相容性高分子体系界面相互扩散行为的原子力显微镜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多相多组分高分子体系中,相结构及界面层的微观结构往往决定着材料的宏观性能(如力学、电学、光学、渗透性等)并影响其最终用途。而在高分子界面的形成过程中,扩散起着至关重要的作用。相比小分子之间的扩散行为,高分子/高分子界面扩散则复杂得多,已难以用简单的Fick扩散模型来加以描述。因此,针对高分子/高分子界面扩散行为的理论和实验方法研究显得尤为必要。迄今为止,科学家们先后提出的研究理论包括“蛇行”理论、“慢模式”理论、“快模式”理论、“快慢杂化”理论等。与此同时,虽然已有不少实验技术成功应用于此行为的研究,例如中子反射、二次离子质谱、振动光谱(包括拉曼光谱和红外光谱)、透射电子显微镜等,但由于受到各种因素的限制,特别是仪器分辨率的限制,只有一些倒空间技术(如中子反射)能在扩散运动基本单元——高分子链尺寸上来研究此行为,目前尚缺乏在正空间分子尺度上研究此行为动力学的方法。
     本论文首先借助差示扫描量热仪(DSC)和万能电子拉力仪分别研究了聚甲基丙烯酸正丁酯/聚氯乙烯(PnBMA/PVC)共混体系的相容性和拉伸性能。最后用原子力显微镜(AFM)着重研究了PnBMA/PVC层压体系的界面扩散动力学行为。
     (1)通过溶液浇铸法制备了一系列不同PVC含量的共混体系薄膜,DSC结果表明所有共混体系均仅显示出一个玻璃化温度(T_g),说明PVC和PnBMA具有良好的相容性。随着PVC含量的增加,共混体系的T_g逐渐增加。实验值在一定程度上可由Fried、Fox和Gordon-Taylor方程来描述,其中在没有拟合参数k的情况下,Fox方程稍优于Fried方程;但拟合最好的还属k=0.99±0.10的Gordon-Taylor方程,即T_g与PVC的质量分数几乎呈线性关系。采用改良的浊点法得到了共混体系的相图,该体系表现为下临界共溶温度(LCST)行为,其下临界共熔点的组成和温度分别为90wt%的PVC和192℃。
     (2)共混物薄膜的拉伸性能结果显示:随着PVC含量的增加,共混体系的比模量和屈服应力逐渐增加,而断裂伸长率则逐渐下降。
     (3)通过层压法制备了75℃下退火16h、37h和96h、以及110℃下退火0.5h、1h和4h的层压体系。使用超薄切片技术得到面积约为0.2×0.4mm2的扩散横截面的超平平面。采用轻敲式AFM(tapping mode,TM-AFM,即DFM)进行测量,同时得到了扩散界面的形貌图(topography image)和相位图(phase image)。结合这些图形,获得了界面的相对浓度分布及其厚度、以及界面层厚度与退火时间的标度关系。退火温度为75℃时,由于PnBMA需对PVC先进行塑化,扩散速度相当缓慢,PnBMA在界面处堆积,界面层厚度与退火时间成正比,遵守非Fick扩散的Case-Ⅱ行为,渗透速率v_p=4.36×10~(-13)m/s。退火温度为110℃时,界面层厚度与退火时间的平方根成正比,遵守典型的Fick扩散Case-I行为,相互扩散系数D_m=2.04×10~(-19)m~2/s,与Dlubek等人用DSC法( 2.0×10~(-18)m~2/s)和PALS法( ( 2.5~3.5)×10~(-17)m~2/s)得到的结果一致。结果表明,AFM可在高分子链尺寸水平上观察高分子/高分子界面相互扩散及聚集行为。
The properties of multi-phase and multi-component polymers, such as mechanical, electronic, optical, and permeable properties, are dependent on the microstructures of domain and interface. Diffusion plays a key role on the formation of interface. However, polymer/polymer interdiffusion is much more complicated than the diffusion between small molecules which can be described by a simple Fickian model well. Therefore, theoretical and experimental methods for polymer/polymer interdiffusion are particularly important. So far, lots of theories have been used to describe polymer/polymer interdiffusion, including reptation theory, slow-mode theory, fast-mode theory and fast-slow hybrid theory. Meanwhile, many kinds of experimental methods, such as neutron reflectivity (NR), secondary ion mass spectrometry (SIMS), vibration scpectroscopies (Raman spectroscopy and infrared spectroscopy), transmission electron microscopy (TEM), have been successfully used for the study of polymer/polymer interfusion. However, to the best of our knowledge, the investigation on this interdiffusion kinetics at a level of molecular size in real space has not been reported yet.
     In this work, the miscibility of poly(n-butyl methacrylate)/poly(vinyl chloride) (PnBMA/PVC) blend and the interdiffusion of PnBMA/PVC laminates have been investigated by differential scanning calorimetery (DSC) and atomic force microscopy (AFM), respectively. The tensile property of PnBMA/PVC blends has been studied also.
     (1) A series of PnBMA/PVC blend films with different PVC mass were prepared by casting their mixture solution. DSC results showed each blend appeared only a single glass transition temperature (T_g) which increased with PVC mass, indicating that PVC and PnBMA were miscible well. These T_gs were be described by Fried equation, Fox equation and Gordon-Taylor equation well. Without the fitting parameter k, Fox equation was better than Fried equation; but with the parameter k=0.99±0.10, Gordon-Taylor equation was the best suitable one, where T_gs almost presented a linear relation with PVC mass. This blend exhibited a lower critical solution temperature (LCST) behavior with a critical composition of ~ 90wt% PVC and a critical temperature of 192℃, respectively.
     (2) The tensile properties of PnBMA/PVC blend films showed that the specific modulus and yield stress increased but elongation at break decreased with the increase of PVC mass.
     (3) PnBMA/PVC laminates were annealed at 110℃for 0.5 h, 1 h, 4 h and at 75℃for 16 h, 37 h, 96 h, respectively. An ultra-smooth cross-section across interface was then prepared by ultramicrotoming. Combined with topography and phase images of tapping mode atomic force microscopy (TM-DFM), the relative concentration profile, interface width and the relationship between interface width and annealing time could be obtained. At 75℃, the diffusion followed a typical Case-Ⅱdiffusion behavior where the interface width was proportional to annealing time. The penetration velocity was 4.36×10~(-13) m/s. However, at 110℃, the diffusion obeyed a typical Fickian diffusion behavior where the interface width was proportional to the square root of annealing time. The mutual diffusion coefficient was 2.04×10~(-19) m~2/s which was in good agreement with those obtained from DSC (2.0×10~(-18) m~2/s) and positron annihilation lifetime spectroscopy (2.5~3.5×10~(-17) m~2/s). These results imply that AFM is a reliable and powerful tool for the investigation of polymer/polymer interdiffusion at a level of polymer chain size.
引文
[1]何曼君,张红东,陈维孝,董西侠.高分子物理(第三版),复旦大学出版社:上海,2008.
    [2]卓启疆.聚合物的自由体积,成都科技大学出版社:成都,1987.
    [3] Flory P. J. Thermodynamics of Heterogeneous Polymers and Their Solutions. J. Chem. Phys., 1944, 12, 425-438.
    [4] Scott R. J. The Thermodynamics of High Polymer Solutions. V. Phase Equilibria in the Ternary System: Polymer1-Polymer2-Solvent. J. Chem. Phys., 1949, 17, 279-284.
    [5] Zachrius S. L., Brinke G. T., Macknight W. J., Karasz F. E. Evidence for critical double points in blends of polystyrene and poly(o-chlorostyrene). Macromolecules, 1983, 16, 381.
    [6] Saeki S., Cowie J. M. G., McEven I. J. The effect of molecular weight and casting solvent on the miscibility of polystyrene-poly(α-methyl styrene) blends. Polymer, 1983, 24, 60-64.
    [7] Bower D. I. An Introduction to Polymer Physics. UK: Cambridge University Press, 2002, 162-164.
    [8] Utracki L. A. Thermodynamics and Kinetics of Phase Separation. Macromolecules, 1994, 3, 77-123.
    [9] Strobl G. R. The Physics of Polymers: Concepts for Understanding their Structure and Behavior. Springer: Berlin, 1997.
    [10] Dogel J., Tsekov R., Freyland W. Two-dimensional connective nanostructures of electrodeposited Zn on Au (111) induced by spinodal decomposition. J. Chem. Phys., 2005, 122, 094703/1-094703/8.
    [11] Dhont J. K. G., Duyndam A. F. H. The initial spinodal decomposition kinetics of colloidal systems under shear. Phys. A, 1992, 189, 532-553.
    [12] Buyevich Y. A., Ivanov A. O. Kinetics of phase separation in colloids: I. Formation ofinitial aggregates. Phys. A, 1993, 192, 375-390.
    [13] Bates F. S., Wiltzius P. Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer. P. J. Chem. Phys., 1989, 91, 3258-3274.
    [14] Binder K. Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures. J. Chem. Phys., 1983, 79, 6387-6409.
    [15] de Gennes P. G. Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys., 1980, 72, 4756-4763.
    [16] Han C. C., Bauer B. J., Clark J. C., Muroga Y., Matsushita Y., Okada M., Cong Q. T., Chang T., Sanchez I. C. Temperature, composition and molecular-weight dependence of the binary interaction parameter of polystyrene/poly(vinyl methyl ether) blends. Polymer, 1988, 29, 2002-2014.
    [17] Hashimoto T., Itakura M., Hasegawa H. Late stage spinodal decomposition of a binary polymer mixture. I. Critical test of dynamical scaling on scattering function. J. Chem. Phys., 1986, 85, 6118-6128.
    [18] Hashimoto T., Itakura M., Shimidzu N. Late stage spinodal decomposition of a binary polymer mixture. II. Scaling analyses on Qm(τ) and Im(τ). J. Chem. Phys., 1986, 85, 6773-6786.
    [19] Okada M., Han C. C. Experimental study of thermal fluctuation in spinodal decomposition of a binary polymer mixture. J. Chem. Phys., 1986, 85, 5317-5327.
    [20] Pincus P. Dynamics of fluctuations and spinodal decomposition in polymer blends. II. J. Chem. Phys., 1981, 75, 1996-2000.
    [21] Sato T., Han C. C. Dynamics of concentration fluctuation in a polymer blend on both sides of the phase boundary. J. Chem. Phys., 1988, 88, 2057-2065.
    [22] Wiltzius P., Bates F. S., Heffner W. R. Spinodal decomposition in isotopic polymer mixtures. Phys. Rev. Lett., 1988, 60, 1538-1541.
    [23] Cahn J. W., Hilliard J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys., 1958, 28, 258-267.
    [24] Cook H. E. Brownian motion in spinodal decomposition. Acta Metall., 1970, 18, 297-306.
    [25] Cahn J. W. Phase Separation by Spinodal Decomposition in Isotropic Systems. J. Chem. Phys., 1965, 42, 93-99.
    [26] Akcasu A. Z., Klein R. A nonlinear theory of transients following step temperature changes in polymer blends. Macromolecules, 1993, 26, 1429-1441.
    [27] Lifshitz I. M., Slyozov V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids., 1961, 19, 35-50.
    [28] Siggia E D. Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A, 1979, 20, 595-605.
    [29] Bernstein R. E., Cruz C. A., Paul D. R., Barlow J. W. LCST Behavior in Polymer Blends. Macromolecules, 1977, 681.
    [30]宋默,丛广民.高分子共混体系相分离相结构的光散射研究,功能高分子学报,1991,4,1.
    [31]左榘,王志刚等. PVC/ACR共混体系相分离动力学的研究,1993,6,44-47.
    [32] Paul R., Karabiyik U., Swift M. C., Esker A. R. Phase Separation in Poly(tert-butyl acrylate)/Polyhedral Oligomeric Silsesquioxane (POSS) Thin Film Blends. Langmuir, 2008, 24, 5079-5090.
    [33] Vogel C., Wessel E., Siesler H. W. FT-IR Imaging Spectroscopy of Phase Separation in Blends of Poly(3-hydroxybutyrate) with Poly(L-lactic acid) and Poly(ε-caprolactone). Biomacromolecules, 2008, 9, 523-527.
    [34] Neelakandan C., Kyu T. Miscibility Characterization in Relation to Phase Morphology of Poly(ether sulfone)/Poly(vinyl pyrrolidone) Blends Containing a Phytochemical. J. Phys. Chem. B, 2009, 113, 8520-8526.
    [35] Shiomi T., Suzuki M., Tohyama M., Imai K. Dependence of Miscibility on Copolymer Composition for Blends of Poly(viny1 chloride-co-vinyl acetate) and Poly(n-butyl methacrylate-co-isobutyl methacrylate). Macromolecules, 1989, 22, 9.
    [36] Gharachorlou A., Goharpey F. Rheologically Determined Phase Behavior of LCST Blends in the Presence of Spherical Nanoparticles. Macromolecules, 2008, 41, 3276-3283.
    [37] Ren H., Wu S., Lin Y. In Situ Observation of Fringing-Field-Induced Phase Separation in a Liquid-Crystal–Monomer Mixture. Phys. Rev. Lett., 2008, 100, 117801.
    [38] de Gennes P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys.1971, 55, 572.
    [39] Edwards S. F. The statistical mechanics of polymerized material. Proc. Phys. Soc., 1967, 92, 9.
    [40] Brochard F., Jouffroy J., Levinson P. Polymer-polymer diffusion in melts. Macromolecules, 1983, 16, 1638.
    [41] Kramer E. J., Green P. F., Palmstrom C. J. Interdiffusion and marker movements in concentrated polymer-polymer diffusion couples. Polymer, 1984, 25, 473.
    [42] Brochard F., de Gennes P. G. Polymer-polymer interdiffusion. Europhys. Lett., 1986, 1, 221.
    [43] Kunz K., Stamm M. Initial stages of interdiffusion of PMMA across an interface. Macromolecules, 1996, 29, 2548.
    [44]宋默.聚合物共混相变的大分子扩散机制,科学通报1993,38,224.
    [45]宋默,梁好均,陈宜宜,姜炳政.聚甲基丙烯酸甲酯与苯乙烯-丙烯腈共聚物混合体系相分离初期的固体NMR研究,物理化学学报1991,7,513.
    [46]许岳剑,许鑫华,吕丰,盛京.小角光散射研究PP/EOC增韧体系,中国塑料2004,18,43.
    [47]徐立恒,袁昌明,许潮江. PET与SAN/PAN复合膜界面的FTIR-ATR研究,光谱实验室2004,21,229.
    [48] Kunz K., Stamm M. Initial stages of interdiffusion of PMMA across an interface. Macromolecules, 1996, 29, 2548.
    [49] Sferrazza M., Xiao C., Jones R. A. L., Bucknall D. G., Webster J., Penfold J. Evidencefor capillary waves at immiscible polymer/polymer interfaces. Phys. Rev. Lett., 1997, 78, 3693.
    [50] Composto R. J., Kramer E. J., White D. W. Matrix effects on diffusion in polymer blends. Macromolecules, 1992, 25, 4167.
    [51] Composto R. J., Kramer E. J. Mutual diffusion studies of polystyrene and poly(xylenyl ether) using Rutherford backscattering spectrometry. J. Mater. Sci., 1991, 26, 2815.
    [52] Shearmur T. E., Clough A. S., Drew D. W., van der Grinten M. G. D., Jones R. A. L. Temperature dependence of the mutual diffusion coefficient of deuterated polystyrene and poly(methylmethacrylate). Phys. Rev. E, 1997, 55, R3840.
    [53] Qiu H., Bousmina M. Determination of mutual diffusion coefficients at nonsymmetric polymer/polymer interfaces from rheometry. Macromolecules, 2000, 33, 6588.
    [54] Kressler J., Higashida N., Inoue T., Heckmann W., Seitz F. Study of polymer-polymer interfaces: A comparison of ellipsometric and TEM data of PMMA/PS and PMMA/SAN systems. Macromolecules, 1993, 26, 2090.
    [55] Harton S. E., Koga T., Stevie F. A., Araki T., Ade H. Investigation of blend miscibility of a ternary PS/PCHMA/PMMA system using SIMS and mean-field theory. Macromolecules, 2005, 38, 10511.
    [56] Lin H. C., Tsai I. F., Yang A. C.-M., Hsu M. S., Ling Y. C. Chain diffusion and microstructure at a glassy-rubbery polymer interface by SIMS. Macromolecules, 2003, 36, 2464.
    [57] Zheng X., Rafailovich M. H., Sokolov J., Strzhemechny Y., Schwarz S. A., Sauer B. B., Rubinstein M. Long-range effects on polymer diffusion induced by a bounding interface. Phys. Rev. Lett., 1997, 79, 241.
    [58] Farinba J. P. S., Vorobyova O., Winnik M. A. An energy transfer study of the interface thickness in blends of poly(butyl methacrylate) and poly(2-ethylhexyl methacrylate. Macromolecules, 2000, 33, 5863.
    [59] Dlubek G., Pompe G., Pionteck J., Janke A., Kilburn D. Differential scanningcalorimetry (DSC) for interdiffusion studies in PVC/PnBMA blend: A quantitative analysis. Macromol. Chem. Phys., 2003, 204, 1234.
    [60] Dlubek G., Pionteck J., Bondarenko V., Pompe G., Taesler Ch., Petters K., Krause-Rehberg R. Positron annihilation lifetime spectroscopy (PALS) for interdiffusion studies in disperse blends ofcompatible polymers: A quantitative analysis. Macromolecules, 2002, 35, 6313.
    [61] Jabbari E., Peppas N. A. Use of ATR-FTIR to study interdiffusion in polystyrene and poly(vinylmethyl ether). Macromolecules, 1993, 26, 2175.
    [62] Liao Y. G., Nakagawa A., Horiuchi S., Ougizawa T. Interdiffusion at homopolymer/ random copolymer interfaces investigated by energy-filtering transmission electron microscopy. Macromolecules, 2007, 40, 7966.
    [63] Horiuchi S., Yin D. H., Ougizawa T. Nanoscale analysis of polymer interfaces by energy-filtering transmission electron microscopy. Macromol. Chem. Phys., 2005, 206, 725.
    [64] Toda A., Taguchi K., Kajioka H. Instability-Driven Branching of Lamellar Crystals in Polyethylene Spherulites. Macromolecule, 2008, 41, 7505-7512.
    [65] Skvarla J., Luxbacher T., Nagy M., Sisol M. Relationship of Surface Hydrophilicity, Charge, and Roughness of PET Foils Stimulated by Incipient Alkaline Hydrolysis. Appl. Mater. Interfaces, 2010, 2, 2116-2127.
    [66] Wan D., Huang F., Wang Y. Highly Surface-Textured ZnO:Al Films Fabricated by Controlling the Nucleation and Growth Separately for Solar Cell Applications. Appl. Mater. Interfaces, 2010, 2, 2147-2152.
    [67] Prado P. J., Gasper L., Fink G., Blumich B., Herrmann V.,Unsled K., Fuchs H.-B., Mohler H., Ruhl M. The interface between covulcanized rubber sheets by NMR imaging, scanning FTIR spectroscopy, and mechanical indentation mapping. Macromol. Mater. Eng., 2000, 274, 13.
    [68] Hodzic A., Stachurski Z. H., Kim J. K. Nano-indentation of polymer-glass interfacesPart I. Experimental and mechanical analysis. Polymer, 2000, 41, 6895-6905.
    [69] Gao S. L., Mader E. Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Compos. A, 2002, 33, 559.
    [70] VanLandingham M. R., McKnight S. H., Palmese G. R., Bogetti T. A., Eduljee R. F., Gillespie Jr. J. W. Characterization of interphase regions using atomic force microscopy. Mater. Res. Soc. Proc., 1997, 458, 313.
    [71] Kim J. K., Sham M. L., Wu J. Nanoscale characterization of interphase in silane treated glass fiber. Compos. A, 2001, 32, 607.
    [72] Bogetti T. A., Wang T., VanLandingham M. R., Gillespie Jr. J. W. Characterization of nanoscale property variations in polymer composite systems: 2. Numerical modeling. Compos. A, 1999, 30, 85.
    [73] Mai K., Mader E., Muhle M. Interphase characterization in composites with new non-destructive methods. Compos. A, 1998, 29, 1111.
    [74] Munz M., Strum H., Schulz E., Hinrichsen G. The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers. Compos. A, 1998, 29, 1251.
    [75] Basak G, Kumar K., Bandyopadhyay A., Bhowmick A. Elegant Way of Strengthening Polymer-Polymer Interface Using Nanoclay. Appl. Mater. Interfaces, 2010, 2, 2933-2943.
    [76] Okner R., Shaulov Y., Tal N., Favaro G., Domb A., Mandler D. Electropolymerized Tricopolymer Based on N-Pyrrole Derivatives as a Primer Coating for Improving the Performance of a Drug-Eluting Stent. Appl. Mater. Interfaces, 2009, 1, 758-767.
    [77] Liao Y. G., You J. C., Shi T. F., An L. J. Phase behavior and dewetting for polymer blend films studied by in situ AFM and XPS: From thin to ultrathin films. Langmuir, 2007, 23, 11107.
    [78] Liao Y. G., Su Z. H., You J. C., Shi T. F., An L. J. Dewetting and phase behaviors forultrathin films of polymer blend. Macromol. Rap. Comm., 2006, 27, 351.
    [79] Liao Y. G., Su Z. H., Ye X. G., Li Y. Q., You J. C., Shi T. F., An L. J. Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy. Macromolecules, 2005, 38, 211.
    [80] Gao S. L., M?der E. Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos. A, 2002, 33, 559.
    [81] Paradkar R. P., Li J., Bar G., Pham H., Bosnyak C., Weinhold J. Measuring the relative interface thickness of multilayer polyolefin films with atomic force microscopy. J. Appl. Polym. Sci., 2007, 106, 1507.
    [82] Bresson B., Portigliatti M., Salvant B., Fretigny C. Measuring interdiffusion at an interface between two elastomers with tapping-mode and contact-resonance atomic force microscopy imaging. J. Appl. Polym. Sci., 2008, 109, 602.
    [83] Wang D., Fujinami S., Nakajima K., Nishi T. True Surface Topography and Nanomechanical Mapping Measurements on Block Copolymers with Atomic Force Microscopy. Macromolecules, 2010, 43, 3169-3172.
    [84] Wang D., Fujinami S., Liu H., Nakajima K., Nishi T. Investigation of True Surface Morphology and Nanomechanical Properties of Poly (styrene-b-ethylene -co-butylene-b-styrene) Using Nanomechanical Mapping:Effects of Composition Macromolecules, 2010, 43, 9049-9055.
    [85] Wang D., Fujinami S., Liu H., Nakajima K., Nishi T. Investigation of Reactive Polymer-Polymer Interface Using Nanomechanical Mapping. Macromolecules, 2010, 43, 5521-5523.
    [86]吴茂英,罗勇新. PVC热稳定剂的发展趋势与锌基无毒热稳定剂技术进展[J].聚氯乙烯,2006,10,1-6.
    [87]于广河,韩永和,江从宇,王龙彪,雷金林. PVC用SS-218硫醇甲基锡热稳定剂[J].塑料,2003,32,18-19.
    [88] HE M, et al. Spinodal Decomposition in a Hydrogen-Bonded Polymer Blend. Macromolectures, 1991, 24, 464-473.
    [89] Mo Song. Miscibility in blends of Poly(vinyl acetate) with Poly(methyl methacrylate) studied by FTIR and DSC. Eur. Polym. J., 1991, 27, 983-986.
    [90] Nguyen V. N., Perrin F. X., Vernet J. L. Water permeability of organic/inorganic hybrid coatings prepared by sol–gel method:a comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models. Corrosion Science, 2005, 47, 397-412.
    [91] Sauer B. B., Walsh D. J. Use of Neutron Reflection and Spectroscopic Ellipsometry for the Study of the Interface between Miscible Polymer Films. Macromolecules, 1991, 24, 5948-5955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700