寰椎后路置钉通道的三维CT分析及临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     近年来开展的寰椎后路置钉技术主要包括寰椎侧块螺钉和椎弓根螺钉,由于具有优越的生物力学性能和良好的临床疗效,该项技术目前已广泛应用于创伤、炎症、畸形等原因所致的寰枢椎不稳的治疗。但由于寰椎解剖形态特殊,结构复杂且变异性大,并与颈髓、椎动脉等重要神经血管组织相毗邻,使得寰椎的置钉存在很大的难度和风险。因此,定量化测量寰椎置钉相关的解剖结构参数对于提高寰椎置钉技术的安全性和准确性有着极为重要的意义。
     随着现代数字医学的不断发展,计算机辅助外科技术在脊柱外科的研究领域中发挥着越来越重要的作用。本研究在吸取众多国内外同行科学研究成果与研究方法的基础上,将现代医学影像学、计算机三维重建测量和逆向工程技术相结合,对寰椎后路置钉通道进行数字化三维定位、定量分析,研究影响置钉的解剖结构因素,为术中安全、准确置钉提供理论依据。
     目的
     1.采集国人寰椎的CT影像数据资料,借助逆向工程软件Mimics重建寰椎三维模型,并观察寰椎椎动脉沟环变异的形态及发生率。
     2.在建立好的寰椎三维模型上测量寰椎椎弓根螺钉置入的相关骨性参数,研究进钉通道参数随水平面角变化的规律,探索理想的寰椎椎弓根螺钉进钉方法。
     3.应用CT三维重建测量技术对寰椎侧块螺钉置钉的相关参数进行测量,研究分析影响置钉的解剖结构因素。
     4.利用三维重建测量和CAD-RE-RP技术设计和制作寰椎椎弓根螺钉个体化导向模板(PDGT),探讨该模板在寰椎椎弓根螺钉固定术中的应用价值和临床意义。
     研究方法
     1.将152例国人寰椎的CT扫描影像数据导入Mimics10.01软件中进行寰椎三维模型重建。在寰椎三维模型中观测椎动脉沟环变异的形态和发生率。
     2.通过对寰椎三维模型的分析及一系列确定空间辅助点、线、面的方法,对寰椎椎弓根螺钉置入的8项解剖结构数据进行三维测量,分析椎弓根进钉通道随内倾角变化的数字解剖学特点,同时对寰椎侧块螺钉置入相关的7项解剖结构数据进行三维测量和分析。
     3.应用CAD-RE-RP技术设计寰椎椎弓根螺钉个体化导向模板(PDGT)的双侧定位导向管和中间连接部分,整合后形成PDGT的三维模型,将该模型通过三维打印机制作出可与寰椎骨标本后方结构相匹配的PDGT。
     结果
     1.建立了基于CT二维断层图像的寰椎三维解剖模型,观测到寰椎椎动脉沟环变异的发生率为17.8%。其中后环变异发生率为13.5%,Ⅰ~Ⅳ型后环变异发生率分别为3.9%、3.0%、1.6%、4.9%,侧环变异发生率为4.3%。
     2.寰椎椎动脉沟底部的后弓高度为(4.52±0.99)mm,其中高度小于3.5mm的占13.8%,小于4.0mm的占30.9%,测量值在男女性别之间以及三个身高组之间均存在显著性差异,为女性低于男性,且随身高增加而呈现增大的趋势。
     3.寰椎椎弓根置钉通道内倾角分别从0°~15°,均匀间隔5°,其参数变化规律:左右两侧钉道可利用间隙宽度(SAS)在0°~15°内倾角上呈逐渐增加的趋势,其中SAS在10°与15°内倾角之间无显著性差异,而其余角度间两两比较结果均有显著性差异;左右两侧钉道长度在0°内倾角时最大,且与其他3个角度均有显著性差异,而其余3个角度之间无显著性差异,4个不同内倾角度的钉道长度均值相差不到0.5mm;进钉点至后正中线的距离随内倾角增大而逐渐增加;进钉点与后弓上缘间距在0°~15°内倾角上呈递减趋势,角度间两两比较均有显著性差异,进钉点与后弓下缘间距在不同内倾角之间均无显著性差异。枢椎侧块中线至寰椎后结节中点的距离与进钉点至后正中线距离比较发现:钉道内倾角为10°时两者差异无统计学意义,而其余3个角度进钉时两者均有显著性差异。
     4.寰椎侧块螺钉相关参数的测量:后弓下缘侧块高度为(4.53±0.89)mm,其中高度小于3.5mm的占11.5%。后弓下缘侧块宽度为(9.38±1.21)mm,钉道最大内倾角为(26.69±3.32)°,钉道最大长度为(22.56±2.08)mm,内倾角为0°的钉道长度为(15.75±1.76)mm。除了钉道最大内倾角以外,其余各指标在男女性别之间以及三个身高组之间均存在显著性差异,且为女性低于男性,并呈现随身高增加而增大的变化趋势;颈内动脉与寰椎侧块前皮质的最短距离为(3.53±1.38)mm,其中小于2.0mm的占12.2%。钉道轴线与颈内动脉内缘相切时钉道内倾角为(-9.65±7.22)°,其中有21侧(6.9%)大于0°,最大值为8.3°。
     5.设计和制作出一套寰椎椎弓根螺钉个体化导向模板(PDGT),将其与实体标本进行体外匹配,发现PDGT可与后弓后表面紧密贴合并导向椎弓根螺钉的置入。
     结论
     1.国人寰椎存在一定的椎动脉沟环变异,其中Ⅲ~Ⅳ型椎动脉沟后环变异可影响椎弓根螺钉的置入。
     2.寰椎椎动脉沟底部后弓高度为椎弓根螺钉固定的主要限制性解剖结构因素,测量值均为男性大于女性,并随身高增加呈逐渐增大的趋势。
     3.在寰枢椎无旋转脱位的情况下,可选择经枢椎侧块内外缘中点的纵垂线与寰椎后弓下缘交点的上方2mm处作为寰椎椎弓根螺钉进钉点,以10°内倾角进钉较为准确,并可获得较宽的置钉空间和安全区域,头倾角参照术中X线侧位透视下寰椎后弓轴线平面进钉。
     4.寰椎后弓下缘侧块高度为侧块螺钉固定的主要解剖限制性因素,在一定范围内采用适当的内倾角度可以增加寰椎侧块螺钉的钉道长度,且一定的内倾角度有利于避免寰椎双皮质侧块螺钉对颈内动脉的损伤。
     5.寰椎椎弓根螺钉个体化导向模板(PDGT)是一种简单方便、科学可靠、实用性强的寰椎椎弓根个性化置钉辅助工具,尽管目前存在一些不足,但仍具有较高的临床应用价值和广阔的发展前景。
Background
     In recent years, the applied posterior atlantal screw fixation technology mainly includes atlantal mass screw fixation and atlantal pedicle screw fixation. Due to its superb biomechanical property and good clinical effects, the technology has been widely applied in the treatment of the atlantoaxial instability caused by trauma, inflammation, and deformity. Due to special anatomic form, complicated structure and great variability, as well as the fact that it is adjacent to important nerves, blood vessels and other tissues such as cervical cord, vertebral artery, and etc., it is very difficult to implant screws on atlas with great risk. Therefore, quantitative measurement of anatomical structure parameters related to atlantal implant has great significance for the improvement of safety and accuracy of atlantal screw fixation technology
     Along with the continuous development of modern digital medicine, the computer assisted surgery technology has been playing a more and more important role in the research of spine surgery. On the basis of assimilation of research fruits and methods of various disciplines, the paper combines modern medical imaging, computer3D reconstruction measurement, and reverse engineering technologies to conduct digital3D positioning and quantitative analysis on posterior atlantal screw fixation trajectory, to study the anatomical structure factors affecting the placement of screws, and to lay a theoretical basis for intra-operative safe and accurate screw fixation.
     Objectives
     1. CT image data of people's atlas are collected to reconstruct an atlantal3D Model by using reverse engineering software Mimics, and the form of atlas ponticulus and its occurrence rate are observed.
     2. The relevant osseous parameters of atlantal pedicle screw placement are measured on the established atlantal3D model, to study the law of changes of screw trajectory parameters along with the change of transverse section angle, and to explore the ideal atlantal pedicle screw implant method.
     3. To measure the relevant parameters of atlantal lateral mass screw fixation using CT three-dimensional reconstruction measurement technology, and to study and analyze the anatomical structure factors that can influence the screw placement.
     4. To design and manufacture the personal drill guiding template (PDGT) of the atlantal pedicle screw by using three-dimensional reconstruction measurement and CAD-RE-RP technologies, and to discuss the application value and clinical significance of the template in atlantal pedicle screw fixation.
     Methods
     1. Input the CT scanning image data of atlas into the software Mimics10.01for three-dimensional model reconstruction. Then observe the form of atlas ponticulus and its occurrence rate.
     2. Based on the analysis of the atlantal three-dimensional model and a series of space construction measures with auxiliary dot, line and plane, to conduct3D measurement on the8anatomical structure data of the atlantal pedicle screw fixation and to analyze the digital anatomical characteristics of the change of screw trajectory parameters along with the change of transverse section angle. Then conduct3D measurement and analysis on the7anatomical structure data of the atlantal lateral mass screw fixation.
     3. To design the bilateral positioning guiding pipe and the intermediate connection parts of Personal drill guiding template(PDGT) of the atlantal pedicle screw with CAD-RE-RP technology, to form PDGT3D models after data integration and then manufacture the PDGT that is able to match with the posterior structure of atlas bone specimen using the3D printer.
     Results
     1. The atlantal3D anatomical model based on CT two-dimensional topographic image is established, and the number of atlas ponticulus is54with the occurrence rate of17.8%, among which the posterior ponticulus is41with the occurrence rate of13.5%,, and the occurrence rate for the posterior ponticulus Ⅰ~Ⅳ is3.9%,3.0%,1.6%and4.9%respectively. There are13lateral ponticulus, and its occurrence rate is4.3%.
     2. The height of the posterior arch at the bottom of the atlantal vertebral artery groove is (4.52±0.99)mm, among which42are less than3.5mm, occupying a percentage of13.8among the total number, and94are less than4.0mm, accounting for30.9%. There are no statistical differences between the left and the right side of the posterior arch in terms of both height and width, however, distinctive differences exist between males and females, and the data of female is lower than that of male. Furthermore, distinctive differences also appear among the three groups with different height, and it shows an increasing trend along with the increase of height.
     3. The leaning angle of the atlantal pedicle screw trajectory ranges from0°to15°with a uniform interval of5°and the changing rules of parameters from the4directions of screw trajectory are as follows:the screw trajectory available space width (SAS)from the left to the right side shows an increasing trend within the leaning angle from0°to15°, and after the analysis of the comparison between any two different angles, it shows that SAS has no distinctive differences between10°and15°leaning angle, while distinctive differences appear on the rest comparing pairs; The bilateral screw trajectory length reaches the largest value at0°leaning angle and differences appear compared with the rest3angles, but there are no distinctive differences between the rest3angles, and the average values of the screw trajectory length among the4different leaning angles are nearly the same, with a difference less than0.5mm; The distance from screw entrance point to the posterior midline shows an increasing trend within0°~15°leaning angles; the distance from screw entrance point to the superior margin of the posterior arch shows a decreasing trend within0°~15°leaning angles, where distinctive differences occur through comparison between any two different angles. The distance from screw entrance point to the inferior margin of the posterior arch shows no distinctive differences within0°~15°leaning angles. No distinctive differences occur between the left side and the right side. Comparing the distance from axis lateral mass midline to the middle point of atlas posterior tubercle and the distance from screw entrance point to the posterior midline, it can be found that when the leaning angle is10°, the two values show no statistical significance, while when the screw implants from the rest three angles, the difference between the two values is distinctive.
     4. Measurement of the relevant parameters of the atlas lateral mass screw:the height of the lateral mass at the inferior margin of the posterior arch is (4.53±0.89) mm, among which35are less than3.5mm, accounts for11.5%of the total. The width of the lateral mass at the inferior margin of the posterior arch is (9.38±1.21) mm, the largest leaning angle of the screw trajectory is (26.69±3.32)°, the largest length of the screw trajectory is (22.56±2.08) mm, and the length of the screw trajectory with0°leaning angle is (15.75±1.76) mm. All the indexes have distinctive differences between the two genders except for the largest leaning angle of the screw trajectory, and the difference is that the index value of females is lower than that of males; all the indexes have distinctive differences among the three height groups except for the largest leaning angle of the screw trajectory, and the difference is that the index value increases along with the height; there are no statistical differences between the parameters at the left and the right sides. The shortest distance between the internal carotid artery and the atlantal mass is (3.53±1.38) mm, among which37are less than2.0mm, accounting for12.2%of the total. The leaning angle of the screw trajectory is (-9.65±7.22)°hen the axis of the screw trajectory is tangent to the inside margin of the internal carotid artery,21(6.9%)are larger than0°, and the largest angle is8.3°.
     5. A set of personal drill guiding template (PDGT) for atlas pedicle screw is designed and manufactured, and after matching it with the physical specimen in vitro, it is found that PDGT fits closely to the posterior surface of the posterior arch and can guide the implant of the atlas pedicle screw.
     Conclusions
     1. There exits certain atlas ponticulus in people's atlas, among which the atlas ponticulus type Ⅱ to type Ⅳ may influence the pedicle screw implant.
     2. The height of the posterior arch at the bottom of the atlantal vertebral artery groove is the major restrictive anatomic factor for the pedicle screw fixation, the measurement values of males are larger than that of females and show an increasing trend along with the increase of the height.
     3. Under the condition of no atlantal dislocation,2mm above the intersection point between the longitudinal vertical via the inside and outside margin midpoint of atlantal lateral mass and inferior margin of atlantal posterior arch can be chosen as the atlas pedicle screw entrance point. The entrance point is more accurate with10°leaning angle, where more screw placement space and larger safety area can be achieved, and angle of sagittal view could be nailed in referring to axial plane of atlantal posterior arch under oblique perspective of the intraoperative X-line.
     4. The height of lateral mass at the inferior margin of atlantal posterior arch is the major restrictive factor in anatomy. Within certain limits, the adoption of appropriate leaning angle can increase the screw trajectory length of atlantal lateral mass screw, and a certain leaning angle is conducive to avoid the cervical arterial injury from atlantal double cortical lateral mass screws.
     5. To pay attention to individual differences of atlantal anatomical structure before operation, and each patient's personal parameters of screw fixation can be obtained through atlantal CT three-dimensional reconstruction, such as screw entrance point and screw trajectory angle etc., so as to improve the accuracy and security of atlantal screw fixation.
     6. The personal drill guiding template (PDGT) for atlas pedicle screw is a simple, convenient, scientific and reliable auxiliary means of atlas pedicle personal screw fixation with strong practicability. Though currently with some shortcomings, it is still of high clinical application value and broad prospects for development.
引文
[1]Francis C. Dimensions of the cervical vertebrae [J]. Anta Rec,1955,122: 603-609.
    [2]Doherty BJ, Heggeness MH. The quantitative anatomy of the atlas [J]. Spine,1994,19(22):2497-2500.
    [3]Hong X, Dong Y, Yunbing C, et al. Posterior screw placement on the lateral mass of atlas:an anatomic study. Spine,2004,29(5):500-3.
    [4]Henriques T, Cunningham BW, Olerud C, et al. Biomechanical comparison of five different atlantoaxial posterior fixation techniques. Spine, 2000,22:2877-2883.
    [5]Frymoyer JW. The adult spine:principles and practice.2nd ed. Philadelphia:Lippincott-Raven Publishers,1997:1245-1260.
    [6]Haid RW J r, Subach BR, McLaughlin MR, et al. C1-C2 transarticular screw fixation for atlantoaxial instability:a 62 year experience. Neurosurg, 2001,49:65-70
    [7]Madawi AA, Casey AT, Solanki GA, et al. Radiological and anatomic evaluation of the atlantoaxial transarticular screw fixation technique. [J]Neurosurg,1997,86:961-968.
    [8]Goel A, Laheri V:Plate and screw fixation for atlanta-axial Subluxiation J. Acta Neurochir(Wien)1994,129:47-53.
    [9]Resnick DK, Benzel EC. C1-C2 pedicle screw fixation with rigid cantilever beam construct:case report and technical note [J]. Neuro surgery, 2002,50(2):426-428.
    [10]Tan MS, Wang HM, Wang YT,et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass. Spine 2003,28:888-895.
    [11]韩春,杨庆国,张银顺等.寰椎椎动脉沟变异与椎弓根置钉的解剖学研究[J].实用医学杂志,2009,25(23):3930-3932.
    [12]马向阳,钟世镇,刘景发.等.寰椎后路椎弓根螺钉固定的解剖可行性研究[J].中国临床解剖学杂志,2003,21(6):554-555.
    [13]何宏伟,隋桐,赵慧毅等.寰椎椎弓根螺钉置入相关参数的三维CT分析[J].中国组织工程研究,2012,16(9):1526-1529.
    [14]郝定均,贺宝荣,许正伟,等.寰椎“椎弓根”三维CT重建测量及分型的临床意义[J].中国脊柱脊髓杂志,2012,22(2):142-146.
    [15]兰永树,李登维,黄新文,等.寰枢椎病变术前多层螺旋CT成像椎弓根钉道设计的价值[J].实用放射学杂志,2008,24(3):384-386.
    [16]林达强,李俊峰,陈兴爱,等.后路寰枢椎椎弓根螺钉内固定的术前计划[J].华西医学,2009,24(4):831-834.
    [17]Paramore CG, Dickman CA, Sonntag VK. The anatomical suitability of the C1-2 complex for transarticular screw fixation[J]. Neurosurgery,1996, 85(2):221-224.
    [18]何宏伟,隋桐,赵慧毅等.寰椎椎弓根螺钉置入相关参数的三维CT分析[J].中国组织工程研究,2012,16(9):1526-1529.
    [19]谭健,王文军,李严兵,等.寰椎椎弓根进钉通道的数字解剖学研[J].中国脊柱脊髓杂志,2010,20(11):885-888.
    [20]贾卫斗,白桂有,杨博贵,等.徒手经寰枢椎椎弓根植钉固定的X线片和CT片个性化设计[J].中国修复重建外科杂志,2008,22(4):416-420.
    [21]陆声,徐永清,张元智,等.计算机辅助个体化导航模板在Hangman骨折中的临床应用[J].中华创伤杂志,2009,25(8):886-889.
    [1]Schiffers N, Schkommodau E, Portheine F, et al. Plamming and Performance of orthopedic surgery with the help of individualtemplates[J]. Orthopade, 2000,29:636-640.
    [2]Hong JT, Lee SW, Son BC, et al. Analysis of anatomical variations of bone and vascular structures around the posterior atlantal arch using three-dimensional computed tomography angiography. J Neurosurg Spine. 2008:8:230-236.
    [3]Herman GT, Lin HK. Three-dimensional display of human organs from computed tomograms. Comput Graph Proc,1979,9:1-12.
    [4]田捷,包尚联,周明全.医学影像处理与分析[M].北京:电子工业出版社,2003,117-158.
    [5]Sojar V Stanisavljevic D, Hriibernik M, et al. Liver surgery training and planning in 3D virtual space [J]. International Congress Series, 2004,1268:390-394.
    [6]Cheung JT, Zhang M, Leung AKL, et al. Three-dimensional finite element analysis of the foot during standing-a material sensitivity study [J]. J Biomech.2005:38:1045-1054.
    [7]Rotaru H, Baciut M, Stan H, et al. Silicone rubber mould cast polyethylmethacrylate-hydroxyapatite plate repairing a large skull defect[J]. J Cranio-MaxilloFac Surg,2006, (34):242-246.
    [8]Wicky S, Blaser PF, Blanc CH, et al. Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures[J]. Eur Radiol,2000,10(8):1227-1232.
    [9]Liow RY, Birdsall PD, Mucci B, et al. Spiral computed tomography with two and three-dimensional reconstruction in the management of tibial plateau fractures[J]. Orthopedics,1999,22(10):929-932.
    [10]袁本祥;刘祖德;张琳琳等.国人肱骨近端三维解剖研究及其对假体设计与植入的影响.中华骨科杂志,2007,27:120-124.
    [11]任鹏,余斌,苏秀云等.股骨远端后髁角的数字化三维重建与测量.中华创伤骨科杂志,2008,10:350-353.
    [12]万岷,张春才,许硕贵,等.三维影像学检查在髋臼骨折诊断和治疗中的作用[J].中华创伤骨科杂志,2005,7(8):741-743.
    [13]Escott E J, Rubinstein D. Free DICOM image viewing and processing software for your desktop Computer:what's available and what it can do for you[J]. Radiographics,2003,23(5):1341-1357.
    [14]Young JP, Young PH, Ackermann MJ, et al. The ponticulus posticus: implications for screw insertion into the first cervical lateral mass. J Bone Joint Surg Am.2005;87(11):2495-2498.
    [15]曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及其临床意义[J].中国临床解剖学杂志,2000,18(4):299-301.
    [16]何宏伟,隋桐,赵慧毅等.寰椎椎弓根螺钉置入相关参数的三维CT分析[J].中国组织工程研究,2012,16(9):1526-1529.
    [1]Tan MS, Wang HM, Wang YT, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass. Spine 2003,28:888-895.
    [2]Ma XY, Yin QS, Wu ZH, et al. Anatomic considerations for the pedicle screw placement in the first cervical vertebra [J]. Spine,2005,30(13):1519-23.
    [3]杨迪,陈其昕.后路寰椎螺钉固定的研究进展[J]中国骨伤,2006,19(3):189-192.
    [4]马向阳,钟世镇,刘景发,等.寰椎后路椎弓根螺钉固定的解剖可行性研究.中国临床解剖学杂志,2003,21(6):554-555.
    [5]何宏伟,隋桐,赵慧毅等.寰椎椎弓根螺钉置入相关参数的三维CT分析[J].中国组织工程研究,2012,16(9):1526-1529.
    [6]Resnick DK, Benzel EC. C1-C2 pedicle screw fixation with rigid cantilever beam construct:case report and technical note [J]. Neuro surgery, 2002,50(2):426-428.
    [7]Kuroki H, Rengachary SS, Goel VK, et al.Biomechanical comparison of two stabilization techniques of the atlantoaxial joints:transarticular screw fixation versus screw and rod fixation. Neurosurgery,2005,56(1 Suppl):151-159.
    [8]Currier B, Yaszemski M. The use of C1 lateral mass fixation in the cervical [J]. Spine,2004,15:184-191.
    [9]郝定均,贺宝荣,许正伟,等.寰椎“椎弓根”三维CT重建测量及分型的临床意义[J].中国脊柱脊髓杂志,2012,22(2):142-146.
    [10]Tan MS, Wang HW, Wang YT, et al.Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass [J]. Spine,2003,28:888-895.
    [11]Gebauer M, Barvencik F, Briem D, et al. Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch. Eur Spine J.2010;19(1):85-90.
    [12]马向阳,尹庆水,吴增晖,等.寰椎椎弓根与枢椎侧块关系的解剖与临床研究.中华骨科杂志,2004,24:295-298.
    [13]张华,甘子明,盛伟斌,等.寰椎椎弓根骨性标志的应用解剖学研究[J].新疆医科大学学报,2007,30(2):115-118.
    [14]刘景堂,唐天驷,王东来,等.颈椎椎弓根螺钉内固定系统的临床应用[J].中华骨科杂志,2003,23(10):17-21.
    [15]Shin EK, Panjabi MM, Chen NC, et al. The anatomic variability of human cervical pedicles:considerations for transpedicular screw fixation in the middle and lower cervical spine. Eur Spine,2000,9:61-66.
    [1]Goel A, Laheri V:Plate and screw fixation for atlanta-axial Subluxiation J.Acta Neurochir(Wien)1994,129:47-53.
    [2]Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine 2001,26:2467-71.
    [3]Madawi AA, Casey AT, Solanki GA, et al.Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg 1997;86:961-968.
    [4]Richter M, Schmidt R, Claes L, et al. Posterior atlantoaxial fixation.-biomechanical in vitro comparison of six different techniques [J]. Spine, 2002,27:1724-32.
    [5]Resnick DK, Lapsiwala S, Trost GR:Anatomic suitability of the Cl-2 complex for pedicle screw fixation. Spine 2002,27:1494-1498.
    [6]Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method:a report of 160 treated patients[J]. Neurosurgery,2002,51(6): 1351-1357.
    [7]Currier BL, Todd LT, Maus TP, et al. Anatomic relationship of the internal carotid artery to the C1 Vertebra:A case report of cervical reconstruction for chordoma and pilot study to assess the risk of screw fixation of the atlas[J]. Spine,2003,28:E461-E467.
    [8]Wang M, Samudrala S:Cadaveric morphometric analysis for atlantal mass screw placement. Neurosurgery,2003,54(6):1436-1440.
    [9]Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method:a report of 160 treated patients. Neurosurgery,2002, 51:1351-1357.
    [10]Gupta T. Cadaveric morphometric anatomy of C-1 vertebra in relation to lateral mass screw placement. Surg Radiol Anat,2008,30(7):589-93.
    [11]Wang MY, Samudrala S. Cadaveric morphometric analysis for atlantal lateral mass screw placement[J]. Neurosurgery,2004,54(6):1436-9.
    [12]Hong X, Dong Y, Yunbing C, et al. Posterior screw placement on the lateral mass of atlas:an anatomic study. Spine,2004,29(5):500-3.
    [13]Simsek S, Yigitkanli K, Seckin H, et al. Ideal screw entry point and projection angles for posterior lateral mass fixation of the atlas: an anatomical study. Eur Spine J,2009,18(9):1321-5.
    [14]Christensen DM, Eastlack RK, Lynch JJ, et al. C1 anatomy and dimensions relative to lateral mass screw placement [J]. Spine,2007,32(8): 844-8.
    [15]Dong Y, Xia Hong M, Jianyi L, et al. Quantitative anatomy of the lateral mass of the atlas. Spine,2003,28:860-3.
    [16]Rocha R, Safavi-Abbasi S, Reis C, et al. Working area, safety zones, and angles of approach for posterior C-1 lateral mass screw placement: a quantitative anatomical and morphometric evaluation. J Neurosurg Spine,2007,6(3):247-54.
    [17]Currier BL, Todd LT, Maus TP, et al:Anatomic relationship of the internal carotid artery to the Cl vertebra:a case report of cervical reconstruction for chordoma and pilot study to assess the risk of screw fixation of the atlas. Spine 2003,28:E461-E467.
    [18]Simsek S, Yigitkanli K, Turba UC, et al. Safe zone for C1 lateral mass screws:anatomic and radiological study. J Neurosurgery,2009 Dec; 65(6):1154-60.
    [19]Currier BL, Maus TP, Eck JS, et al. Relationship of the internal carotid artery to the anterior aspect of the C1 vertebra. Spine 2008; 33:635-9.
    [20]Murakami S, Mizutani J, Fukuoka M, et al. Relationship between screw trajectory of C1 lateral mass screw and internal carotid artery [J]. Spine (Phi la Pa 1976),2008 Nov 15; 33 (24):2581-5.
    [1]移平,谭明生,塔娜,等.寰椎椎弓根螺钉置钉技巧探讨[J].中国矫形外科杂志,2010,18(10):862-864.
    [2]段彦静,孙文磊.逆向工程和快速成型技术及医学应用[J]医疗卫生装备,2006,27(10):31-32,34.
    [3]刘伟军,快速成型技术及应用[M].北京:机械工业出版社,2005:1-13.
    [4]Peters P, Langlotz F, Nolte LP. Computer assisted screw insertion into real 3D rapid prototyping pelvis models[J]. Clin Biomech,2002,17: 376-382.
    [5]Tan MS, Wang H, Wang Y, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass [J]. Spine,2003,28(9): 888-895.
    [6]Ma XY, Yin QS, Wu ZH, et al. Anatomic considerations for the pedicle screw placement in the first cervical vertebra [J]. Spine,2005,30(13): 1519-23.
    [7]Resnick DK, Benzel EC. C1-C2 pedicle screw fixation with rigid cantilever beam construct:case report and technical note[J]. Neurosurg,2002, 50(2):426-428.
    [8]Richer M, Matters T, Cakir B. Computer assisted postweior instrumentation of the cervical and cervico-thoracial spine [J]. Eur Spine,2004,13(1): 50-59.
    [9]Schwarzenbach 0, Berlemann U, Jost B, et al. Accuracy of computer assisted Pedicle screw Placement:an in vivo computed tomography analysis [J]. Spine,1997,22(4):452-458.
    [10]VAN SCHAIK JJ.VERBIEST H,VAN SCHAIK F D. Morphometry of lower lumbar vertebrae as seen on CT scans:newly recognized characteristics [J]. A jr. American Journal of Roentgenology,1985,145(2):327-335.
    [11]李涛,朱裕成,马军,等.多平面CT重建下个体化改良寰椎椎弓根进钉路径的测量[J].中国脊柱脊髓杂志,2012,22(2):160-164.
    [12]贾卫斗,贾薇薇,杨飞,等.PACS在颈椎后方结构测量及其临床意义[J].中国临床解剖学杂志,2010,28(3):294-298.
    [13]覃炜,权正学,刘洋,等.寰枢椎椎弓根螺钉个体化导向模板的研制与实验研究[J].中国修复与重建外科杂志,2008,24(10):1168-1172.
    [14]尹庆水,万磊,夏虹等.计算机辅助设计寰枢椎椎弓根内固定数字化导向模板精确置钉.中华骨科杂志,2009,29(12):1089-1092.
    [15]王建华,尹庆水;夏虹等.数字骨科技术在寰枢椎个体化置钉手术中的应用.脊柱外科杂志,2011,09(3):165-168.
    [1]Henriques T, Cunningham BW, Olerud C, et al. Biomechanical comparison of five different atlantoaxial posterior fixation techniques. Spine, 2000,22:2877-2883.
    [2]Frymoyer JW. The adult spine:principles and practice.2nd ed. Philadelphia:Lippincott-Raven Publishers,1997:1245-1260.
    [3]Magel F, Seman PS:Stable posterior fusion of the atlas and axis by transarticular screw fixation. In cervical Spine. Edited by Kehr P, Werdner PA. New York:Springer-Verlag; 1987:322-327
    [4]Haid RW J r, Subach BR, McLaughlin MR, et al. C1-C2 transarticular screw fixation for atlantoaxial instability:a 62 year experience. Neurosurg, 2001,49:65-70
    [5]MadawiAA, CaseyAT, Solanki GA, et al. Radiological and anatomic evaluation of the atlantoaxial transarticular screw fixation technique. [J]Neurosurg,1997,86:961-968.
    [6]Resnick DK, Lapsiwala S, Trost GR. Anatomic suitability of the C1-C2 complex for pedicle screw fixation. Spine,2002,27:1494-1498.
    [7]Goel A, Laheri V:Plate and screw fixation for atlanta-axial Subluxiation J.Acta Neurochir(Wien)1994,129:47-53.
    [8]Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine,2001,26:2467-71.
    [9]Resnick DK, Benzel EC. C1-C2 pedicle screw fixation with rigid cantilever beam construct:case report and technical note [J]. Neuro surgery, 2002,50(2):426-428.
    [10]Hong JT, Lee SW, Son BC, et al. Analysis of anatomical variations of bone and vascular structures around the posterior atlantal arch using three-dimensional computed tomography angiography. J Neurosurg Spine. 2008:8:230-236.
    [11]曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及其临床意义[J].中国临床解剖学杂志,2000,18(4):299-301.
    [12]韩春,杨庆国,张银顺等.寰椎椎动脉沟变异与椎弓根置钉的解剖学研究[J].实用医学杂志,2009,25(23):3930-3932.
    [13]何宏伟,隋桐,赵慧毅等.寰椎椎弓根螺钉置入相关参数的三维CT分析[J].中国组织工程研究,2012,16(9):1526-1529.
    [14]Wang MY, Samudrala S. Cadaveric morphometric analysis for atlantal lateral mass screw placement[J]. Neurosurgery,2004,54(6):1436-9.
    [15]Simsek S, Yigitkanli K, Seckin H, et al. Ideal screw entry point and projection angles for posterior lateral mass fixation of the atlas: an anatomical study. Eur Spine J,2009,18(9):1321-5.
    [16]Christensen DM, Eastlack RK, Lynch JJ, et al. C1 anatomy and dimensions relative to lateral mass screw placement [J]. Spine,2007,32(8): 844-8.
    [17]Dong Y, Xia Hong M, Jianyi L, et al. Quantitative anatomy of the lateral mass of the atlas. Spine,2003,28:860-3.
    [18]Seal C, Zarro C, Gelb D, et al. C1 lateral mass anatomy:Proper placement of lateral mass screws. J Spinal Disord Tech,2009,22(7):516-23.
    [19]Gupta T. Cadaveric morphometric anatomy of C-1 vertebra in relation to lateral mass screw placement. Surg Radiol Anat,2008,30(7):589-93.
    [20]Hong X, Dong Y, Yunbing C, et al. Posterior screw placement on the lateral mass of atlas:an anatomic study. Spine,2004,29(5):500-3.
    [21]马向阳,钟世镇,刘景发.等.寰椎后路椎弓根螺钉固定的解剖可行性研究[J].中国临床解剖学杂志,2003,21(6):554-555.
    [22]Tan MS, Wang HW, Wang YT, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass [J]. Spine,2003,28: 888-895.
    [23]Ma XY, Yin QS, Wu ZH, et al. Anatomic considerations for the pedicle screw placement in the first cervical vertebra [J]. Spine,2005,30 (13):1519-23.
    [24]Gebauer M, Barvencik F, Briem D, et al. Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch. Eur Spine J.2010;19(1):85-90.
    [25]Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method:a report of 160 treated patients. Neurosurgery,2002, 51:1351-1357.
    [26]Murakami S, Mizutani J, Fukuoka M, et al. Relationship between screw trajectory of Cl lateral mass screw and internal carotid artery [J]. Spine(Phila Pa 1976),2008 Nov 15;33 (24):2581-5.
    [27]Currier BL, Maus TP, Eck JS, et al. Relationship of the internal carotid artery to the anterior aspect of the C1 vertebra. Spine 2008;33:635-9.
    [28]Simsek S, Yigitkanli K, Turba UC, et al. Safe zone for C1 lateral mass screws:anatomic and radiological study. J Neurosurgery,2009 Dec; 65(6):1154-60.
    [29]Stauffer ES. Posterior atlanto-axial arthrodesis:the Gallie and Brooks techniques and their modifications. Tech Orthop 1994; 9:43-8.
    [30]Ebraheim NA, Xu R, Ahmad M, et al:The quantitative anatomy of the vertebral artery groove of the atlas and its relation to the posterior atlantoaxial approach. Spine 1998,23:320-323.
    [31]谭明生,王慧敏,张光铂,等.寰椎经后弓侧块螺钉固定通道的CT测量[J].中国脊柱脊髓杂志,2003,13(1):28-31.
    [32]Rocha R, Safavi-Abbasi S, Reis C, et al. Working area, safety zones, and angles of approach for posterior C-1 lateral mass screw placement: a quantitative anatomical and morphometric evaluation. J Neurosurg Spine,2007,6(3):247-54.
    [33]谭明生,张光铂,李子荣,等.寰推测量及其经后弓侧块螺钉固定通道的研究[J].中国脊柱脊髓杂志,2002,12(1):5-8.
    [34]马向阳,尹庆水,吴增晖,等.寰枢椎椎弓根与枢椎侧块关系的解剖与临床研究[J].中华骨科杂志,2004,24(5):295-298.
    [35]张华,甘子明,盛伟斌,等.寰椎椎弓根骨性标志的应用解剖学研究[J].新疆医科大学学报,2007,30(2):115-118.
    [36]马向阳,尹庆水,吴增晖,等.多种寰枢椎后路钉棒固定技术的临床组合应用[J].中国骨科临床与基础研究杂志,2010,2(1):12-16.
    [37]何帆,尹庆水,赵廷宝.寰椎椎弓根形态分类与椎弓根螺钉植钉方法研究[J].中国修复重建外科杂志,2008,22(8):905-909.
    [38]马向阳,钟世镇,刘景发,等.枢椎下关节突作为寰椎椎弓根螺钉进钉标志的可行性研究.中国临床康复,2003,7(23):3198-3199.
    [39]Schwarzenbach 0, Berlemann U, Jost B, et al. Accuracy of computer assisted Pedicle screw Placement:an in vivo computed tomography analysis [J]. Spine,1997,22(4):452-458.
    [40]李涛,朱裕成,马军,等.多平面CT重建下个体化改良寰椎椎弓根进钉路径的测量[J].中国脊柱脊髓杂志,2012,22(2):160-164.
    [41]贾卫斗,贾薇薇,杨飞,等.PACS在颈椎后方结构测量及其临床意义[J].中国临床解剖学杂志,2010,28(3):294-298.
    [42]覃炜,权正学,刘洋,等.寰枢椎椎弓根螺钉个体化导向模板的研制与实验研究[J].中国修复与重建外科杂志,2008,24(10):1168-1172.
    [43]尹庆水,万磊,夏虹等.计算机辅助设计寰枢椎椎弓根内固定数字化导向模板精确置钉.中华骨科杂志,2009,29(12):1089-1092.
    [44]王建华,尹庆水;夏虹等.数字骨科技术在寰枢椎个体化置钉手术中的应用.脊柱外科杂志,2011,09(3):165-168.
    [45]Melcher RP, Puttlitz CM, Kleinstueck FS,et al. Biomechanical testing of posterior atlantoaxial fixation techniques. Spine 2002,27: 2435-2440.
    [46]Richter M, Schmidt R, Claes L. et al. Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques. Spine, 2002,27:1724-1732
    [47]Samir B, Lapsiwala, Paul A. Anderson, et al. Biomechanical comparison of four C1 to C2 rigid fixative techniques:anterior transarticular, posterior transarticular, Cl to C2 pedicle, and C1 to C2 intralaminar screws. Neurosurgery 2006,58:516-521.
    [48]吴增晖,冯永辉,马向阳,等.寰枢椎后路二种内固定技术的三维稳定性评价[J].中国临床解剖学杂志,2007,25(6):696-698.
    [49]马向阳,尹庆水,刘景发,等.寰椎侧块螺钉与寰椎椎弓根螺钉的解剖与生物力学对比比较.中国骨与关节损伤杂志,2005,20:361-363.
    [50]校佰平,徐荣明.寰枢椎经椎弓根螺钉固定技术的临床应用[J].中国脊柱脊髓杂志,2005,15(11):658-661.
    [51]吴增晖,尹庆水,马向阳,等。后路寰枢椎椎弓根钉板固定融合治疗上颈椎不稳.中国脊柱脊髓杂志,2004,14(10):591-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700