大鼠下丘神经元上酸敏感离子通道功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸敏感离子通道是可被胞外的H~+直接激活的配体门控的阳离子通道,在哺乳动物的中枢及外周神经系统中都有广泛的分布。越来越多的证据表明,ASICs在生理及病理的条件下都发挥了重要的功能。在生理条件下,ASICs参与了味觉、嗅觉和视觉的感受;在病理条件下,ASICs在痛觉、癫痫及缺血造成的损伤中扮演了重要的角色。而对于ASICs在听觉通路上的表达及功能研究得不多,仅有的几篇文献主要是研究ASICs在外周的听觉通路上的表达及功能特性。在听觉中枢上ASICs的表达、通道特性及其生理功能目前还不清楚。因此,本研究用RT-PCR、全细胞膜片钳及钙成像等方法,研究了下丘ASICs的表达以及下丘神经元上酸诱导电流的电生理学和药理学特性,鉴定了介导该电流的ASICs的亚基组成,主要结果如下:
     1.RT-PCR的结果显示在下丘可检测到ASIC1a,ASIC1b,ASIC2a,ASIC2b四种亚基的表达,而ASIC3亚基在下丘上不表达。
     2.细胞外环境的pH值的下降可在培养的下丘神经元上诱导出快速失活的内向电流;该电流对胞外pH高度敏感,激活阈值约为pH 6.9,半效激活pH为5.92;ASICs通道非选择性拮抗剂amiloride可以阻断下丘神经元上酸诱导的电流(IC_(50)=20.4±0.4μM):该电流的反转电位接近Na~+的反转电位,且用NMDG取代Na~+极大的抑制了该电流。这些结果提示酸在下丘神经元上诱导的电流是由ASICs介导的。
     3.更进一步的证据表明,ASIC1a同聚体通道参与介导酸在下丘神经元上介导的电流:(1)经典的离子替换及钙成像的结果显示,介导下丘神经元上酸诱导电流的通道可以通透Ca~(2+);(2)PcTX1(ASIC1a同聚体通道的选择性拮抗剂)对下丘神经元上酸诱导的电流有明显的抑制作用;(3)胞外的Ca~(2+)及pb~(2+)可以显著的抑制该电流,进一步验证了ASIC1a亚基的存在。此外,Zn~(2+)(300μM)可以增强该电流的幅度,提示ASIC2a亚基的存在。而水杨酸钠对该电流没有影响,进一步验证了在下丘神经元上不表达ASIC3亚基。
     4.最后,用全细胞电流钳的方法,本研究观察到胞外酸化可以导致下丘神经元膜电位的去极化并诱发动作电位的发放,提示ASICs的激活可以调节神经元的兴奋性。
     本研究表明,下丘神经元上ASIC1a同聚体通道及包含ASIC2a的异聚体通道的存在。下丘神经元上ASICs在生理及病理条件下的功能,值得进一步的研究探讨。
Acid-sensing ion channels (ASICs), which are widely distributed in the mammalian brain, the spinal cord and the peripheral sensory organs, are ligand-gated cation channels activated by extracellular protons. Abundant experimental evidence shows that ASICs play important roles in physiological/pathological conditions, such as sensory transduction, learning/memory, retinal function, seizure and ischemia. In the auditory system, however, there are only a few studies available describing ASICs in hair cells, the spiral ganglion and the vestibular ganglion. In particular, functional ASICs have not been assessed in the central auditory region, although there is evidence to show their transcription in the inferior colliculus (IC). In the present study, we have studied the electrophysiological and pharmacological properties of acid-induced current in cultured IC neurons, identified the possible ASIC subunits mediating the current.
     1. Reverse transcriptase polymerase chain reaction (RT-PCR) experiment demonstrates that four ASIC isoforms, ASIC1a, ASIC1b, ASIC2a and ASIC2b are present in the rat IC, while ASIC3 is absent.
     2. Our electrophysiological data showed that a rapidly decaying inward current was induced by exogenous application of acidic solution in cultured IC neurons with a response threshold around pH 6.9 and a half activation pH value at 5.92. The current was sensitive to amiloride (IC_(50) = 20.4±0.4μM), an ASIC blocker, and its reversal potential was close to the theoretical Na~+ equilibrium potential, indicating that the recorded current was mediated by ASICs.
     3. Further experiments revealed the presence of homomeric ASIC1a channels in IC neurons: (1) the ASIC-like current was partially carried by Ca~(2+) as demonstrated with an ion-substitution protocol and Ca~(2+) imaging; (2) the current was inhibited by the tarantula venom PcTX1, a specific blocker for homomeric ASIC1a channels; (3) the current could be inhibited by extracellular Ca~(2+) (IC_(50)= 2.31 mM) and Pb~(2+) (10μM), confirming the presence of ASIC1a subunit. The presence of functional ASIC2a containing channels was revealed by the Zn~(2+)(300μM)-induced enhancement of ASIC-like currents and the absence of functional AS1C3 channels was indicated by the insensitivity of ASIC-like currents to salicylate (1mM), an ASIC3 subunit blocker.
     4. Finally, we show that activation of ASICs by a pH drop could induce membrane depolarization and evoke neuronal firing in IC neurons. Our study clearly demonstrates that functional homomeric ASIC1a channels and ASIC2a-containing channels, but not ASIC3 channels, are present in the IC. We suggest that ASICs should be taken into consideration for their possible functional roles in information processing and pathological processes in the central auditory system.
引文
Akopian AN,Chen CC,Ding Y,Cesare P,Wood JN(2000)A new member of the acid-sensing ion channel family.Neuroreport 11:2217-2222.
    Allen N J,Attweil D(2002)Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals.J Physiol 543:521-529.
    Alvarez de la Rosa D,Zhang P,Shao D,White F,Canessa CM(2002)Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system.Proc Natl Acad Sci U S A 99:2326-2331.
    Alvarez de la Rosa D, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77-87.
    Andrey F, Tsintsadze T, Volkova T, Lozovaya N, Krishtal O (2005) Acid sensing ionic channels: modulation by redox reagents. Biochim Biophys Acta 1745:1-6.
    Anzai N, Miyazaki H, Sakamoto S (2003) [Identification of intracellular regulatory protein for ion channel using yeast two-hybrid system]. Nippon Yakurigaku Zasshi 122:331-337.
    Arteaga MF, Coric T, Straub C, Canessa CM (2008) A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc Natl Acad Sci U S A 105:4459-4464.
    Askwith CC, Benson CJ, Welsh MJ, Snyder PM (2001) DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci U S A 98:6459-6463.
    Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296-18305.
    Askwith CC, Cheng C, Ikuma M, Benson C, Price MP, Welsh MJ (2000) Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26:133-141.
    Babini E, Paukert M, Geisler HS, Grunder S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277:41597-41603.
    Babinski K, Le KT, Seguela P (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72:51-57.
    Babinski K, Catarsi S, Biagini G, Seguela P (2000) Mammalian ASIC2a and AS1C3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J Biol Chem 275:28519-28525.
    Back T, Hoehn M, Mies G, Busch E, Schmitz B, Kohno K, Hossmann KA (2000) Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Ann Neurol 47:485-492.
    Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361-35367.
    Baron A, Deval E, Salinas M, Lingueglia E, Voilley N, Lazdunski M (2002) Protein kinase C stimulates the acid-sensing ion channel ASIC2a via the PDZ domain-containing protein PICK1. J Biol Chem 277:50463-50468.
    Bassler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Grunder S (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276:33782-33787.
    Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Jovov B, Bubien JK, Ji HL, Fuller CM, Kirk KL, Benos DJ (2003) Acid-sensing ion channels in malignant gliomas. J Biol Chem 278:15023-15034.
    Biagini G, Babinski K, Avoli M, Marcinkiewicz M, Seguela P (2001) Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 8:45-58.
    Bianchi L, Driscoll M (2002) Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:337-340.
    Bubien JK, Keeton DA, Fuller CM, Gillespie GY, Reddy AT, Mapstone TB, Benos DJ (1999) Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am J Physiol 276:C 1405-1410.
    Cadiou H, Studer M, Jones NG, Smith ES, Ballard A, McMahon SB, McNaughton PA (2007) Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci 27:13251-13260.
    Catarsi S, Babinski K, Seguela P (2001) Selective modulation of heteromeric ASIC proton-gated channels by neuropeptide FF. Neuropharmacology 41:592-600.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816-824.
    Champigny G, Voilley N, Waldmann R, Lazdunski M (1998) Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem 273:15418-15422.
    Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 95:10240-10245.
    Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A 99:8992-8997.
    Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401-427.
    Chesler M, Kaila K (1992) Modulation of pH by neuronal activity. Trends Neurosci 15:396-402.
    Cho JH, Askwith CC (2008) Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J Neurophysiol 99:426-441.
    Choe H, Zhou H, Palmer LG, Sackin H (1997) A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol 273:F516-529.
    Chu XP, Close N, Saugstad JA, Xiong ZG (2006) ASIC la-specific modulation of acid-sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci 26:5329-5339.
    Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP,Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678-8689.
    Coric T, Zhang P, Todorovic N, Canessa CM (2003) The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1. J Biol Chem 278:45240-45247.
    Coulter KL, Perier F, Radeke CM, Vandenberg CA (1995) Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15:1157-1168.
    Crowell JW, Kaufmann BN (1961) Changes in tissue pH after circulatory arrest. Am J Physiol 200:743-745.
    Cushman KA, Marsh-Haffner J, Adelman JP, McCleskey EW (2007) A conformation change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J Gen Physiol 129:345-350.
    Deval E, Salinas M, Baron A, Lingueglia E, Lazdunski M (2004) ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons via the partner protein PICK-1. J Biol Chem 279:19531-19539.
    Deval E, Friend V, Thirant C, Salinas M, Jodar M, Lazdunski M, Lingueglia E (2006) Regulation of sensory neuron-specific acid-sensing ion channel 3 by the adaptor protein Na+/H+ exchanger regulatory factor-1. J Biol Chem 281:1796-1807.
    DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32:1107-1117.
    Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. Embo J 23:1516-1525.
    Donier E, Rugiero F, Okuse K, Wood JN (2005) Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a. J Biol Chem 280:38666-38672.
    Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27:11139-11148.
    Dube GR, Lehto SG, Breese NM, Baker SJ, Wang X, Matulenko MA, Honore P, Stewart AO, Moreland RB, Brioni JD (2005) Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 117:88-96.
    Duggan A, Garcia-Anoveros J, Corey DP (2002) The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem 277:5203-5208.
    Escoubas P, Bernard C, Lambeau G, Lazdunski M, Darbon H (2003) Recombinant production and solution structure of PcTxl, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci 12:1332-1343.
    Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275:25116-25121.
    Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N (2006) Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 26:5800-5809.
    Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483-1489.
    Gao J, Wu LJ, Xu L, Xu TL (2004) Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res 1017:197-207.
    Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635-646.
    Green CD, Hollingsworth MJ (1994) Tissue-specific expression of the large ATP synthase gene cluster in spinach plastids. Plant Mol Biol 25:369-376.
    Grifoni SC, Jernigan NL, Hamilton G, Drummond HA (2008a) ASIC proteins regulate smooth muscle cell migration. Microvasc Res 75:202-210.
    Grifoni SD, McKey SE, Drummond HA (2008b) Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration. Am J Physiol Heart Circ Physiol.
    Grunder S, Geissler HS, Bassler EL, Ruppersberg JP (2000) A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11:1607-1611.
    
    Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673-679.
    
    Harvey RJ, Thomas P, James CH, Wilderspin A, Smart TG (1999) Identification of an inhibitory Zn2+ binding site on the human glycine receptor alphal subunit. J Physiol 520 Pt 1:53-64.
    
    Hesselager M, Timmermann DB, Ahring PK (2004) pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 279:11006-11015.
    Hildebrand MS, de Silva MG, Klockars T, Rose E, Price M, Smith RJ, McGuirt WT, Christopoulos H, Petit C, Dahl HH (2004) Characterisation of DRASIC in the mouse inner ear. Hear Res 190:149-160.
    Hruska-Hageman AM, Wemmie JA, Price MP, Welsh MJ (2002) Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochem J 361:443-450.
    Hruska-Hageman AM, Benson CJ, Leonard AS, Price MP, Welsh MJ (2004) PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H+- gated current. J Biol Chem 279:46962-46968.
    Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A (2000) Cloning and functional expression of human retinal kir2.4, a pH-sensitive inwardly rectifying K(+) channel. Am J Physiol Cell Physiol 279:C771-784.
    Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4:869-870.
    Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75-84.
    Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337:349-354.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316-323.
    Jordt SE, Jentsch TJ (1997) Molecular dissection of gating in the C1C-2 chloride channel. Embo J 16:1582-1592.
    
    Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735-767.
    Krishek BJ, Smart TG (2001) Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol 530:219-233.
    Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5:2325-2327.
    Krishtal OA, Pidoplichko VI (1981a) A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6:2599-2601.
    Krishtal OA, Pidoplichko VI (1981b) Receptor for protons in the membrane of sensory neurons. Brain Res 214:150-154.
    
    Leonard AS, Yermolaieva O, Hruska-Hageman A, Askwith CC, Price MP, Wemmie JA, Welsh MJ (2003) cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc Natl Acad Sci U S A 100:2029-2034.
    
    Lin W, Ogura T, Kinnamon SC (2002) Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 88:133-141.
    
    Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778-29783.
    Ljunggren B, Norberg K, Siesjo BK (1974) Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173-186.
    
    Mamet J, Lazdunski M, Voilley N (2003) How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons. J Biol Chem 278:48907-48913.
    
    Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 22:10662-10670.
    McIlwrath SL, Hu J, Anirudhan G, Shin JB, Lewin GR (2005) The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience 131:499-511.
    McNicholas CM, MacGregor GG, Islas LD, Yang Y, Hebert SC, Giebisch G (1998) pH-dependent modulation of the cloned renal K+ channel, ROMK. Am J Physiol 275 .F972-981.
    Mercado F, Lopez IA, Acuna D, Vega R, Soto E (2006) Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 96:1615-1624.
    
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192-195.
    
    Neaga E, Amuzescu B, Dinu C, Macri B, Pena F, Flonta ML (2005) Extracellular trypsin increases ASIC1a selectivity for monovalent versus divalent cations. J Neurosci Methods 144:241-248.
    Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA (1991) Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 260:R581-588.
    Ohtori S, Inoue G, Koshi T, Ito T, Doya H, Saito T, Moriya H, Takahashi K (2006) Up-regulation of acid-sensing ion channel 3 in dorsal root ganglion neurons following application of nucleus pulposus on nerve root in rats. Spine 31:2048-2052.
    
    Paukert M, Babini E, Pusch M, Grunder S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 124:383-394.
    Pearson PN, Palmer MR (1999) Middle eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284:1824-1826.
    
    Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24:10167-10175.
    Pessia M, Imbrici P, D'Adamo MC, Salvatore L, Tucker SJ (2001) Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J Physiol 532:359-367.
    Petroff EY, Price MP, Snitsarev V, Gong H, Korovkina V, Abboud FM, Welsh MJ (2008) Acid-sensing ion channels interact with and inhibit BK K.+ channels. Proc Natl Acad Sci U S A 105:3140-3144.
    Pidoplichko VI, Dani JA (2006) Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci U S A 103:11376-11380.
    Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC la and the time window for neuroprotection in cerebral ischaemia. Brain 130:151-158.
    Poirot O, Vukicevic M, Boesch A, Kellenberger S (2004) Selective regulation of acid-sensing ion channel 1 by serine proteases. J Biol Chem 279:38448-38457.
    Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879-7882.
    Price MP, Thompson RJ, Eshcol JO, Wemmie JA, Benson CJ (2004) Stomatin modulates gating of acid-sensing ion channels. J Biol Chem 279:53886-53891.
    Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071-1083.
    Price MP, Lewin GR, Mcllwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007-1011.
    
    Rehncrona S (1985) Brain acidosis. Ann Emerg Med 14:770-776.
    
    Robello M, Baldelii P, Cupello A (1994) Modulation by extracellular pH of the activity of GABAA receptors on rat cerebellum granule cells. Neuroscience 61:833-837.
    
    Roza C, Puel JL, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558:659-669.
    
    
    Siesjo BK, Katsura K, Kristian T (1996) Acidosis-related damage. Adv Neurol 71:209-233; discussion 234-206.
    
    Staruschenko A, Dorofeeva NA, Bolshakov KV, Stockand JD (2006) Subunit-dependent cadmium and nickel inhibition of acid-sensing ion channels. J Neurobiol 67:97-107.
    Sutherland SP, Cook SP, McCleskey EW (2000) Chemical mediators of pain due to tissue damage and ischemia. Prog Brain Res 129:21-38.
    Tombaugh GC, Sapolsky RM (1993) Evolving concepts about the role of acidosis in ischemic neuropathology. J Neurochem 61:793-803.
    
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531-543.
    Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347-350.
    
    Ugawa S, Ishida Y, Ueda T, Yu Y, Shimada S (2008) Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b. Biochem Biophys Res Commun 367:530-534.
    Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S (1998) Receptor that leaves a sour taste in the mouth. Nature 395:555-556.
    Ugawa S, Inagaki A, Yamamura H, Ueda T, Ishida Y, Kajita K, Shimizu H, Shimada S (2006) Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells. Neuroreport 17:1235-1239.
    Vila-Carriles WH, Zhou ZH, Bubien JK, Fuller CM, Benos DJ (2007) Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. J Biol Chem 282:34381-34391.
    Vila-Carriles WH, Kovacs GG, Jovov B, Zhou ZH, Pahwa AK, Colby G, Esimai O, Gillespie GY, Mapstone TB, Markert JM, Fuller CM, Bubien JK, Benos DJ (2006) Surface expression of ASIC2 inhibits the amiloride-sensitive current and migration of glioma cells. J Biol Chem 281:19220-19232.
    Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026-8033.
    Vukicevic M, Weder G, Boillat A, Boesch A, Kellenberger S (2006) Trypsin cleaves acid-sensing ion channel la in a domain that is critical for channel gating. J Biol Chem 281:714-722.
    Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418-424.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173-177.
    Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M (1999) H(+)-gated cation channels. Ann N Y Acad Sci 868:67-76.
    Wang W, Yu Y, Xu TL (2007) Modulation of acid-sensing ion channels by Cu(2+) in cultured hypothalamic neurons of the rat. Neuroscience 145:631-641.
    Wang W, Duan B, Xu H, Xu L, Xu TL (2006a) Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 281:2497-2505.
    Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG (2006b) Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 281:29369-29378.
    Wegelius K, Reeben M, Rivera C, Kaila K, Saarma M, Pasternack M (1996) The rho 1 GABA receptor cloned from rat retina is down-modulated by protons. Neuroreport 7:2005-2009.
    Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496-5502.
    Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 101:3621-3626.
    Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Jr., Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463-477.
    Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M, Xu TL (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279:43716-43724.
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687-698.
    Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000) Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J Gen Physiol 116:33-45.
    
    Zha XM, Wemmie JA, Green SH, Welsh MJ (2006) Acid-sensing ion channel la is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci U S A 103:16556-16561.
    
    Zhang P, Sigworth FJ, Canessa CM (2006) Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism. J Gen Physiol 127:109-117.
    Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837-847.
    Araki T, Inoue T, Kato H, Kogure K, Murakami M (1990) Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat. Mol Chem Neuropathol 12:203-213.
    Bajo VM, Nodal FR, Bizley JK, Moore DR, King AJ (2007) The ferret auditory cortex: descending projections to the inferior colliculus. Cereb Cortex 17:475-491.
    Bryan RM, Jr. (1986) A method for measuring regional cerebral blood flow in freely moving, unstressed rats. J Neurosci Methods 17:311-322.
    Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377-392.
    Cant N (2005) Projections from the cochlear nuclear complex to the inferior colliculus. New York: Springer, 2005.
    Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847-850.
    Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188:12-20.
    Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262:215-226.
    Ehret G, Schreiner C (2005) Spectral and intensity coding in the auditory midbrain. New York: Springer, 2005.
    Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol (Berl) 171:1-20.
    Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635-646.
    Garcia-Cairasco N (2002) A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures. Hear Res 168:208-222.
    Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta Otolaryngol Suppl 295:1-33.
    Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673-679.
    Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103-122.
    Hind JE, Goldberg JM, Greenwood DD, Rose JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. J Neurophysiol 26:321-341.
    Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47:987-1016.
    Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541-577.
    Kelly JB, Glenn SL, Beaver CJ (1991) Sound frequency and binaural response properties of single neurons in rat inferior colliculus. Hear Res 56:273-280.
    Kuwada S, Batra R, Fitzpatrick D (1997a) Neural processing of binaural temporal cues: Lawrence Erlbaum Associates.
    Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR (1997b) Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J Neurosci 17:7565-7581.
    Landau WM, Freygang WH, Jr., Roland LP, Sokoloff L, Kety SS (1955) The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc:125-129.
    Lyon MJ, Jensen RC (2001) Quantitative analysis of rat inner ear blood flow using the iodo[(14)C]antipyrine technique. Hear Res 153:164-173.
    Malmierca MS, Rees A, Le Beau FE, Bjaalie JG (1995) Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J Comp Neurol 357:124-144.
    Malmierca MS, Merchan MA, Henkel CK, Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J Neurosci 22:10891- 10897.
    Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333:1-27.
    
    Malmierca MS, Hernandez O, Falconi A, Lopez-Poveda EA, Merchan M, Rees A (2003) The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid. Exp Brain Res 153:522-529.
    McCown TJ, Breese GR (1991) The role of the inferior collicular cortex in the neonatal rat: sensorimotor modulation. Brain Res Dev Brain Res 59:1-5.
    Meininger V, Pol D, Derer P (1986) The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience 17:1159-1179.
    Merchan M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136:907-925.
    Merzenich MM, Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res 77:397-415.
    Meyer FB, Anderson RE, Sundt TM, Jr., Yaksh TL (1986) Intracellular brain pH, indicator tissue perfusion, electroencephalography, and histology in severe and moderate focal cortical ischemia in the rabbit. J Cereb Blood Flow Metab 6:71-78.
    Mitani A, Shimokouchi M, Nomura S (1983) Effects of stimulation of the primary auditory cortex upon colliculogeniculate neurons in the inferior colliculus of the cat. Neurosci Lett 42:185-189.
    Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209-236.
    Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474-480.
    Obrenovitch TP, Scheller D, Matsumoto T, Tegtmeier F, Holler M, Symon L (1990) A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol 64:1125-1133.
    Oliver D (2005) Neuronal organization in the inferior colliculus. New York: Springer, 2005.
    Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409-424.
    Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264:24-46.
    Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237-264.
    Oliver DL, Ostapoff EM, Beckius GE (1999) Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience 93:643-658.
    Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340:27-42.
    Oliver DL, Beckius GE, Bishop DC, Kuwada S (1997) Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. J Comp Neurol 382:215-229.
    
    Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303:75-100.
    Palmer A, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. New York: Springer, 2005.
    
    Paxinos G, Waston C (1997) The rat brain in stereotaxic coordinates: Academic Press.
    Perez-Gonzalez D, Malmierca MS, Moore JM, Hernandez O, Covey E (2006) Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. J Neurophysiol 95:823-836.
    
    Perney TM, Marshall J, Martin KA, Hockfield S, Kaczmarek LK (1992) Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol 68:756-766.
    Peruzzi D, Sivaramakrishnan S, Oliver DL (2000) Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101:403-416.
    
    Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17:3766-3777.
    Portfors CV, Wenstrup JJ (1999) Delay-tuned neurons in the inferior colliculus of the mustached bat: implications for analyses of target distance. J Neurophysiol 82:1326-1338.
    Rees A, Malmierca MS (2005) Processing of dynamic spectral properties of sounds. Int Rev Neurobiol 70:299-330.
    Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182:661-680.
    Saldana E, Merchan MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol 319:417-437.
    Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15-40.
    Schofield B (2005) Superior olivary complex and lateral lemniscal connections of the auditory midbrain. New York: Springer, 2005.
    Senatorov VV, Hu B (2002) Extracortical descending projections to the rat inferior colliculus. Neuroscience 115:243-250.
    Serviere J, Webster WR, Calford MB (1984) Isofrequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. J Comp Neurol 228:463-477.
    Shneiderman A, Oliver DL, Henkel CK (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J Comp Neurol 276:188-208.
    Siman R, Zhang C, Roberts VL, Pitts-Kiefer A, Neumar RW (2005) Novel surrogate markers for acute brain damage: cerebrospinal fluid levels corrrelate with severity of ischemic neurodegeneration in the rat. J Cereb Blood Flow Metab 25:1433- 1444.
    Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861-2877.
    Sokoloff L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1:7-36.
    Spitzer MW, Semple MN (1991) Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. Science 254:721-724.
    Torvik A (1985) Two types of brain lesions in Wernicke's encephalopathy. Neuropathol Appl Neurobiol 11:179-190.
    
    Winer JA, Saint Marie RL, Lame DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93:8005-8010.
    Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400:147-174.
    
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687-698.
    Zeller K, Rahner-Welsch S, Kuschinsky W (1997) Distribution of Glutl glucose transporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 17:204-209.
    Zook JM, Winer JA, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat's inferior colliculus: correlation of single unit properties and neuronal architecture. J Comp Neurol 231:530-546.
    Akopian AN,Chert CC,Ding Y,Cesare P,Wood JN(2000)A new member of the acid-sensing ion channel family.Neuroreport 11:2217-2222.
    Araki T,Inoue T,Kato H,Kogure K,Murakami M(1990)Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat.Mol Chem Neuropathol 12:203-213.
    Babinski K,Le KT,Seguela P(1999)Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties.J Neurochem 72:51-57.
    Baron A,Schaefer L,Lingueglia E,Champigny G,Lazdunski M(2001)Zn2+ and H+are coactivators of acid-sensing ion channels.J Biol Chem 276:35361-35367.
    Bassler EL,Ngo-Anh TJ,Geisler HS,Ruppersberg JP,Grunder S(2001)Molecular and functional characterization of acid-sensing ion channel(ASIC)1b.J Biol Chem 276:33782-33787.
    Biagini G,Babinski K,Avoli M,Marcinkiewicz M,Seguela P(2001)Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy.Neurobiol Dis 8:45-58.
    Chen CC,England S,Akopian AN,Wood JN(1998)A sensory neuron-specific,proton-gated ion channel.Proc Natl Acad Sci U S A 95:10240-10245.
    Chesler M,Kaila K(1992)Modulation of pH by neuronal activity.Trends Neurosci 15:396-402.
    Chu XP,Miesch J,Johnson M,Root L,Zhu XM,Chen D,Simon RP,Xiong ZG (2002)Proton-gated channels in PC12 cells.J Neurophysiol 87:2555-2561.
    Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid- sensing ion channels. J Neurosci 24:8678-8689.
    de Weille J, Bassilana F (2001) Dependence of the acid-sensitive ion channel, ASIC 1 a, on extracellular Ca(2+) ions. Brain Res 900:277-281.
    de Weille JR, Bassilana F, Lazdunski M, Waldmann R (1998) Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett 433:257-260.
    DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32:1107-1117.
    
    Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27:11139-11148.
    Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275:25116- 25121.
    
    Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R (2004) Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 24:1005-1012.
    
    Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N (2006) Silencing acid- sensing ion channel la alters cone-mediated retinal function. J Neurosci 26:5800-5809.
    
    Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635-646.
    
    Grunder S, Geissler HS, Bassler EL, Ruppersberg JP (2000) A new member of acid- sensing ion channels from pituitary gland. Neuroreport 11:1607-1611.
    Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673-679.
    
    Hesselager M, Timmermann DB, Ahring PK (2004) pH Dependency and desensitization kinetics of heterologously expressed combinations of acid- sensing ion channel subunits. J Biol Chem 279:11006-11015.
    Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG (2007) Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid- sensing ion channels. Stroke 38:670-673.
    
    Hildebrand MS, de Silva MG, Klockars T, Rose E, Price M, Smith RJ, McGuirt WT, Christopoulos H, Petit C, Dahl HH (2004) Characterisation of DRASIC in the mouse inner ear. Hear Res 190:149-160.
    Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75-84.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316-323.
    Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17:945-956.
    Krishtal OA, Osipchuk YV, Shelest TN, Smirnoff SV (1987) Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res 436:352-356.
    Lin W, Ogura T, Kinnamon SC (2002) Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 88:133-141.
    
    
    Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waidmann R, Lazdunski M (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272:29778-29783.
    Mair RG, Knoth RL, Rabchenuk SA, Langlais PJ (1991) Impairment of olfactory, auditory, and spatial serial reversal learning in rats recovered from pyrithiamine-induced thiamine deficiency. Behav Neurosci 105:360-374.
    Mercado F, Lopez IA, Acuna D, Vega R, Soto E (2006) Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 96:1615-1624.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192-195.
    
    Murase K, Ryu PD, Randic M (1989) Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett 103:56-63.
    N'Gouemo P, Morad M (2003) Voltage-gated calcium channels in adult rat inferior colliculus neurons. Neuroscience 120:815-826.
    Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA (1991) Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 260:R581-588.
    Palmer MJ, Hull C, Vigh J, von Gersdorff H (2003) Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J Neurosci 23:11332-11341.
    
    Paukert M, Babini E, Pusch M, Grunder S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) I: implications for channel gating. J Gen Physiol 124:383-394.
    
    Paxinos G, Waston C (1997) The rat brain in stereotaxic coordinates: Academic Press. Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24:10167-10175.
    
    Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879-7882.
    Price MP, McIlwrath SL, Xie J. Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRAS1C cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071-1083.
    Price MP, Lewin GR, Mcllwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007-1011.
    Roza C, Puel JL, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558:659-669.
    Shigematsu Y, Nakai A, Kuriyama M, Kikawa Y, Konishi I, Sudo M, Itokawa Y (1990) Delayed auditory brainstem response in thiamin-deficient rats. J Nutr Sci Vitaminol (Tokyo) 36:209-215.
    Siesjo BK (1988) Acidosis and ischemic brain damage. Neurochem Pathol 9:31-88.
    Siesjo BK, von Hanwehr R, Nergelius G, Nevander G, Ingvar M (1985) Extra- and intracellular pH in the brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab 5:47-57.
    Siman R, Zhang C, Roberts VL, Pitts-Kiefer A, Neumar RW (2005) Novel surrogate markers for acute brain damage: cerebrospinal fluid levels corrrelate with severity of ischemic neurodegeneration in the rat. J Cereb Blood Flow Metab 25:1433-1444.
    Tang ZQ, Lu YG, Zhou KQ, Xu TL, Chen L (2006) Amiloride attenuates glycine-induced currents in cultured neurons of rat inferior colliculus. Biochem Biophys Res Commun 350:900-904.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531-543.
    Ugawa S (2003) Identification of sour-taste receptor genes. Anat Sci Int 78:205-210.
    Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185-1190.
    Ugawa S, Inagaki A, Yamamura H, Ueda T, Ishida Y, Kajita K, Shimizu H, Shimada S (2006) Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells. Neuroreport 17:1235-1239.
    Varming T (1999) Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology 38:1875-1881.
    
    Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026-8033.
    Vortmeyer AO, Colmant HJ (1988) Differentiation between brain lesions in experimental thiamine deficiency. Virchows Arch A Pathol Anat Histopathol 414:61-67.
    Vukicevic M, Kellenberger S (2004) Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am J Physiol Cell Physiol 287:C682-690.
    Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418-424.
    Waldmann R, Champigny G, Voilley N, Lauritzen 1, Lazdunski M (1996) The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem 271:10433-10436.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997a) A proton-gated cation channel involved in acid-sensing. Nature 386:173-177.
    Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997b) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272:20975-20978.
    Wang W, Duan B, Xu H, Xu L, Xu TL (2006) Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 281:2497-2505.
    Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496-5502.
    Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, Welsh MJ (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U S A 101:3621-3626.
    Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Jr., Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463-477.
    Wu LJ, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M, Xu TL (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279:43716-43724.
    Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687-698.
    Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel la. Proc Natl Acad Sci U S A 101:6752-6757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700