. Science. 2002, 295(5559): 1503~1506
    7 T. A. Taton, C. A. Mirkin, R. L. Letsinger. Scanometric DNA array detection with nanoparticle probes. Science. 2000, 289(5485): 1757~1760
    8 M. C. Daniel, D. Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004, 104(1): 293~346
    9 S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetten. Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science. 1998, 280(5372): 2098~2101
    10 M. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Liz-Marzan. Shape control in gold nanoparticle synthesis. Chemical Society Reviews. 2008, 37(9): 1783~1791
    11 P. S. Weiss. Meeting Global Challenges by Investing in Nanoscience and Nanotechnology. ACS Nano. 2008, 2(11): 2193~2193
    12 R. Sardar, A. M. Funston, P. Mulvaney, R. W. Murray. Gold Nanoparticles: Past, Present, and Future. Langmuir. 2009, 25(24): 13840~13851
    13 J. E. Hutchison. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008,2(3): 395~402
    14 N. L. Rosi, C. A. Mirkin. Nanostructures in biodiagnostics. Chemical Reviews. 2005, 105(4): 1547~1562
    15 J. Cheon, J. H. Lee. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Accounts of Chemical Research. 2008, 41(12): 1630~1640
    16 D. P. Cormode, T. Skajaa, M. M. van Schooneveld, R. Koole, P. Jarzyna, M. E. Lobatto, C. Calcagno, A. Barazza, R. E. Gordon, P. Zanzonico, E. A. Fisher, Z. A. Fayad, W. J. M. Mulder. Nanocrystal Core High-Density Lipoproteins: A Multimodality Contrast Agent Platform. Nano Letters. 2008, 8(11): 3715~3723
    17 B. K. Min, C. M. Friend. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chemical Reviews. 2007, 107(6): 2709~2724
    18 M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin. Correlating the crystal structure of A thiol-protected Au25 cluster and optical properties. Journal of the American Chemical Society. 2008, 130(18): 5883~5885
    19 R. L. Wolfe, R. Balasubramanian, J. B. Tracy, R. W. Murray. Fully ferrocenated hexanethiolate monolayer-protected gold clusters. Langmuir. 2007, 23(4): 2247~2254
    20 P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg. Strucure of a Thiol Monolayer-Protected gold nanoparticle at 1.1 angstrom resolution. Science. 2007, 318(5849): 430~433
    21 R. L. Whetten, R. C. Price. Nano-golden order. Science. 2007, 318(5849): 407~408
    22 M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. Journal of the American Chemical Society. 2008, 130(12): 3754~3755
    23 Y. Pei, Y. Gao, N. Shao, X. C. Zeng. Thiolate-Protected Au20(SR)16 Cluster: Prolate Au8 Core with New [Au3(SR)4] Staple Motif. Journal of the American Chemical Society. 2009, 131(38): 13619~13620
    24 M. Z. Zhu, H. F. Qian, R. C. Jin. Thiolate-Protected Au20 Clusters with a Large Energy Gap of 2.1 eV. Journal of the American Chemical Society. 2009, 131(21): 7220~7221
    25 N. Lewinski, V. Colvin, R. Drezek. Cytotoxicity of nanoparticles. Small. 2008,4(1): 26~49
    26 C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews. 2005, 105(4): 1025~1102
    27 K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. 2003, 107(3): 668~677
    28 G. Mie. Beitrage zur Optik Truber Medien, Speziell Kolloidaler Metallosungen. Annals of Physics. 1908, 25: 377~445
    29 P. N. Njoki, I. I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C. J. Zhong. Size correlation of optical and spectroscopic properties for gold nanoparticles. Journal of Physical Chemistry C. 2007, 111(40): 14664~14669
    30 V. Amendola, M. Meneghetti. Size Evaluation of Gold Nanoparticles by UV-vis Spectroscopy. Journal of Physical Chemistry C. 2009, 113(11): 4277~4285
    31 M. R. Ivanov, H. R. Bednar, A. J. Haes. Investigations of the Mechanism of Gold Nanoparticle Stability and Surface Functionalization in Capillary Electrophoresis. ACS Nano. 2009, 3(2): 386~394
    32 U. Kreibig, M. Vollmer. Opticle Properties of Metal Clusters. Berlin: Springer-Verlag. 1995: 38~41
    33 S. Link, M. A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B. 1999, 103(21): 4212~4217
    34 T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar, R. L. Whetten, W. G. Cullen, P. N. First, C. GutierrezWing, J. Ascensio, M. J. JoseYacaman. Isolation of smaller nanocrystal au molecules: Robust quantum effects in optical spectra. Journal of Physical Chemistry B. 1997, 101(40): 7885~7891
    35 T. K. Sham. Nanoparticles and nanowires: synchrotron spectroscopy studies. International Journal of Nanotechnology. 2008, 5(9~12): 1194~1246
    36 T. K. Sham, P. S. G. Kim, P. Zhang. Electronic structure of molecular-capped gold nanoparticles from X-ray spectroscopy studies: Implications for coulomb blockade, luminescence and non-Fermi behavior. Solid State Communications. 2006, 138(10~11): 553~557
    37 G. Hodes. When small is different: Some recent advances in concepts and applications of nanoscale phenomena. Advanced Materials. 2007, 19(5): 639~655
    38 J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, D. F. Kelley. Photoluminescence from nanosize gold clusters. Journal of Chemical Physics. 1998, 108(21): 9137~9143
    39 T. Huang, R. W. Murray. Visible luminescence of water-soluble monolayer- protected gold clusters. Journal of Physical Chemistry B. 2001, 105(50): 12498~12502
    40 J. Zheng, C. W. Zhang, R. M. Dickson. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical Review Letters. 2004, 93(7): 077402
    41 G. L. Wang, T. Huang, R. W. Murray, L. Menard, R. G. Nuzzo. Near-IR luminescence of monolayer-protected metal clusters. Journal of the American Chemical Society. 2005, 127(3): 812~813
    42 G. L. Wang, R. Guo, G. Kalyuzhny, J. P. Choi, R. W. Murray. NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. Journal of Physical Chemistry B. 2006, 110(41): 20282~20289
    43 P. Zhang, T. K. Sham. Tuning the electronic behavior of Au nanoparticles with capping molecules. Applied Physics Letters. 2002, 81(4): 736~738
    44 H. C. Fischer, L. C. Liu, K. S. Pang, W. C. W. Chan. Pharmacokinetics of nanoscale quantum dots: In vivo distribution, sequestration, and clearance in the rat. Advanced Functional Materials. 2006, 16(10): 1299~1305
    45 A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters. 2004, 4(1): 11~18
    46 G. B. Birrell, K. K. Hedberg, O. H. Griffith. Pitfalls of immunogold labeling-analysis by light-microscopy, transmission electron-microscopy, and photoelectron microscopy. Journal of Histochemistry & Cytochemistry. 1987, 35: 843
    47 D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters. 2004, 209(2): 171~176
    48 R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. NatureBiotechnology. 1999, 17(4): 375~378
    49 A. Engel, D. J. Muller. Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology. 2000, 7(9): 715~718
    50许金钩,王尊本.荧光分析法.科学出版社. 2006: 258~266
    51 R. W. Murray. Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews. 2008, 108(7): 2688~2720
    52 R. S. Ingram, M. J. Hostetler, R. W. Murray, T. G. Schaaff, J. T. Khoury, R. L. Whetten, T. P. Bigioni, D. K. Guthrie, P. N. First. 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases. Journal of the American Chemical Society. 1997, 119(39): 9279~9280
    53 D. Lee, R. L. Donkers, G. L. Wang, A. S. Harper, R. W. Murray. Electrochemistry and optical absorbance and luminescence of molecule-like Au-38 nanoparticles. Journal of the American Chemical Society. 2004, 126(19): 6193~6199
    54 D. T. Miles, R. W. Murray. Temperature-dependent quantized double layer charging of monolayer-protected gold clusters. Analytical Chemistry. 2003, 75(6): 1251~1257
    55 B. M. Quinn, P. Liljeroth, V. Ruiz, T. Laaksonen, K. Kontturi. Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. Journal of the American Chemical Society. 2003, 125(22): 6644~6645
    56 S. W. Chen, K. Huang. Electrochemical and spectroscopic studies of nitrophenyl moieties immobilized on gold nanoparticles. Langmuir. 2000, 16(4): 2014~2018
    57 D. T. Miles, R. W. Murray. Redox and double-layer charging of phenothiazine functionalized monolayer protected clusters. Analytical Chemistry. 2001, 73(5): 921~929
    58 R. S. Ingram, R. W. Murray. Electroactive three-dimensional monolayers: Anthraquinone omega-functionalized alkanethiolate-stabilized gold clusters. Langmuir. 1998, 14(15): 4115~4121
    59 R. S. Ingram, M. J. Hostetler, R. W. Murray. Poly-hetero-omega-functionalized alkanethiolate-stabilized gold cluster compounds. Journal of the American Chemical Society. 1997, 119(39): 9175~9178
    60 M. C. Daniel, J. Ruiz, S. Nlate, J. C. Blais, D. Astruc. Nanoscopic assembliesbetween supramolecular redox active metallodendrons and gold nanoparticles: Synthesis, characterization, and selective recognition of H2PO4-, HSO4-, and adenosine-5'-triphosphate (ATP2-) anions. Journal of the American Chemical Society. 2003, 125(9): 2617~2628
    61 A. Labande, D. Astruc. Colloids as redox sensors: recognition of H2PO4- and HSO4- by amidoferrocenylalkylthiol-gold nanoparticles. Chemical Communications. 2000, (12): 1007~1008
    62 O. Toikkanen, V. Ruiz, G. Ronholm, N. Kalkkinen, P. Liljeroth, B. M. Quinn. Synthesis and stability of monolayer-protected Au38 clusters. Journal of the American Chemical Society. 2008, 130(33): 11049~11055
    63 R. Balasubramanian, R. Guo, A. J. Mills, R. W. Murray. Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters. Journal of the American Chemical Society. 2005, 127(22): 8126~8132
    64 L. D. Menard, S. P. Gao, H. P. Xu, R. D. Twesten, A. S. Harper, Y. Song, G. L. Wang, A. D. Douglas, J. C. Yang, A. I. Frenkel, R. G. Nuzzo, R. W. Murray. Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: Quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. Journal of Physical Chemistry B. 2006, 110(26): 12874~12883
    65 P. Liljeroth, B. M. Quinn, V. Ruiz, K. Kontturi. Charge injection and lateral conductivity in monolayers of metallic nanoparticles. Chemical Communications. 2003, (13): 1570~1571
    66 J. Turkevitch, P. C. Stevenson, J. Hillier. Nucleation and growth process in the synthesis of colloidal gold. Discussion of the Faraday Society. 1951, (11): 55~75
    67 C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White. Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman-Scattering. Langmuir. 1995, 11(10): 3712~3720
    68 G. Frens. Regulation of the particle size in monodisperse gold suspensions. Nature: Physical Science. 1973, 241(105): 20~22
    69 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System.Journal of the Chemical Society-Chemical Communications. 1994, (7): 801~802
    70 M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, C. Kiely. Synthesis and Reactions of Functionalized Gold Nanoparticles. Journal of the Chemical Society-Chemical Communications. 1995, (16): 1655~1656
    71 M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, R. W. Murray. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir. 1998, 14(1): 17~30
    72 A. C. Templeton, S. W. Chen, S. M. Gross, R. W. Murray. Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir. 1999, 15(1): 66~76
    73 P. Pengo, S. Polizzi, M. Battagliarin, L. Pasquato, P. Scrimin. Synthesis, characterization and properties of water-soluble gold nanoparticles with tunable core size. Journal of Materials Chemistry. 2003, 13(10): 2471~2478
    74 C. J. Ackerson, P. D. Jadzinsky, R. D. Kornberg. Thiolate ligands for synthesis of water-soluble gold clusters. Journal of the American Chemical Society. 2005, 127(18): 6550~6551
    75 K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir. 1998, 14(4): 726~728
    76 K. R. Brown, D. G. Walter, M. J. Natan. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials. 2000, 12(2): 306~313
    77 N. R. Jana, L. Gearheart, C. J. Murphy. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir. 2001, 17(22): 6782~6786
    78朱梓华,朱涛,刘忠范.大粒径单分散金纳米粒子的水相合成.物理化学学报. 1999, 15(11): 966~970
    79曹林有,朱涛,刘忠范.晶种法合成金溶胶过程中非球形粒子的抑制.物理化学学报. 2004, 20(2): 211~213
    80 C. L. Chiang. Controlled growth of gold nanoparticles in AOT/C12E4/isooctane mixed reverse micelles. Journal of Colloid and Interface Science. 2001, 239(2): 334~341
    81 C. L. Chiang. Controlled growth of gold nanoparticles in aerosol-OT/sorbitanmonooleate/isooctane mixed reverse micelles. Journal of Colloid and Interface Science. 2000, 230(1): 60~66
    82 K. Esumi, A. Kameo, A. Suzuki, K. Torigoe. Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2001, 189(1~3): 155~161
    83 M. Shen, Y. K. Du, P. Yang, L. Jiang. Morphology control of the fabricated hydrophobic gold nanostructures in W/O microemulsion under microwave irradiation. Journal of Physics and Chemistry of Solids. 2005, 66(10): 1628~1634
    84 F. X. Chen, G. Q. Xu, T. S. A. Hor. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Materials Letters. 2003, 57(21): 3282~3286
    85 Y. Mori, S. I. Okamoto, T. Asahi. Preparation of gold nanoparticles in water-in-oil microemulsions. Kagaku Kogaku Ronbunshu. 2001, 27(6): 736~741
    86 I. Capek. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science. 2004, 110(1~2): 49~74
    87 T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, T. Pal. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Journal of Nanoparticle Research. 2001, 3(4): 257~261
    88 K. Mallick, Z. L. Wang, T. Pal. Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. Journal of Photochemistry and Photobiology a-Chemistry. 2001, 140(1): 75~80
    89 A. Pal. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Materials Letters. 2004, 58(3~4): 529~534
    90 S. Inasawa, M. Sugiyama, S. Koda. Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2003, 42(10): 6705~6712
    91 K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko. Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III)reduction and size of formed gold particles. Langmuir. 2001, 17(25): 7717~7720
    92 C. H. Su, P. L. Wu, C. S. Yeh. Sonochemical synthesis of well-dispersed gold nanoparticles at the ice temperature. Journal of Physical Chemistry B. 2003, 107(51): 14240~14243
    93 Y. Mori, N. Kitamoto, K. Tsuchiya. Effect of kind of alcohols as additives on preparation of gold nanoparticles by sonochemistry. Journal of Chemical Engineering of Japan. 2005, 38(4): 283~288
    94 X. P. Sun, Y. L. Luo. Size-controlled synthesis of dendrimer-protected gold nanoparticles by microwave radiation. Materials Letters. 2005, 59(29~30): 4048~4050
    95 S. Kundu, H. Liang. Polyelectrolyte-mediated non-micellar synthesis of monodispersed 'aggregates' of gold nanoparticles using a microwave approach. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2008, 330(2~3): 143~150
    96 A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews. 1989, 89(8): 1861~1873
    97 T. Li, H. G. Park, S. H. Choi. gamma-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Materials Chemistry and Physics. 2007, 105(2~3): 325~330
    98 R. Y. Wang, J. Yang, Z. P. Zheng, M. D. Carducci, J. Jiao, S. Seraphin. Dendron-controlled nucleation and growth of gold nanoparticles. Angewandte Chemie-International Edition. 2001, 40(3): 549~552
    99 M. K. Kim, Y. M. Jeon, W. S. Jeon, H. J. Kim, S. G. Hong, C. G. Park, K. Kim. Novel dendron-stabilized gold nanoparticles with high stability and narrow size distribution. Chemical Communications. 2001, (7): 667~668
    100 D. H. Nagaraju, V. Lakshminarayanan. Electrochemical Synthesis of Thiol-Monolayer-Protected Clusters of Gold. Langmuir. 2008, 24(24): 13855~13857
    101 G. Singaravelu, J. S. Arockiamary, V. G. Kumar, K. Govindaraju. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B-Biointerfaces. 2007, 57(1): 97~101
    102 A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonosporasp. Langmuir. 2003, 19(8): 3550~3553
    103 M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 1974, 26(2): 163~166.
    104 K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews. 1999, 99(10): 2957~2976
    105 S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, N. J. Halas. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chemical Society Reviews. 2008, 37(5): 898~911
    106 S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997, 275(5303): 1102~1106
    107 J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated Nanoparticle-enhanced Raman Spectroscopy. Nature. 2010, 464(7287): 392~395
    108 I. Chourpa, F. H. Lei, P. Dubois, M. Manfait, G. D. Sockalingum. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chemical Society Reviews. 2008, 37(5): 993~1000
    109 M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, R. Narayanana. SERS as a bioassay platform: fundamentals, design, and applications. Chemical Society Reviews. 2008, 37(5): 1001~1011
    110 Z. Q. Tian, B. Ren. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annual Review of Physical Chemistry. 2004, 55: 197~229
    111 M. Grant Albrecht, J. Alan Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society. 1977, 99(15): 5215~5217
    112 D. L. Jeanmaire, R. P. Van Duyne. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry. 1977, 84(1): 1~20
    113 K. Kneipp, H. Kneipp, J. Kneipp. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-mulecule Ramanspectroscopy to ultrasensitive probing in live cells. Accounts of Chemical Research. 2006, 39(7): 443~450
    114 A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. Journal of Physical Chemistry B. 2005, 109(22): 11279~11285
    115 A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chemical Society Reviews. 1998, (27): 241~250
    116 B. N. J. Persson, K. Zhao, Z. Y. Zhang. Chemical contribution to surface-enhanced Raman scattering. Physical Review Letters. 2006, 96(20): 207401
    117 C. M. Ruan, W. Wang, B. H. Gu. Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. Journal of Raman Spectroscopy. 2007, 38(5): 568~573
    118 C. M. Ruan, W. Wang, B. H. Gu. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Analytical Chemistry. 2006, 78(10): 3379~3384
    119 W. Wang, C. M. Ruan, B. H. Gu. Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Analytica Chimica Acta. 2006, 567(1): 121~126
    120 X. M. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, S. M. Nie. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology. 2008, 26(1): 83~90
    121 W. P. Faulk, G. M. Taylor. An immunocolloid method for the electron microscope. Immunocytochemistry. 1971, 8: 1081~1083
    122 C. S. Holgate, P. Jackson, P. N. Cowen, C. C. Bird. Immunogold-silver staining: New method of immunostaining with enhanced sensitivity. Journal of Histochemistry and Cytochemistry. 1983, 31(7): 938~944
    123 P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews. 2008, 60(11): 1307~1315
    124 R. Hong, G. Han, J. M. Fernandez, B. J. Kim, N. S. Forbes, V. M. Rotello. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. Journal of the American Chemical Society. 2006, 128(4):1078~1079
    125 P. Podsiadlo, V. A. Sinani, J. H. Bahng, N. W. S. Kam, J. Lee, N. A. Kotov. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir. 2008, 24(2): 568~574
    126 J. Y. Li, X. M. Wang, C. X. Wang, B. A. Chen, Y. Y. Dai, R. Y. Zhang, M. Song, G. Lv, D. G. Fu. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. Chemmedchem. 2007, 2(3): 374~378
    127 M. C. Bowman, T. E. Ballard, C. J. Ackerson, D. L. Feldheim, D. M. Margolis, C. Melander. Inhibition of HIV fusion with multivalent gold nanoparticles. Journal of the American Chemical Society. 2008, 130(22): 6896~6897
    128 P. S. Ghosh, C. K. Kim, G. Han, N. S. Forbes, V. M. Rotello. Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano. 2008, 2(11): 2213~2218
    129 M. Thomas, A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100(16): 9138~9143
    130 B. K. Min, C. M. Friend. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chemical Reviews. 2007, 107(6): 2709~2724
    131 M. S. Chen, D. W. Goodman. The structure of catalytically active gold on titania. Science. 2004, 306(5694): 252~255.
    132 P. Frondelius, H. Hakkinen, K. Honkala. Adsorption and activation of O2 at Au chains on MgO/Mo thin films. Physical Chemistry Chemical Physics. 2010, 12(7): 1483~1492
    133 Y. M. Lee, M. A. Garcia, N. A. F. Huls, S. H. Sun. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angewandte Chemie-International Edition. 2010, 49(7): 1271~1274
    134 D. Diamond, S. Coyle, S. Scarmagnani, J. Hayes. Wireless sensor networks and chemo-/biosensing. Chemical Reviews. 2008, 108(2): 652~679
    135 R. A. Sperling, P. Rivera gil, F. Zhang, M. Zanella, W. J. Parak. Biological applications of gold nanoparticles. Chemical Society Reviews. 2008, 37(9): 1896~1908
    136 V. W. W. Yam, E. C. C. Cheng. Highlights on the recent advances in gold chemistry - a photophysical perspective. Chemical Society Reviews. 2008, 37(9): 1806~1813
    137 O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson. Critical Size for the Observation of Quantum Confinement in Optically Excited Gold Clusters. Journal of the American Chemical Society. 2010, 132(1): 16~17
    138 L. Y. Cao, L. M. Tong, P. Diao, T. Zhu, Z. F. Liu. Kinetically controlled Pt deposition onto self-assembled Au colloids: Preparation of Au (core)-Pt (shell) nanoparticle assemblies. Chemistry of Materials. 2004, 16(17): 3239~3245
    139 M. Mikhaylova, D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir. 2004, 20(6): 2472~2477
    140 P. Del Angel, J. M. Dominguez, G. Del Angel, J. A. Montoya, E. Lamy-Pitara, S. Labruquere, J. Barbier. Aggregation state of Pt-Au/C bimetallic catalysts prepared by surface redox reactions. Langmuir. 2000, 16(18): 7210~7217
    141 L. Y. Wang, H. Y. Park, S. I. I. Lim, M. J. Schadt, D. Mott, J. Luo, X. Wang, C. J. Zhong. Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. Journal of Materials Chemistry. 2008, 18(23): 2629~2635
    142 H. Y. Park, M. J. Schadt, L. Wang, I. I. S. Lim, P. N. Njoki, S. H. Kim, M. Y. Jang, J. Luo, C. J. Zhong. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir. 2007, 23(17): 9050~9056
    143 M. P. Pileni. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials. 2003, 2(3): 145~150
    144 I. R. Piletic, D. E. Moilanen, D. B. Spry, N. E. Levinger, M. D. Fayer. Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. Journal of Physical Chemistry A. 2006, 110(15): 4985~4999
    145 L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100(23): 13549~13554
    146 C. Loo, A. Lowery, N. Halas, J. West, R. Drezek. Immunotargeted nanoshellsfor integrated cancer imaging and therapy. Nano Letters. 2005, 5(4): 709~711
    147 Y. W. Wang, X. Y. Xie, X. D. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, L. V. Wang. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Letters. 2004, 4(9): 1689~1692
    148 J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Letters. 2005, 5(3): 473~477
    149 P. Gangopadhyay, S. Gallet, E. Franz, A. Persoons, T. Verbiest. Novel superparamagnetic core(shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. International Magnetics Conference 2005. Nagoya, JAPAN, 2005. p.4194~4196
    150 S. M. Barber, P. J. Costanzo, N. W. Moore, T. E. Patten, K. S. Lancaster, C. B. Lebrilla, T. L. Kuhl. Bilateral, difunctional nanosphere aggregates and their assembly mediated by polymer chains. Journal of Physical Chemistry A. 2006, 110(13): 4538~4542
    151 T. Mokari, C. G. Sztrum, A. Salant, E. Rabani, U. Banin. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Materials. 2005, 4(11): 855~863
    152 H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. H. Sun. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Letters. 2005, 5(2): 379~382
    153 H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. Journal of the American Chemical Society. 2005, 127(1): 34~35
    154 J. M. Nam, S. I. Stoeva, C. A. Mirkin. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society. 2004, 126(19): 5932~5933
    155 A. P. Fan, C. W. Lau, J. Z. Lu. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry. 2005, 77(10): 3238~3242
    156 J. M. Nam, C. S. Thaxton, C. A. Mirkin. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003, 301(5641): 1884~1886
    157 M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Gronbeck, H. Hakkinen. A unified view of ligand-protected gold clusters as superatom complexes. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(27): 9157~9162
    158 R. C. Jin. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale. 2010, 2(3): 343~362
    159 O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson. Critical Size for the Observation of Quantum Confinement in Optically Excited Gold Clusters. Journal of the American Chemical Society. 132(1): 16~17
    160 M. A. H. Muhammed, P. K. Verma, S. K. Pal, R. C. A. Kumar, S. Paul, R. V. Omkumar, T. Pradeep. Bright, NIR-Emitting Au23 from Au25: Characterization and Applications Including Biolabeling. Chemistry-a European Journal. 2009, 15(39): 10110~10120
    161 O. Lopez-Acevedo, J. Rintala, S. Virtanen, C. Femoni, C. Tiozzo, H. Gronbeck, M. Pettersson, H. Hakkinen. Characterization of Iron-Carbonyl-Protected Gold Clusters. Journal of the American Chemical Society. 2009, 131(35): 12573~12574
    162 G. Shafai, S. Y. Hong, M. Bertino, T. S. Rahman. Effect of Ligands on the Geometric and Electronic Structure of Au-13 Clusters. Journal of Physical Chemistry C. 2009, 113(28): 12072~12078
    163 D. E. Jiang, W. Chen, R. L. Whetten, Z. F. Chen. What Protects the Core When the Thiolated Au Cluster is Extremely Small? Journal of Physical Chemistry C. 2009, 113(39): 16983~16987
    164 M. Z. Zhu, C. M. Aikens, M. P. Hendrich, R. Gupta, H. F. Qian, G. C. Schatz, R. C. Jin. Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms. Journal of the American Chemical Society. 2009, 131(7): 2490~2492
    165 A. Dass. Mass Spectrometric Identification of Au68(SR)34 Molecular Gold Nanoclusters with 34-Electron Shell Closing. Journal of the American Chemical Society. 2009, 131(33): 11666~11667
    166 H. Tsunoyama, Y. Negishi, T. Tsukuda. Chromatographic isolation of "missing" Au-55 clusters protected by alkanethiolates. Journal of the American Chemical Society. 2006, 128(18): 6036~6037
    167 N. K. Chaki, Y. Negishi, H. Tsunoyama, Y. Shichibu, T. Tsukuda. Ubiquitous 8 and 29 kDa gold: Alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. Journal of the American Chemical Society. 2008, 130(27): 8608~8609
    168 H. F. Qian, M. Z. Zhu, U. N. Andersen, R. C. Jin. Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au38 Clusters. Journal of Physical Chemistry A. 2009, 113(16): 4281~4284
    169 S. A. Hofstadler, K. A. Sannes-Lowery. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nature Reviews Drug Discovery. 2006, 5(7): 585~595
    170 J. B. Tracy, G. Kalyuzhny, M. C. Crowe, R. Balasubramanian, J. P. Choi, R. W. Murray. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. Journal of the American Chemical Society. 2007, 129(21): 6706~6707
    171 M. F. Bertino, Z. M. Sun, R. Zhang, L. S. Wang. Facile syntheses of monodisperse ultrasmall Au clusters. Journal of Physical Chemistry B. 2006, 110(43): 21416~21418
    172 D. M. P. Mingos. Molecular-orbital calculations on cluster compounds of gold. J. Chem. Soc., Dalton Trans. 1976: 1163
    173 J. A. Dahl, B. L. S. Maddux, J. E. Hutchison. Toward greener nanosynthesis. Chemical Reviews. 2007, 107(6): 2228~2269
    174 Y. Negishi, K. Nobusada, T. Tsukuda. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. Journal of the American Chemical Society. 2005, 127(14): 5261~5270
    175 G. H. Woehrle, L. O. Brown, J. E. Hutchison. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: Scope and mechanism of ligand exchange. Journal of the American Chemical Society. 2005, 127(7): 2172~2183
    176 Y. Negishi, T. Tsukuda. One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. Journal of the American Chemical Society. 2003, 125(14): 4046~4047
    177 J. Kim, K. Lema, M. Ukaigwe, D. Lee. Facile preparative route to alkanethiolate-coated Au38 nanoparticles: Postsynthesis core size evolution.Langmuir. 2007, 23(14): 7853~7858
    178 S. H. Chen, K. Kimura. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir. 1999, 15(4): 1075~1082
    179 T. P. Bigioni, R. L. Whetten, O. Dag. Near-infrared luminescence from small gold nanocrystals. Journal of Physical Chemistry B. 2000, 104(30): 6983~6986
    180 S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, R. L. Whetten. Visible to infrared luminescence from a 28-atom gold cluster. Journal of Physical Chemistry B. 2002, 106(13): 3410~3415
    181 J. Zheng, J. T. Petty, R. M. Dickson. High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society. 2003, 125(26): 7780~7781
    182 J. N. Demas, G. A. Crosby. Measurement of photoluminescence quantum yields. Journal of Physical Chemistry. 1971, 75: 991~1024
    183 Y. Y. Yang, S. W. Chen. Surface manipulation of the electronic energy of subnanometer-sized gold clusters: An electrochemical and spectroscopic investigation. Nano Letters. 2003, 3(1): 75~79
    184 Y. Shichibu, Y. Negishi, T. Tsukuda, T. Teranishi. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. Journal of the American Chemical Society. 2005, 127(39): 13464~13465
    185 E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. van Veggel, D. N. Reinhoudt, M. Moller, D. I. Gittins. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Physical Review Letters. 2002, 89(20): 203002
    186 T. Huang, R. W. Murray. Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles. Langmuir. 2002, 18(18): 7077~7081
    187 S. W. Chen, L. A. Truax, J. M. Sommers. Alkanethiolate-protected PbS nanoclusters: Synthesis, spectroscopic and electrochemical studies. Chemistry of Materials. 2000, 12(12): 3864~3870
    188 M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin. Kinetically controlled, high-yield synthesis of Au-25 clusters. Journal of the American Chemical Society. 2008, 130(4): 1138~1139
    189 C. P. Collier, T. Vossmeyer, J. R. Heath. Nanocrystal superlattices. AnnualReview of Physical Chemistry. 1998, 49: 371~404
    190 S. H. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000, 287(5460): 1989~1992
    191 C. B. Murray, C. R. Kagan, M. G. Bawendi. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science. 2000, 30: 545~610
    192 V. F. Puntes, K. M. Krishnan, A. P. Alivisatos. Colloidal nanocrystal shape and size control: The case of cobalt. Science. 2001, 291(5511): 2115~2117
    193 H. C. Zeng. Synthetic architecture of interior space for inorganic nanostructures. Journal of Materials Chemistry. 2005, 16(7): 649~662
    194 K. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski. Nanoscale Forces and Their Uses in Self-Assembly. Small. 2009, 5(14): 1600~1630
    195 H. X. Hu, Q. S. Li, L. Ji. Superlattice patterns and spatial instability induced by delay feedback. Physical Chemistry Chemical Physics. 2008, 10(3): 438~441
    196 R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez, A. Wilkinson. Crystal structures of molecular gold nanocrystal arrays. Accounts of Chemical Research. 1999, 32(5): 397~406
    197 N. Zheng, J. Fan, G. D. Stucky. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. Journal of the American Chemical Society. 2006, 128(20): 6550~6551
    198 S. H. Wang, S. Sato, K. Kimura. Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chemistry of Materials. 2003, 15(12): 2445~2448
    199 P. S. G. Kim, N. O. Petersen, T. K. Sham, Y. F. Hu. Soft X-ray excited optical luminescence (XEOL) studies of fluorescein isothiocyanate (FITC) and FITC-labeled proteins. Chemical Physics Letters. 2004, 392(1~3): 44~49
    200 C. B. Murray, C. R. Kagan, M. G. Bawendi. Self-Organization of Cdse Nanocrystallites into 3-Dimensional Quantum-Dot Superlattices. Science. 1995, 270(5240): 1335~1338
    201 K. J. Williams, W. A. Tisdale, K. S. Leschkies, G. Haugstad, D. J. Norris, E. S. Aydil, X. Y. Zhu. Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots. ACS Nano. 2009, 3(6): 1532~1538
    202 X. M. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L.Yang, A. N. Young, M. D. Wang, S. M. Nie. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology. 2008, 26(1): 83~90
    203 S. Singhal, S. M. Nie, M. D. Wang. Nanotechnology Applications in Surgical Oncology. Annual Review of Medicine. 2010, 61: 359~373
    204 J. Kneipp, B. Wittig, H. Bohr, K. Kneipp. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine. Theoretical Chemistry Accounts. 2010, 125(3~6): 319~327
    205 J. H. Park, G. von Maltzahn, L. L. Ong, A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, M. J. Sailor. Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery. Advanced Materials. 2010, 22(8): 880~885
    206 S. Lee, E. J. Cha, K. Park, S. Y. Lee, J. K. Hong, I. C. Sun, S. Y. Kim, K. Choi, I. C. Kwon, K. Kim, C. H. Ahn. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie-International Edition. 2008, 47(15): 2804~2807
    207 S. Bi, Y. M. Yan, X. Y. Yang, S. S. Zhang. Gold Nanolabels for New Enhanced Chemiluminescence Immunoassay of Alpha-Fetoprotein Based on Magnetic Beads. Chemistry-A European Journal. 2009, 15(18): 4704~4709
    208 S. Dhar, E. M. Reddy, A. Shiras, V. Pokharkar, B. L. V. Prasad. Natural Gum Reduced/Stabilized Gold Nanoparticles for Drug Delivery Formulations. Chemistry-A European Journal. 2008, 14(33): 10244~10250
    209 D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, S. Jon. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. Journal of the American Chemical Society. 2007, 129(24): 7661~7665
    210 G. H. Woehrle, J. E. Hutchison. Thiol-functionalized undecagold clusters by ligand exchange: Synthesis, mechanism, and properties. Inorganic Chemistry. 2005, 44(18): 6149~6158
    211 V. L. Jimenez, D. G. Georganopoulou, R. J. White, A. S. Harper, A. J. Mills, D. I. Lee, R. W. Murray. Hexanethiolate monolayer protected 38 gold atom cluster. Langmuir. 2004, 20(16): 6864~6870
    212 Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, T. Tsukuda. Extremely high stability of glutathionate-protected Au25 clustersagainst core etching. Small. 2007, 3(5): 835~839
    213 S. Stoeva, K. J. Klabunde, C. M. Sorensen, I. Dragieva. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. Journal of the American Chemical Society. 2002, 124(10): 2305~2311
    214 B. L. V. Prasad, S. I. Stoeva, C. M. Sorensen, K. J. Klabunde. Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir. 2002, 18(20): 7515~7520
    215 K. Brown. 197Au Mossbauer Spectroscopic Data for Antiarthritic Drugs and Related Gold(I) Thiol Dericatives. Journal of the American Chemical Society. 1981, 16(103): 4943~4945
    216 M. B. Dickerson, K. H. Sandhage, R. R. Naik. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chemical Reviews. 2008, 108(11): 4935~4978
    217 S. G. Kwon, T. Hyeon. Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides. Accounts of Chemical Research. 2008, 41(12): 1696~1709
    218 F. Bensebaa, T. H. Ellis, E. Kruus, R. Voicu, Y. Zhou. Characterization of self-assembled bilayers: Silver-alkanethiolates. Langmuir. 1998, 14(22): 6579~6587
    219 P. Zhang, T. K. Sham. X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects. Physical Review Letters. 2003, 90(24): 245502
    220 Z. J. Wang, W. Cai, J. H. Sui. Blue Luminescence Emitted from Monodisperse Thiolate-Capped Au-11 Clusters. Chemphyschem. 2009, 10(12): 2012~2015
    221 R. L. Donkers, D. Lee, R. W. Murray. Synthesis and isolation of the molecule-like gold cluster Au38(PhCH2CH2S)24. Langmuir. 2004, 20(5): 1945~1952
    222 J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon. Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie-International Edition. 2007, 46(25): 4630~4660
    223 S. Auer, D. Frenkel. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature. 2001, 409(6823): 1020~1023
    224李树棠.晶体X射线衍射学基础.冶金工业出版社. 1990: 97~101
    225周玉,武高辉.材料分析测试技术—材料X射线衍射与电子显微分析.哈尔滨工业大学出版社. 1998: 135~145
    226 O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials. 2006, 5(2): 118~122
    227 J. D. Gibson, B. P. Khanal, E. R. Zubarev. Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society. 2007, 129(37): 11653~11661
    228高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.化学工业出版社. 2003: 74~81
    229 T. Laaksonen, P. Ahonen, C. Johans, K. Kontturi. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size. ChemPhysChem. 2006, 7(10): 2143~2149
    230 F. Auzel. Upconversion and anti-stokes processes with f and d ions in solids. Chemical Reviews. 2004, 104(1): 139~173
    231 L. Y. Wang, R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng, Y. D. Li. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angewandte Chemie-International Edition. 2005, 44(37): 6054~6057
    232 L. Y. Wang, Y. D. Li. Green upconversion nanocrystals for DNA detection. Chemical Communications. 2006, (24): 2557~2559
    233 S. Heer, K. Kompe, H. U. Gudel, M. Haase. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Advanced Materials. 2004, 16(23~24): 2102~2105
    234 G. S. Yi, G. M. Chow. Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chemistry of Materials. 2007, 19(3): 341~343
    235 G. S. Yi, G. M. Chow. Synthesis of hexagonal-phase NaYF4: Yb,Er and NaYF4: Yb,Tm nanocrystals with efficient up-conversion fluorescence. Advanced Functional Materials. 2006, 16(18): 2324~2329
    236 L. Y. Wang, Y. D. Li. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chemistry of Materials. 2007, 19(4): 727~734
    237 F. Wang, X. G. Liu. Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals. Chemical Society Reviews. 2009, 38(4): 976~989
    238 Q. Lue, A. H. Li, F. Y. Guo, L. Sun, L. C. Zhao. The two-photon excitation of SiO2-coated Y2O3: Eu3+ nanoparticles by a near-infrared femtosecond laser. Nanotechnology. 2008, 19: 205704
    239 G. Y. Chen, H. C. Liu, G. Somesfalean, H. J. Liang, Z. G. Zhang. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology. 2009, 20: 385704
    240 http://physics.nist.gov/PhysRefData/XrayMassCoef
    241 A. H. Lu, E. L. Salabas, F. Schuth. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition. 2007, 46(8): 1222~1244
    242 S. J. Guo, D. Li, L. M. Zhang, J. Li, E. K. Wang. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 2009, 30(10): 1881~1889
    243 J. W. M. Bulte, D. L. Kraitchman. Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine. 2004, 17(7): 484~499
    244 N. A. Frey, S. Peng, K. Cheng, S. H. Sun. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews. 2009, 28(9): 2532~2542
    245 H. B. Na, I. C. Song, T. Hyeon. Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials. 2009, 21(21): 2133~2148
    246 E. Katz, I. Willner. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie-International Edition. 2004, 43(45): 6042~6108
    247 F. E. Kruis, H. Fissan, A. Peled. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review. Journal of Aerosol Science. 1998, 29(5~6): 511~535
    248 T. Pellegrino, S. Kudera, T. Liedl, A. M. Javier, L. Manna, W. J. Parak. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small. 2005, 1(1): 48~63
    249 C. Corot, P. Robert, J. M. Idee, M. Port. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced Drug Delivery Reviews. 2006, 58(14): 1471~1504
    250 J. P. Ge, Y. X. Hu, M. Biasini, W. P. Beyermann, Y. D. Yin.Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie-International Edition. 2007, 46(23): 4342~4345
    251 H. B. Na, I. C. Song, T. Hyeon. Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials. 2009, 21(21): 2133~2148
    252 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews. 2008, 108(6): 2064~2110
    253 S. J. Guo, D. Li, L. M. Zhang, J. Li, E. K. Wang. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 2009, 30(10): 1881~1889
    254 S. H. Xuan, Y. X. J. Wang, J. C. Yu, K. C. F. Leung. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles. Chemistry of Materials. 2009, 21(21): 5079~5087
    255 M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, R. Weissleder. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology. 2000, 18(4): 410~414
    256 A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005, 26(18): 3995~4021
    257 Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics. 2003, 36(13): R167~R181
    258 S. Mornet, S. Vasseur, F. Grasset, E. Duguet. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry. 2004, 14(14): 2161~2175
    259 J. T. Jang, H. Nah, J. H. Lee, S. H. Moon, M. G. Kim, J. Cheon. Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles. Angewandte Chemie-International Edition. 2009, 48(7): 1234~1238
    260 J. Wan, W. Cai, X. Meng, E. Liu. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chemical Communications. 2007, (47): 5004~5006
    261 K. C. Barick, M. Aslam, Y. P. Lin, D. Bahadur, P. V. Prasad, V. P. Dravid. Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. Journal of Materials Chemistry. 2009, 19(38): 7023~7029
    262 X. L. Zhao, Y. Q. Cai, T. Wang, Y. L. Shi, G. B. Jiang. Preparation of Alkanethiolate-Functionalized Core/Shell Fe3O4@Au Nanoparticles and Its Interaction with Several Typical Target Molecules. Analytical Chemistry. 2008, 80(23): 9091~9096
    263 M. Mikhaylova, D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir. 2004, 20(6): 2472~2477
    264 W. C. Huang, P. J. Tsai, Y. C. Chen. Multifunctional Fe3O4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Antibiotic-Resistant Bacteria. Small. 2009, 5(1): 51~56
    265 L. Y. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. H. Lin, N. Kim, J. Q. Wang, C. J. Zhong. Monodispersed core-shell Fe3O4@Au nanoparticles. Journal of Physical Chemistry B. 2005, 109(46): 21593~21601
    266 H. Zhang, X. Zhong, J. J. Xu, H. Y. Chen. Fe3O4/Polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure: Synthesis, Characterization, and Their Electrochemical Properties. Langmuir. 2008, 24(23): 13748~13752
    267 S. H. Xuan, Y. X. J. Wang, J. C. Yu, K. C. F. Leung. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir. 2009, 25(19): 11835~11843
    268 D. Caruntu, B. L. Cushing, G. Caruntu, C. J. O'Connor. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chemistry of Materials. 2005, 17(13): 3398~3402
    269 W. Cai, J. Q. Wan. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. Journal of Colloid and Interface Science. 2007, 305(2): 366~370
    270 J. Lee, J. Yang, H. Ko, S. J. Oh, J. Kang, J. H. Son, K. Lee, S. W. Lee, H. G. Yoon, J. S. Suh, Y. M. Huh, S. Haam. Multifunctional magnetic gold nanocomposites: Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Advanced Functional Materials. 2008, 18(2): 258~264
    271 P. Gao, M. J. Weaver. Vibrational Coupling Effects for Cyanide and AromaticAdsorbates at Gold Electrodes: A comparative Study Using Surface Raman and Infrared Spectroscopies. Journal of Physical Chemistry. 1989, 93(16): 6205~6211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700