NaGdF_4:Yb~(3+),Er~(3+)磁性—荧光纳米粒子的制备及改性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂的NaGdF_4纳米粒子具有优异的上转换发光性能和顺磁性,在肿瘤早期诊断和治疗用磁性―荧光双模式分子探针中极具应用潜力。但该类纳米粒子纯六方相的获得和粒径控制、发光强度低和发色光谱单一等仍是制约其发展和应用的主要瓶颈,以稀土掺杂NaGdF_4纳米粒子为磁性―荧光双功能分子探针的研究尚未报道。本文采用改进的热分解法制备NaGdF_4:Yb~(3+),Er~(3+)纳米粒子,通过优化反应条件控制相结构和粒径;采用Li~+离子掺杂和壳包覆等改性手段提高发光强度,研究合成工艺及改性方法和条件对相结构、上转换发光强度、磁性能和分散性的影响规律,揭示改性机理。采用SiO_2包覆和氨基化修饰后接枝Cltx的方法构建胶质瘤靶向磁性―荧光双功能分子探针,研究探针的多模式成像效果。
     采用热分解法,在油胺溶剂中制备出NaGdF_4:Yb~(3+),Er~(3+)纳米粒子,研究了反应条件对相结构、粒径及发光性能和磁性能的影响,结果表明,提高升温速率和反应温度有利于单一β相生成,当升温速率为20℃/min,反应温度为330℃,反应时间为1h时,获得了球形纯β相纳米粒子,平均粒径为13nm,分散性好,呈顺磁性,具有强的上转换荧光发射。
     采用Li~+离子掺杂提高β-NaGdF_4: Yb~(3+),Er~(3+)纳米粒子的发光性能,研究了Li~+离子掺杂对相结构、形貌、分散性、上转换发光性能及磁性能的影响,发现,Li~+离子掺杂对粒径、分散性和磁性能无明显影响,但对相结构和上转换发光性能影响较大。Li~+离子浓度低于15mol%时,产物为纯β相;Li~+离子浓度高于15mol%时,除β相外,还有α相生成,Li~+离子浓度增加,α相增多;当Li~+离子浓度达60mol%时,产物为纯α相;当Li~+离子浓度高于60mol%时,获得四方相的LiGdF4:Yb~(3+),Er~(3+)和LiF的混合物。Li~+离子掺杂显著提高了上转换发光强度,Li~+离子浓度为7mol%时,Li~+离子主要替代Na+离子进入晶格内部,产生大的晶格畸变,稀土离子局域环境的对称性最低,上转换发光最强,其绿光和红光强度分别提高47倍和23倍。过高的Li~+离子浓度,生成过量的非β相导致上转换发光强度降低。
     采用壳包覆对β-NaGdF_4:Yb~(3+),Er~(3+)纳米粒子进行改性,研究了钝化壳NaDyF_4和活化壳NaGdF_4: Dy~(3+)包覆对发光特性和磁性能的影响,实验结果表明,壳包覆提高了β-NaGdF_4:Yb~(3+),Er~(3+)纳米粒子的上转换发光强度和室温磁化强度。钝化壳NaDyF_4包覆后,绿光强度提高2倍,磁化强度提高1倍;活化壳NaGdF_4:0.5%Dy~(3+)包覆后,绿光和红光强度分别提高7倍和2倍,磁化强度提高2倍,并呈现出下转换发光特性,在350nm紫外光激发下,发出下转换蓝光和黄光。
     采用热分解法制备了NaGdF_4:Yb~(3+),Er~(3+),Li~+@NaGdF_4:Eu~(3+)纳米粒子(MFNPs),平均粒径为20nm,呈规则球形,在非极性溶剂中有良好的分散性。同时具有上转换和下转换发光特性,与NaGdF_4:Yb~(3+),Er~(3+),Li~+纳米粒子相比,其上转换绿光和红光强度分别提高5和4倍;在395nm紫外光激发下,发出强的下转换红色荧光。
     采用反相微乳液法对MFNPs进行二氧化硅包覆和氨基化修饰,随后通过戊二醛活化再与生物分子Cltx偶联,制备出磁性―荧光多模式胶质瘤细胞靶向分子探针,研究了探针体内和体外多模式成像,结果表明,MFNPs@SiO_2-NH_2的平均粒径为36nm,在水溶液中具有良好的分散性和稳定性、较强的上转换绿光发射和下转换红光发射,并呈现良好的顺磁性,能显著提高其T1加权成像效果。MFNPs@SiO_2-Cltx分子探针对大鼠C6胶质瘤细胞具有特异亲和性,经尾静脉注射老鼠体内,循环2h后,仍呈现出优异的MRI/荧光多模式成像效果。
Rare-earth doped NaGdF_4nanoparticles have large potential application for themagnetic-fluorescence bimodal molecular probe in the early diagnosis of cancer andtreatment, due to their outstanding upconversion luminescence and theparamagnetic properties. Unfortunately, there are several serious problems,including obtaintion of pure β phase, controllable size, low upconversion intensity,single emission spectra etc, which are major bottleneck restricting the developmentand application. Moreover, studies on rare-earth doped NaGdF_4nanoparticlesapplied to magnetic-fluorescence bimodal molecular probe have not been reported.In this dissertation, NaGdF_4:Yb~(3+),Er~(3+)nanoparticles with controlled phase structureand size have been prepared via modified high temperature thermal decompositionmethod by optimizing reaction condition. Modified methods, such as Li~+ionsdoping and shell-coating, have been employed to improve the intensity ofupconversion luminescence. The effect of the synthetic technology, modifiedmethod and condition on phase structure, the intensity of upconversionluminescence and magnetic properties as well as dispersibility is investigated toclarify the mechanism. Glioma targeting probe with magnetic-fluorescencebifunctional properties has been built by SiO_2coating and amination modificationas well as Cltx grafting. The effect of multimodality imaging has been studied.
     NaGdF_4:Yb~(3+),Er~(3+)nanoparticles have been prepared in oleylamine by hightemperature thermal decomposition method. The effect of reaction conditions on thephase structure, particle size, upconversion luminescence and magnetic properties isexplored. The experimental results show that enhancing heating rate and reactiontemperature as well as prolong reaction time are favourable for formation of pure βphase structure. Pure β phase nanoparticles are obtained at heating rate of20℃/min,reaction temperature of330℃and reaction time of1.5h. The as-preparednanoparticles with13nm are spherical and display excellent dispersibility in thenonpolar solvent, strong upconversion luminescence and paramagnetic properties atroom temperature.
     The intensity of upconversion luminescence has been enhanced by codopingLi~+ions. The effect of Li~+ion concentration on the phase structure, morphology,dispersibility, upconversion luminescence and magnetic properties ofβ-NaGdF_4:Yb~(3+),Er~(3+)nanoparticles is investigated in detail. It is found that the phasestructure and upconversion luminescence properties are changed obviously, whilethe morphology and the dispersibility are almost unchanged by codoping of Li~+ions.When the concentration of the codoping Li~+ions is lower than15mol%, the structure of the nanoparticles is pure β phase, When the Li~+ions concentration is inthe range from15mol%to60mol%, the mixture of α phase and β phase is obtained.Pure α phase is formed when the Li~+ions concentration is60mol%. With thefurther increase of the Li~+ions concentration, the mixture of tetragonal LiGdF4andLiF is obtained. The intensity of upconversion emission has been significantlyenhanced by codoping of Li~+ions. When the concentration of the codoping Li~+ionsis7mol%, the obviously improvement can be attributed to the lowest localsymmetry of the rare earth caused by lattice distortion due to the substitution of Na+ions by Li~+ions. It should be note that the intensity of green and red UC emissionsis enhanced by about47and23times. When the concentration of the codoping Li~+ions is too high, the intensity of upconversion luminescence is weakened due to theformation of excessive non-β phase.
     NaGdF_4:Yb~(3+),Er~(3+)nanoparticles are modified by coating a passive shell ofNaDyF_4and an active shell of the Dy~(3+)ions doped NaGdF_4. The effects of passiveand active shell on the luminescence and magnetic properties are investigated. Theexperimental results show that the intensity of upconversion luminescence andmagnetization are both enhanced by the shell, and the paramagnetic charactersremain unchanged. The intensity of green UC emission and magnezation of thenanoparticles are enhanced by about2and1times respectively by the passive shell.By coating active shell NaGdF_4: Dy~(3+), NaGdF_4: Yb~(3+),Er~(3+)@NaGdF_4:Dy~(3+)nanocomposites possess excellent upconversion (UC) luminescence,downconversion (DC) and paramagnetic characters. The intensities of green and redUC emission and the magnezation of the nanoparticles were enhanced by about7,2times and2times, respectively. The blue and yellow luminescence is also observedunder UV excitation at350nm.
     NaGdF_4:Yb~(3+),Er~(3+),Li~+@NaGdF_4:Eu~(3+)nanoparticles(MFNPs) are prepared byhigh temperature thermal decomposition method. The as-prepared nanoparticleswith mean size of20nm are uniform spherical and exibits excellent dispersibility inthe nonpolar solvent. These nanoparticles possess excellent upconversionluminescence and downconversion luminescence. The intensity of green and red isenhanced by5times and4times compared to NaGdF_4:Yb~(3+),Er~(3+),Li~+nanoparticles.In addition, the strong red luminescence is observed under UV excitation at395nm.
     MFNPs@SiO_2-NH_2multifunctional nanoparticles are prepared by reversemicroemusion method. The as-prepared multifunctional nanoparticles are activatedby glutaraldehyde and then coupled using the Cltx to synthesis magnetic-fluorescence multifunctional gliomas targeting probe. MRI/optical multimodalityimaging in vivo and viro are investigated. The results show that theMFNPs@SiO_2-NH_2nanoparticles with36nm have excellent dispersibility andstablity in water. High-performance upconversion and downcoversion luminescence as well as good paramagnetic properties are simultaneously observed, and the effectof T1weighted image was obviously enhanced. MFNPs@SiO_2-Cltx molecular probehas special affinity to C6gliomas cells and no cytotxieity. The excellent effect ofMRI/optical mutimodal imaging is observed after circulating in vivo for2h.
引文
[1] Corr S A, O' Byrne A, Gun'Ko Y K, Ghosh S, Brougham D F, Mitchell S,Volkov Y, Prina-Mello A. Magnetic-Fluorescent Nanocomposites forBiomedical Multitasking[J]. Chemical Communications,2006(43):4474-4476.
    [2] Mulder W J M, Griffioen A W, Strijkers G J, Cormode D P, Nicolay K, FayadZ A. Magnetic and Fluorescent Nanoparticles for Multimodality Imaging[J].Nanomedicine,2007,2(3):307-324.
    [3] Wang G., Su X. The Synthesis and Bio-applications of Magnetic andFluorescent Bifunctional Composite Nanoparticles[J]. Analyst,2011,136(9):1783-1798.
    [4] Zhang L, Wang Y, Yang Y, Zhang F, Dong W, Zhou S, Pei W, Chen H, Sun H.Magnetic/Upconversion Luminescent Mesoparticles of Fe3O4@LaF3:Yb3+,Er3+for Dual-Modal Bioimaging[J]. Chemical communications,2012,48(91):11238-11240.
    [5] Wang G F, Peng Q, Li Y D. Lanthanide-Doped Nanocrystals: Synthesis,Optical-Magnetic Properties, and Applications[J]. Accounts of ChemicalResearch,2011,44(5):322-332.
    [6] Corr S A, Rakovich Y P, Gun'ko Y K. Multifunctional Magnetic-FluorescentNanocomposites for Biomedical Applications[J]. Nanoscale Research Letters,2008,3(3):87-104.
    [7] Janczewski D, Zhang Y, Das G K, Yi D K, Padmanabhan P, Bhakoo K K, TanT, Selvan S T. Bimodal Magnetic-Fluorescent Probes for Bioimaging[J].Microscopy Research and Technique,2011,74(7SI):563-576.
    [8] Aime S, Fasano M, Terreno E. Lanthanide (III) Chelates for NMRBiomedical Applications[J]. Chemical Society Reviews,1998,27(1):19-29.
    [9] Chatterjee D K, Gnanasammandhan M K, Zhang Y. Small UpconvertingFluorescent Nanoparticles for Biomedical Applications[J]. Small,2010,6(24):2781-2795.
    [10] Vetrone F, Capobianco J A. Lanthanide-Doped Fluoride Nanoparticles:Luminescence, Upconversion, and Biological Applications[J]. InternationalJournal of Nanotechnology,2008,5(9):1306-1339.
    [11] Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion Fluorescence Imagingof Cells and Small Animals Using Lanthanide Doped Nanocrystals[J].Biomaterials,2008,29(7):937-943.
    [12] Shen J, Zhao L, Han G. Lanthanide-Doped Upconverting LuminescentNanoparticle Platforms for Optical Imaging-Guided Drug Delivery andTherapy[J]. Advanced Drug Delivery Reviews,2012,11(22):587-593
    [13] Wang F, Liu X. Recent Advances in the Chemistry of Lanthanide-DopedUpconversion Nanocrystals[J]. Chemical Society Reviews,2009,38(4):976-989.
    [14] Ren G, Zeng S, Hao J. Tunable Multicolor Upconversion Emissions andParamagnetic Property of Monodispersed Bifunctional Lanthanide-DopedNaGdF4Nanorods[J]. Journal of Physical Chemistry C,2011,115(41):20141-20147.
    [15] Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion Nanoparticles:Synthesis, Surface Modification and Biological Applications[J].Nanomedicine: Nanotechnology, Biology and Medicine,2011,7(6):710-729.
    [16] Vennerberg D, Lin Z. Upconversion Nanocrystals: Synthesis, Properties,Assembly and Applications[J]. Science of Advanced Materials,2011,3(1):26-40.
    [17] Lauterbur P C. Image formation by induced local interactions: examplesemploying nuclear magnetic resonance[J]. Nature,1973,242(5394):190-191.
    [18] Gouin S G, Gestin J F, Reliquet A, Meslin J C, Deniaud D. Synthesis of a NewChelating Agent Derived from Phenylenediamine for Application inRadioimmunotherapy[J]. Tetrahedron Letters,2002,43(16):3003-3005.
    [19] Segers V F M, Lee R T. Stem-Cell Therapy for Cardiac Disease[J]. Nature,2008,451(7181):937-942.
    [20] Wickline S A, Neubauer A M, Winter P M, Caruthers S D, Lanza G M.Molecular Imaging and Therapy of Atherosclerosis with TargetedNanoparticles[J]. Journal of Magnetic Resonance Imaging,2007,25(4):667-680.
    [21] Czernin J, Weber W A, Herschman H R. Molecular Imaging in theDevelopment of Cancer Therapeutics[J]. Annual Review Medcine,2006,57:99-118.
    [22] Sun H, Yuan Q, Zhang B, Ai K,Zhang P, Lu L.Gd(III)Functionalized GoldNanorods for Multimodal Imaging Applications[J].Nanoscale.2011,3(5):1990-1996.
    [23] Neubauer A M, Winter P, Caruthers S, Lanza G, Wickline S A. MagneticResonance Molecular Imaging and Targeted Therapeutics[J]. CardiovascularMagnetic Resonance Imaging,2008,12:649-672.
    [24] Zeng W, Liu Z, Wang W. Recent Development and Trends in MolecularImaging Probes for Prostate Cancer. Molecular Imaging [M].2012:377-390.
    [25] Chen Y, Chen H, Zhang S, Chen F, Sun S, He Q, Ma M, Wang X, Wu H, ZhangL. Structure-Property Relationships in Manganese Oxide-Mesoporous SilicaNanoparticles used for T1-Weighted MRI and Simultaneous Anti-cancer DrugDelivery[J]. Biomaterials,2012(33):2388-2398.
    [26] Perez-Rodriguez J, Lai S, Ehst B D, Fine D M, Bluemke D A. NephrogenicSystemic Fibrosis: Incidence, Associations, and Effect of Risk FactorAssessment—Report of33Cases1[J]. Radiology,2009,250(2):371-377.
    [27] Na H B, Song I C, Hyeon T. Inorganic Nanoparticles for MRI ContrastAgents[J]. Advanced Materials,2009,21(21):2133-2148.
    [28] Ahrén M, Selega rd L, Klasson A, S derlind F, Abrikossova N, Skoglund C,Bengtsson T, Engstr m M, K ll P, Uvdal K. Synthesis and Characterization ofPEGylated Gd2O3Nanoparticles for MRI Contrast Enhancement[J]. Langmuir,2010,26(8):5753-5762.
    [29] Ahrén M, Seleg rd L, S derlind F, Linares M, Kauczor J, Norman P, K ll P,Uvdal K. A Simple Polyol-free Synthesis Route to Gd2O3Nanoparticles forMRI Applications: an Experimental and Theoretical Study[J]. Journal ofnanoparticle research,2012,14(8):1-17.
    [30] Tian Y, Yang H Y, Li K, Jin X. Monodispersed Ultrathin GdF3Nanowires:Oriented Attachment, Luminescence, and Relaxivity for MRI ContrastAgents[J]. Journal of Materials Chemistry,2012,22:22510-22516.
    [31] Passuello T, Pedroni M, Piccinelli F, Polizzi S, Marzola P, Tambalo S, Conti G,Benati D, Vetrone F, Bettinelli M. PEG-Capped, Lanthanide Doped GdF3Nanoparticles: Luminescent and T2Contrast Agents for Optical and MRIMultimodal Imaging[J]. Nanoscale,2012,4:7682-7689.
    [32] Ju Q, Liu Y, Tu D, Zhu H, Li R, Chen X. Lanthanide-Doped Multicolor GdF3Nanocrystals for Time-Resolved Photoluminescent Biodetection[J].Chemistry-a European Journal,2011,17(31):8549-8554.
    [33] Dumont M F, Baligand C, Li Y, Knowles E S, Meisel M W, Walter G A,Talham D R. DNA Surface Modified Gadolinium Phosphate Nanoparticles asMRI Contrast Agents[J]. Bioconjugate Chemistry,2012,23(5):951.
    [34] Zhang L, Yin M, You H, Yang M, Song Y, Huang Y. Mutifuntional GdPO4:Eu3+Hollow Spheres: Synthesis and Magnetic and Luminescent Properties[J].Inorganic Chemistry,2011,50(21):10608-10613.
    [35] Kattel K, Park J Y, Xu W L, Kim H G., Lee E J, Bony B A, Heo W C, Lee J J,Jin S, Baeck J S, Chang Y, Kim T J, Bae J E,Chae K S, Lee G H. A FacileSynthesis, In vitro and In vivo MR Studies of d-Glucuronic Acid-CoatedUltrasmall Ln2O3(Ln=Eu, Gd, Dy, Ho, and Er) Nanoparticles as a NewPotential MRI Contrast Agent[J]. ACS Applied Materials\&Interfaces,2011,3(9):3325-3334.
    [36] Yoon Y, Lee B I, Lee K S, Heo H, Lee J H, Byeon S H, Lee I S. Fabrication ofa Silica Sphere with Fluorescent and MR Contrasting GdPO4Nanoparticlesfrom Layered Gadolinium Hydroxide[J]. Chemical Communications,2010,46(21):3654-3656.
    [37] Anishur Rahman A, Majewski P, Vasilev K. Gd2O3Nanoparticles:Size-Dependent Nuclear Magnetic Resonance[J]. Contrast Media\&Molecular Imaging,2012,8(1):92-95.
    [38] Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, K Ster R W,Ntziachristos V. Multispectral Opto-Acoustic Tomography of Deep-SeatedFluorescent Proteins in Vivo[J]. Nature Photonics,2009,3(7):412-417.
    [39] Terai T, Nagano T. Fluorescent Probes for Bioimaging Applications[J]. CurrentOpinion in Chemical Biology,2008,12(5):515-521.
    [40] Beija M, Afonso C A, Martinho J E M. Synthesis and Applications ofRhodamine Serivatives as Fluorescent Probes[J]. Chemical Society Reviews,2009,38(8):2410-2433.
    [41] Sameiro M Goncalves T. Fluorescent Labeling of Biomolecules with OrganicProbes[J]. Chemical Reviews,2009,109(1):190-212.
    [42] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G,Wu A M, Gambhir S S, Weiss S.. Quantum Dots for Live Cells, in VivoImaging, and Diagnostics[J]. Science,2005,307(5709):538-544.
    [43] Bentolila L A, Ebenstein Y, Weiss S. Quantum Dots for in Vivo Small-AnimalImaging[J]. Journal of Nuclear Medicine,2009,50(4):493-496.
    [44] Walling M A, Novak J A, Shepard J R. Quantum Dots for Live cell and in VivoImaging[J]. International journal of molecular sciences,2009,10(2):441-491.
    [45] Pan J, Feng S. Targeting and Imaging Cancer Cells by Folate-Decorated,Quantum Dots (QDs)-loaded Nanoparticles of Biodegradable Polymers[J].Biomaterials,2009,30(6):1176-1183.
    [46] Zhao Q, Li F, Huang C. Phosphorescent ChemosensorsBased on Heavy-MetalComplexes[J]. Chemical Society Reviews,2010,39(8):3007-3030.
    [47] Zhao Q, Huang C, Li F. Phosphorescent Heavy-Metal Complexes forBioimaging[J]. Chemical Society Reviews,2011,40(5):2508-2524.
    [48] Zhou J., Liu Z, Li F Y. Upconversion Nanophosphors for Small-AnimalImaging[J]. Chemical Society Reviews,2011,41:1323-1349.
    [49] Hilderbrand S A, Weissleder R. Near-Infrared Fluorescence: Application to inVivo Molecular Imaging[J]. Current Opinion in Chemical Biology,2010,14(1):71-79.
    [50] He X, Gao J, Gambhir S S, Cheng Z. Near-Infrared Fluorescent Nanoprobes forCancer Molecular Imaging: Status and Challenges[J]. Trends in MolecularMedicine,2010,16(12):574-583.
    [51] Kim H M, Cho B R. Two-Photon Probes for Intracellular Free Metal Ions,Acidic Vesicles, and Lipid Rafts in Live Tissues[J]. Accounts of ChemicalResearch,2009,42(7):863-872.
    [52] Zijlmans H, Bonnet J, Burton J, Kardos K, Vail T, Niedbala R S, Tanke H J.Detection of Cell and Tissue Surface Antigens using Up-Converting Phosphors:a New Reporter Technology[J]. Analytical Biochemistry,1999,267(1):30-36.
    [53] Wang F, Banerjee D, Liu Y, Chen X, Liu X. Upconversion Nanoparticles inBiological Labeling, Imaging, and Therapy[J]. Analyst,2010,135(8):1839-1854.
    [54] Lim S F, Riehn R, Ryu W S, Khanarian N, Tung C, Tank D, Austin R H. InVivo and Scanning Electron Microscopy Imaging of UpconvertingNanophosphors in Caenorhabditis Elegans[J]. Nano Letters,2006,6(2):169-174.
    [55] Kim D H, Kang J U. Review: Upconversion Microscopy for BiologicalApplications[[M]. Microscopy: Science, Technology, Applications andEducation.2010,12(46):23-27.
    [56] Lim S F, Riehn R, Tung C, Ryu W S, Zhuo R, Dalland J, Austin R H.Upconverting Nanophosphors for Bioimaging[J]. Nanotechnology,2009,20(40):405701(6pp).
    [57] Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion Fluorescence Imaging ofCells and Small Animals using Lanthanide Doped Nanocrystals[J].Biomaterials,2008,29(7):937-943.
    [58] Wang Y, Qin W P, Zhang J S, Cao C Y, Zhang J S, Jin Y, Zhu P F, Wei G D,Wang G F, Wang L L. Bright Green Upconversion Fluorescence of Yb3+,Er3+-Codoped Fluoride Colloidal Nanocrystal and SubmicrocrystalSolutions[J]. Chemistry Letters,2007,36(7):912-913.
    [59] Zhuang J L, Liang L F, Sung H, Yang, X F, Wu M M, Williams I D, Feng S H,Su Q. Controlled Hydrothermal Growth and Up-Conversion Emission ofNaLnF4(Ln=Y, Dy-Yb)[J]. Inorganic Chemistry,2007,46(13):5404-5410.
    [60] Mai H X, Zhang Y W, Sun L D, Yan C H. Highly Efficient MulticolorUp-conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals[J]. Journal of PhysicalChemistry C,2007,111(37):13721-13729.
    [61] Hu H, Yu M X, Li F Y, Chen Z G, Gao X, Xiong L Q, Huang C H. FacileEpoxidation Strategy for Producing Amphiphilic Up-Converting Rare-EarthNanophosphors as Biological Labels[J]. Chemistry of Materials,2008,20(22):7003-7009.
    [62] van Schooneveld M M, Vucic E, Koole R, Zhou Y, Stocks J, Cormode D P,Tang C Y, Gordon R E, Nicolay K, Meijerink A, Fayad Z A, Mulder W.Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles byMeans of a Lipid Coating: A Multimodality Investigation[J]. Nano Letters,2008,8(8):2517-2525.
    [63] Kim J, Lee J E, Lee S H, Yu J H, Lee J H, Park T G, Hyeon T. DesignedFabrication of a Multifunctional Polymer Nanomedical Platform forSimultaneous Cancer-Targeted Imaging and Magnetically Guided DrugDelivery[J]. Advanced Materials,2008,20(3):478-483.
    [64] Wang M, Mi C C, Zhang Y X, Liu J L, Li F, Mao C B, Xu S K.NIR-Responsive Silica-Coated NaYbF4:Er/Tm/Ho Upconversion FluorescentNanoparticles with Tunable Emission Colors and Their Applications inImmunolabeling and Fluorescent Imaging of Cancer Cells[J]. Journal ofPhysical Chemistry C,2009,113(44):19021-19027.
    [65] Cichos J, Karbowiak M. Spectroscopic Characterization of Ligands on theSurface of Water Dispersible NaGdF4:Ln3+Nanocrystals[J]. Applied SurfaceScience,2012,258(15):5610-5618.
    [66] Schietinger S, Menezes LBD, Lauritzen B, Benson O. Observation of SizeDependence in Multicolor Upconversion in Single Yb3+, Er3+Codoped NaYF4Nanocrystals[J]. Nano Letters,2009,9(6):2477-2481.
    [67] Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J A. ColloidalTm3+/Yb3+-Doped LiYF4Nanocrystals: Multiple Luminescence Spanning theUV to NIR Regions via Low-Energy Excitation[J]. Advanced Materials,2009,21(40):4025.
    [68] Lee D E, Koo H B, Sun I C, Ryu J H, Kim K, Kwon I C. MultifunctionalNanoparticles for Multimodal Imaging and Theragnosis[J]. Chemical SocietyReviews,2012,41(7):2656-2672.
    [69] Kattel K, Park J Y, Xu W L, Kim H G, Lee E J, Bony B A, Heo W C, Lee J J,Jin S, Baeck J S, Chang Y M, Kim T J, Bae K S, Lee G H. A Facile Synthesis,In vitro and In vivo MR Studies of d-Glucuronic Acid-Coated UltrasmallLn2O3(Ln=Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRIContrast Agent[J]. ACS Applied Materials\&Interfaces,2011,3(9):3325-3334.
    [70] Cheon J, Lee J H. Synergistically Integrated Nanoparticles as MultimodalProbes for Nanobiotechnology[J]. Accounts of Chemical Research,2008,41(12):1630-1640.
    [71] Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N,Ellenbogen R., Sze R., Hallahan A,Olson J, Zhang M Q. Optical and MRIMultifunctional Nanoprobe for Targeting Gliomas[J]. Nano Letters,2005,5(6):1003-1008.
    [72] Kircher M F, Mahmood U, King R S, Weissleder R, Josephson L. AMultimodal Nanoparticle for Preoperative Magnetic Resonance Imaging andIntraoperative Optical Brain Tumor Delineation[J]. Cancer Research,2003,63(23):8122-8125.
    [73] Erathodiyil N, Ying J Y. Functionalization of Inorganic Nanoparticles forBioimaging Applications[J]. Accounts of Chemical Research,2011,44(10):925-935.
    [74] Ang C Y, Giam L, Chan Z M, Lin A, Gu H, Devlin E, Papoefthymiou G C,Selvan S T, Ying J Y. Facile Synthesis of Fe2O3Nanocrystals withoutFe(CO)(5) Precursor and One-Pot Synthesis of Highly FluorescentFe2O3-CdSe Nanocomposites[J]. Advanced Materials,2009,21(8):869.
    [75] Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T. Fabrication of MagneticLuminescent Nanocomposites by a Layer-by-Layer Self-AssemblyApproach[J]. Chemistry of Materials,2004,16(21):4022-4027.
    [76] Zhang M F, Shi S G, Meng J X, Wang X Q, Fan H, Zhu Y C, Wang X Y, Qian YT. Preparation and Characterization of Near-Infrared LuminescentBifunctional Core/Shell Nanocomposites[J]. Journal of Physical Chemistry C,2008,112(8):2825-2830.
    [77] Runowski M, Grzyb T, Lis S. Magnetic and Luminescent Hybrid NanomaterialBased on Fe3O4Nanocrystals and GdPO4: Eu3+Nanoneedles[J]. Journal ofNanoparticles Research,2012,14:1188.
    [78] Zhang Y X, Das G. K, Xu R, Tan T. Tb-Doped Iron Oxide: BifunctionalFluorescent and Magnetic Nanocrystals[J]. Journal of Materials Chemistry,2009,19(22):3696-3703.
    [79] Shen J, Sun L D, Zhang Y W, Yan C H. Superparamagnetic and UpconversionEmitting Fe3O4/NaYF4:Yb,Er Hetero-Nanoparticles Via a CrosslinkerAnchoring Strategy[J]. Chemical Communications,2010,46(31):5731-5733.
    [80] Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F. Core-Shell NaYF4:Yb3+, Tm3+@FexOyNanocrystals for Dual-Modality T2-Enhanced MagneticResonance and NIR-to-NIR Upconversion Luminescent Imaging ofSmall-Animal Lymphatic Node.[J]. Biomaterials,2011,32(29):7200-7208.
    [81] Liu D, Zhao D, Shi F, Zheng K, Qin W. Superparamagnetic and UpconversionLuminescent Properties of Fe3O4/NaYF4:Yb,Er Hetero-Submicro-Rods[J].Materials Letters,2012,85:1.
    [82] Peng H X, Liu G X, Dong X T, Wang J X, Xu J, Yu W S. Preparation andCharacteristics of Fe3O4@YVO4:Eu3+Bifunctional Magnetic-LuminescentNanocomposites[J]. Journal of Alloys and Compounds,2011,509(24):6930-6934.
    [83] Mulder W J M, Koole R, Brandwijk R J, Storm G, Chin P T K, Strijkers G J,Donegá C. de M, Nicolay K, Griffioen A W. Quantum Dots with aParamagnetic Coating as a Bimodal Molecular Imaging Probe[J]. Nano Letters,2006,6(1):1-6.
    [84] Yang H, Santra S, Walter G A, Holloway P H. GdIII-FunctionalizedFluorescent Quantum Dots as Multimodal Imaging Probes[J]. AdvancedMaterials,2006,18(21):2890-2894.
    [85] Rieter W J, Kim J S, Taylor K M L, An H., W. Lin, Tarrant T, Lin W. HybridSilica Nanoparticles for Multimodal Imaging[J]. Angewandte ChemieInternational Edition,2007,46(20):3680-3682.
    [86] Taylor K M L, Kim J S, Rieter W J, An H, Lin W W, Lin W B. MesoporousSilica Nanospheres as Highly Efficient MRI Contrast Agents[J]. Journal of theAmerican Chemical Society,2008,130(7):2154-2155.
    [87] Bridot J L, Faure A C, Laurent S, Rivière C, Billotey C, Hiba B, Janier M,Josserand V, Coll J L, Elst L V, Muller R, Roux S, Perriat P, Tillement O.Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for inVivo Imaging[J]. Journal of the American Chemical Society,2007,129(16):5076-5084.
    [88] Frullano L, Meade T J. Multimodal MRI Contrast Agents[J]. Journal ofBiological Inorganic Chemistry,2007,12(7):939-949.
    [89] Wang X, Zhuang J, Peng Q, Li Y. A General Strategy for NanocrystalSynthesis[J]. Nature,2005,437(7055):121-124.
    [90] Kiliaan H S, Kotte J, Blasse G. Ultraviolet H-5(3) and Visible5DJLuminescence of Europium (III) Co-doped with Cerium (III) in HexagonalNaGdF4[J]. Chemical Physics Letters,1987,133(5):425-428.
    [91] Zakaria D, Fournier M T, Mahiou R, Cousseins J C. On Eu3+Luminescence inthe Hexagonal NaYF4Phase[J]. Journal of Alloys and Compounds.1992,188(1-2):250-254.
    [92] Youa F T, Wang Y X, Lin J H, Tao Y. Hydrothermal Synthesis andLuminescence Properties of NaGdF4: Eu[J]. Journal of Alloys andCompounds,2002,343(1-2):151-155.
    [93] Kondo H, Hirai T, Hashimoto S. Energy Transfer Through Gd3+Sublattice inthe Fluoride Phosphors[J]. Journal of Luminescence,2001,94:311-315.
    [94] Kondo H, Hirai T, Hashimoto S. Energy Migration and Relaxation ThroughGd3+Sublattice in NaGdF4[J]. Journal of Luminescence,2003,102:727-732.
    [95] Guo H, Dong N, Yin M, Zhang W, Lou L, Xia S. Visible Upconversion in RareEarth Ion-doped Gd2O3Nanocrystals[J]. The Journal of Physical Chemistry B,2004,108(50):19205-19209.
    [96] Liu C X, Liu J Y, Lu S Z, Chen B J, Zhang J H. Energy Migration and Transferof Tm3+-Gd3+-Dy3+System in NaGdF4under VUV and UV Excitations[J].Journal of Luminescence,2007,122(Sp. Iss. SI):970-972.
    [97] Wang F, Fan X P, Wang M Q, Zhang Y. Multicolour PEI/NaGdF4: Ce3+, Ln3+Nanocrystals by Single-wavelength Excitation[J]. Nanotechnology.2007,18(2):025701-025705.
    [98] Boyer J C, Gagnon J, Cuccia L A, Capobianco J A. Synthesis, Characterization,and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4Core/Shell Nanoparticles[J].Chemistry of Materials,2007,19(14):3358-3360.
    [99] Kolk E V D, Dorenbos P, Kramer K, Biner D, Gudel H U. High-ResolutionLuminescence Spectroscopy Study of Down-conversion Routes in NaGdF4:Nd3+and NaGdF4: Tm3+Using Synchrotron Radiation[J]. Physical Review B,2008,77:125110-125515.
    [100] Chen D Q, Yu Y L, Huang F, Lin H, Huang P, Yang A P, Wang Z X, Wang Y S.Lanthanide Dopant-induced Formation of Uniform Sub-10nmActive-core/Active-shell Nanocrystals with Near-infrared to Near-infraredDual-modal Luminescence[J]. Journal of Materials Chemistry,2012,22(6):2632-2640.
    [101] Wong H, Chan H L, Hao J H. Magnetic and Luminescent Properties ofMultifunctional GdF3:Eu3+Nanoparticles[J]. Applied Physics Letters,2009,95:22512
    [102] Wong H, Chan H L W, Hao J. Towards Pure Near-infrared to Near-infraredUpconversion of Multifunctional GdF3: Yb3+, Tm3+Nanoparticles[J]. OpticsExpress,2010,18(6):6123-6130.
    [103] Wang Z, Hao J H, Chan H L. Down-and Up-conversion Photoluminescence,Cathodoluminescence and Paramagnetic Properties of NaGdF4: Yb3+, Er3+Submicron Disks Assembled from Primary Nanocrystals[J]. Journal ofMaterials Chemistry,2010,20(16):3178-3185.
    [104] Evanics F, Diamente P R, Veggel F V, Stanisz G J, Prosser R S. Water-SolubleGdF3and GdF3/LaF3Nanoparticles Physical Characterization and NMRRelaxation Properties[J]. Chemistry of Materials,2006,18(10):2499-2505.
    [105] Bridot J L, Faure A C, Laurent S, Riviére C, Billotey C, Hiba B, Janier M,Josserand V, Coll J L, Elst L V, Muller R, Roux S, Perriat P, Tillement O.Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for inVivo Imaging[J]. Journal of the American Chemical Society,2007,129(16):5076-5084.
    [106] Kumar R, Nyk M, Ohulchanskyy T Y, Flask C A, Prasad P N. CombinedOptical and MR Bioimaging Using Rare Earth Ion Noped NaYF4Nanocrystals[J]. Advanced Functional Materials,2009,19(6):853-859.
    [107] Luo K, Liu G, He B, Wu Y, Gong Q Y, Song B, Ai H, Gu Z W. MultifunctionalGadolinium-based Dendritic Macromolecules as Liver Targeting ImagingProbes[J]. Biomaterials,2011,32(10):2575-2585.
    [108] PetoralJr R M, S derlind F, Klasson A, Suska A, Fortin M A, Abrikossova N,Seleg rd L, K ll P O, Engstr m M, Uvdal K. Synthesis and Characterizationof Tb3+-doped Gd2O3Nanocrystals: a Bifunctional Material with CombinedFluorescent Labeling and MRI Contrast Agent Properties[J]. The Journal ofPhysical Chemistry C,2009,113(17):6913-6920.
    [109] Chen F, Huang P, Zhu Y J, Wu J, Zhang C L, Cui D X. ThePhotoluminescence, Drug Delivery and Imaging Properties of MultifunctionalEu3+/Gd3+Dual-Doped Hydroxyapatite Nanorods[J]. Biomaterials,2011,32(34):9031-9039.
    [110] Liu J A, Bu W B, Zhang S J, Chen F, Xing H Y, Pan L M, Zhou L P, Peng W J,Shi J L. Controlled Synthesis of Uniform and Monodisperse UpconversionCore/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging[J].Chemistry-a European Journal,2012,18(8):2335-2341.
    [111] Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H,Prasad P N. Core/Shell NaGdF4:Nd3+/NaGdF4Nanocrystals with EfficientNear-Infrared to Near-Infrared Downconversion Photoluminescence forBioimaging Applications[J]. ACS Nano,2012,6(4):2969-2977.
    [112] Chen F, Bu W B, Zhang S J, Liu X H, Liu J N, Xing H Y, Xiao Q F, Zhou L P,Peng W J, Wang L Z, Shi J L. Positive and Negative Lattice Shielding EffectsCo-existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes[J].Advanced Functional Materials,2011,21(22):4285-4294.
    [113] Ren W L, Tian G, Zhou L J, Yin W Y, Yan L, Jin S, Zu Y, Li S J, Gu Z J, ZhaoY L. Lanthanide Ion-Doped GdPO4Nanorods with Dual-Modal Bio-Opticaland Magnetic Resonance Imaging Properties[J]. Nanoscale,2012,4(12):3754-3760.
    [114] Liu G X, Peng H X, Wang J X, Dong X T. Fe3O4@GdF3:Er3+,Yb3+Nanoparticles: Synthesis and Bifunctional Properties[J]. Journal ofOptoelectronics and Advanced Materials,2012,14(3-4):205.
    [115] Zhou L J, Gu Z J, Liu X X, Yin W Y, Tian G, Yan L, Jin S, Ren W L, Xing G.M, Li W, Chang X L, Hu Z B, Zhao Y L. Size-Tunable Synthesis ofLanthanide-Doped Gd2O3Nanoparticles and Their Applications for Opticaland Magnetic Resonance Imaging[J]. Journal of Materials Chemistry,2012,22(3):966-974.
    [116] Johnson N J J, Oakden W, Stanisz G J, Prosser R S, van Veggel F C J M.Size-Tunable, Ultrasmall NaGdF4Nanoparticles: Insights into their T1MRIContrast Enhancement[J]. Chemistry of Materials,2011,23(21):4877.
    [117] Peng H X, Cui B, Li L L, Wang Y S. A Simple Approach for the Synthesis ofBifunctional Fe3O4@Gd2O3:Eu3+Core-Shell Nanocomposites[J]. Journal ofAlloys and Compounds,2012,531:30-33.
    [118] Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kr mer K W,Reinhard C, Güdel H U. Novel Materials Doped with Trivalent Lanthanidesand Transition Metal Ions Showing Near-Infrared to Visible PhotonUpconversion[J]. Optical Materials,2005,27(6):1111-1130.
    [119] Fedorov P P, Luginina A A, Kuznetsov S V, Osiko V V. Nanofluorides[J].Journal of Fluorine Chemistry,2011,132(12SI):1012-1039.
    [120] Yi G. S, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L H. Synthesis,Characterization, and Biological Application of Size-ControlledNanocrystalline NaYF4: Yb, Er Infrared-to-Visible Up-ConversionPhosphors[J]. Nano Letters,2004,4(11):2191-2196.
    [121] Li Z, Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4Nanocrystals with Multicolor Upconversion Fluorescence Emission[J].Angewandte Chemie,2006,118(46):7896-7899.
    [122] Wang F, Liu X. Upconversion Multicolor Fine-Tuning: Visible toNear-Infrared Emission from Lanthanide-Doped NaYF4Nanoparticles[J].Journal of the American Chemical Society,2008,130(17):5642-5643.
    [123] Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties ofnanocrystals of different shapes[J]. Chemical Reviews-Columbus,2005,105(4):1025-1102.
    [124] Wang D, Xie T, Li Y. Nanocrystals: Solution-Based Synthesis andApplications as Nanocatalysts[J]. Nano Research,2009,2(1):30-46.
    [125] Cushing B L, Kolesnichenko V L, O'Connor C J. Recent Advances in theLiquid-Phase Syntheses of Inorganic Nanoparticles[J]. ChemicalReviews-Columbus,2004,104(9):3893-3946.
    [126] Chen H, Zhai X S, Li D, Wang L L, Zhao D, Qin W P. Water-Soluble Yb3+,Tm3+Codoped NaYF4Nanoparticles: Synthesis, Characteristics andBioimaging[J]. Journal of Alloys and Compounds,2012,511(1):70-73.
    [127] Wang X, Li Y. Monodisperse Nanocrystals: General Synthesis, Assembly, andtheir Applications[J]. Chemical Communications,2007(28):2901-2910.
    [128] Chen C, Sun L, Li Z, Li L, Zhang J, Zhang Y, Yan C. Ionic Liquid-BasedRoute to Spherical NaYF4Nanoclusters with the Assistance of MicrowaveRadiation and Their Multicolor Upconversion Luminescence[J]. Langmuir,2010,26(11):8797-8803.
    [129] Li P, Peng Q, Li Y D. Dual-Mode Luminescent Colloidal Spheres fromMonodisperse Rare-Earth Fluoride Nanocrystals[J]. Advanced Materials,2009,21(19):1945-1948.
    [130] Liang X, Wang X, Zhuang J, Peng Q, Li Y. Synthesis of NaYF4Nanocrystalswith Predictable Phase and Shape[J]. Advanced Functional Materials,2007,17(15):2757-2765.
    [131] Wang L, Li.Y. Controlled Synthesis and Luminescence of Lanthanide DopedNaYF4Nanocrystals[J]. Chemistry of Materials,2007,19(4):727-734.
    [132] Wang M, Liu J L, Zhang Y X, Hou W, Wu X L, Xu S K. Two-PhaseSolvothermal Synthesis of Rare-Earth Doped NaYF4Upconversion FluorescentNanocrystals[J]. Materials Letters.2009,63(2):325-327.
    [133] Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K.Immunolabeling and NIR-excited Fluorescent Imaging of HeLa Cells by usingNaYF4:Yb,Er Upconversion Nanoparticles[J]. ACS nano,2009,3(6):1580-1586.
    [134] Yang L W, Li Y, Li Y C, Li J J, Hao J H, Zhong J X, Chu P K. Quasi-SeededGrowth, Phase Transformation, and Size Tuning of Multifunctional HexagonalNaLnF4(Ln=Y, Gd, Yb) Nanocrystals via in Situ Cation-ExchangeReaction[J]. Journal of Materials Chemistry,2012,22(5):2254-2262.
    [135] Zeng S, Xiao J, Yang Q, Hao J. Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+Nanocrystals: Structure Controlled Synthesis, Near-infrared UpconversionEmission and Tunable Magnetic Properties[J]. Journal of Materials Chemistry,2012,22:9870-9874.
    [136] Li Z, Zhang Y. An Efficient and User-friendly Method for the Synthesis ofHexagonal-phase NaYF4: Yb, Er/Tm Nanocrystals with Controllable Shapeand Upconversion Fluorescence[J]. Nanotechnology,2008,19(34):345606.
    [137] Zhang C, Chen J. Facile EG/ionic Liquid Interfacial Synthesis of UniformRE3+doped NaYF4Nanocubes[J]. Chemical Communications,2010,46(4):592-594.
    [138] Chen X, Wang W J, Chen X Y, Bi J H, Wu L, Li Z H, Fu X Z. MicrowaveHydrothermal Synthesis and Upconversion Properties of NaYF4:Yb3+, Tm3+with Microtube Morphology[J].2009:63,1023-1026.
    [139] Zhang F, Wan Y, Yu T, Zhang F, Shi Y, Xie S, Li Y, Xu L, Tu B, Zhao D.Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for HighlyEfficient Multicolor Upconversion Luminescence[J]. Angewandte ChemieInternational Edition,2007,46(42):7976-7979.
    [140] Li F F, Li C G, Liu X M, Chen Y, Bai T Y, Wang L, Shi Z, Feng S H.Hydrophilic, Upconverting, Multicolor, Lanthanide-Doped NaGdF4Nanocrystals as Potential Multifunctional Bioprobes[J]. Chemistry-a EuropeanJournal.2012,18(37):11641-11646..
    [141] Wang L, Li Y. Na (Y1.5Na0.5)F6Single-crystal Nanorods as MulticolorLuminescent Materials[J]. Nano Letters,2006,6(8):1645-1649.
    [142] Liu Y X, Zhan S P, Yang Q B, Yan M L. Synthesis of Biocompatible UniformNaYF4:Yb3+,Er3+Nanocrystals and Their Characteristic Photoluminescence[J].Journal of Luminescence,2012,132(11):3042-3047.
    [143] Wu Y A, Li C X, Yang D M, Lin J. Rare Earth beta-NaGdF4Fluorides withFultiform Forphologies: Hydrothermal Synthesis and LuminescentProperties[J]. Journal of Colloid And Interface Science.2011,354(2):429-436.
    [144] Li C, Quan Z, Yang J, Yang P, Lin J. Highly Uniform and Monodisperse β-NaYF4:Ln3+(Ln=Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal MicroprismCrystals: Hydrothermal Synthesis and Luminescent Properties[J]. InorganicChemistry.2007,46(16):6329-6337.
    [145] Li C, Quan Z, Yang P, Yang J, Lian H, Lin J. Shape Controllable Synthesisand Upconversion Properties of NaYbF4/NaYbF4:Er3+and YbF3/YbF3: Er3+Microstructures[J]. Journal Materials Chemistry.2008,18(12):1353-1361.
    [146] Li C, Lin J. Rare Earth Fluoride Nano-/microcrystals: Synthesis, SurfaceModification and Application[J]. Journal of Materials Chemistry,2010,20(33):6831-6847.
    [147] Jun Y, Lee J H, Choi J, Cheon J. Symmetry-controlled Colloidal Nanocrystals:Nonhydrolytic Chemical Synthesis and Shape Determining Parameters[J]. TheJournal of Physical Chemistry B,2005,109(31):14795-14806.
    [148] Yin Y, Alivisatos A P. Colloidal Nanocrystal Synthesis and theOrganic--inorganic Interface[J]. Nature,2004,437(7059):664-670.
    [149] Zeng H, Sun S. Syntheses, Properties, and Potential Applications ofMulticomponent Magnetic Nanoparticles[J]. Advanced Functional Materials,2008,18(3):391-400.
    [150] Peng X. An Essay on Synthetic Chemistry of Colloidal Nanocrystals[J]. NanoResearch,2009,2(6):425-447.
    [151] Vetrone F, Capobianco J A. Lanthanide-doped Fluoride Nanoparticles:Luminescence, Upconversion, and Biological Applications[J]. InternationalJournal of Nanotechnology,2008,5(9):1306-1339.
    [152] Zhang Y W, Sun X, Si R, You L P, Yan C H. Single-crystalline andMonodisperse LaF3Triangular Nanoplates from a Single-source Precursor[J].Journal of the American Chemical Society,2005,127(10):3260-3261.
    [153] Boyer J C, Vetrone F, Cuccia L A, Capobianco J A. Synthesis of ColloidalUpconverting NaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+viaThermal Decomposition of Lanthanide Trifluoroacetate Precursors[J]. Journalof the American Chemical Society,2006,128(23):7444-7445.
    [154] Boyer J C, Cuccia L A, Capobianco J A. Synthesis of Colloidal UpconvertingNaYF4: Er3+/Yb3+and Tm3+/Yb3+Monodisperse Nanocrystals[J]. NanoLetters,2007,7(3):847-852.
    [155] Naccache R, Vetrone F, Mahalingam V, Cuccia L A, Capobianco J A.Controlled Synthesis and Water Dispersibility of Hexagonal PhaseNaGdF4:Ho3+/Yb3+Nanoparticles[J]. Chemistry of Materials,2009,21(4):717-723.
    [156] Du Y P, Zhang Y W, Yan Z G, Sun L D, Gao S, Yan C H. Single-Crystallineand Near-Monodispersed NaMF3(M=Mn, Co, Ni, Mg) and LiMAlF6(M=Ca,Sr) Nanocrystals from Cothermolysis of Multiple Trifluoroacetates inSolution[J]. Chemistry--An Asian Journal,2007,2(8):965-974.
    [157] Mai H X, Zhang Y W, Sun L D, Yan C H. Size-and Phase-controlled Synthesisof Monodisperse NaYF4: Yb, Er Nanocrystals from a Unique DelayedNucleation Pathway Monitored with Upconversion Spectroscopy[J]. TheJournal of Physical Chemistry C,2007,111(37):13730-13739.
    [158] Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4: Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence[J].Advanced Functional Materials,2006,16(18):2324-2329.
    [159] Chen J, Zhao J X. Upconversion Nanomaterials: Synthesis, Mechanism, andApplications in Sensing[J]. Sensors,2012,12(3):2414-2435.
    [160] Karbowiak M, Mech A, Bednarkiewicz A, Strek W, Kepinski L. Comparisonof Different NaGdF4: Eu3+Synthesis Routes and Their Influence on ItsStructural and Luminescent Properties[J]. Journal of Physics and Chemistry ofSolids,2005,66(6):1008-1019.
    [161] Zhang C, Chen J. Facile EG/ionic Liquid Interfacial Synthesis of UniformRE3+Doped NaYF4Nanocubes[J]. Chemical Communications,2010,46(4):592-594.
    [162] Wei Y, Lu F, Zhang X, Chen D. Polyol-mediated Synthesis and Luminescenceof Lanthanide-doped NaYF4Nanocrystal Upconversion Phosphors[J]. Journalof Alloys and Compounds,2008,455(1):376-384.
    [163] Kong W, Shan J, Ju Y. Flame Synthesis and Effects of Host Materials onYb3+/Er3+co-doped Upconversion Nanophosphors[J]. Materials Letters,2010,64(6):688-691.
    [164] Yang J L, Huang W Z, Cheng Y L, Wang C J, Zhao Y, Zhu L, Cao X Q.Morphology-controlled Synthesis of Gadolinium Fluoride Nanocrystals viaUltrasonic and Salt Assisted Method[J]. Crystengcomm,2012,14(3):899-907.
    [165] Meiser F, Cortez C, Caruso F. Biofunctionalization of FluorescentRare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles[J].Angewandte Chemie International Edition,2004,43(44):5954-5957.
    [166] Cao T Y, Yang T S, Gao Y, Yang Y, Hu H, Li F Y. Water-solubleNaYF4:Yb/Erupconversion Nanophosphors: Synthesis, Characteristics andApplication in Bioimaging[J]. Inorganic Chemistry Communications,2010,13(3):392-394.
    [167] Mader H S, Kele P, Saleh S M, Wolfbeis O S. Upconverting LuminescentNanoparticles for Use in Bioconjugation and Bioimaging[J]. Current Opinionin Chemical Biology,2010,14(5):582-596.
    [168] Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4: Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence[J].Advanced Functional Materials,2006,16(18):2324-2329.
    [169] Zhang Q, Song K, Zhao J, Kong X, Sun Y, Liu X, Zhang Y, Zeng Q, Zhang H.Hexanedioic acid Mediated Surface--ligand-exchange Process for TransferringNaYF4: Yb/Er (or Yb/Tm) Up-converting Nanoparticles from Hydrophobic toHydrophilic[J]. Journal of Colloid and Interface Science,2009,336(1):171-175.
    [170] Boyer J C, Manseau M P, Murray J I, Veggel F V. Surface Modification ofUpconverting NaYF4Nanoparticles with PEG-Phosphate Ligands for NIR(800nm) Biolabeling within the Biological Window[J]. Langmuir,2010,26(2):1157-1164.
    [171] Wang F, Liu X. Recent Advances in the Chemistry of Lanthanide-dopedUpconversion Nanocrystals[J]. Chemical Society Reviews,2009,38(4):976-989.
    [172] Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C.Versatile Synthesis Strategy for Carboxylic Acid-functionalized UpconvertingNanophosphors as Biological Labels[J]. Journal of the American ChemicalSociety,2008,130(10):3023-3029.
    [173] Yi G S, Chow G M. Water-soluble NaYF4: Yb,Er(Tm)/NaYF4/polymerCore/Shell/Shell Nanoparticles with Significant Enhancement ofUpconversion Fluorescence[J]. Chemistry of Materials,2007,19(3):341-343.
    [174] Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y.Fluorescence Resonant Energy Transfer Biosensor Based onUpconversion-Luminescent Nanoparticles[J]. Angewandte ChemieInternational Edition,2005,44(37):6054-6057.
    [175] Sivakumar S, Diamente P R, Van Veggel F C J M. Silica-Coated Ln3+-DopedLaF3Nanoparticles as Robust Down-and Upconverting Biolabels[J].Chemistry-a European Journal,2006,12(22):5878-5884.
    [176]崔黎黎,范慧俐,徐晓伟,李玉萍.戊二醛法修饰上转换发光材料戊二醛法修饰上转换发光材料NaY0.57Yb0.39Er0.04F4的研究[J].人工晶体学报.2007,36(2):334-337.
    [177] Jalil R A, Zhang Y. Biocompatibility of Silica Coated NaYF4UpconversionFluorescent Nanocrystals[J]. Biomaterials,2008,29(30):4122-4128.
    [178] Saboktakin M, Ye X, Oh S J, Hong S, Fafarman A T, Chettiar U K, Engheta N,Murray C B, Kagan C R. Metal-Enhanced Upconversion LuminescenceTunable through Metal Nanoparticle–Nanophosphor Separation[J]. ACSNano,2012,6(10):8758-8766.
    [179]Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. TheActive-Core/Active-Shell Approach: A Strategy to Enhance the UpconversionLuminescence in Lanthanide-Doped Nanoparticles[J]. Advanced FunctionalMaterials,2009,19(18):2924-2929.
    [180] Yang P P, Quan Z W, Hou Z Y, Li C X, Kang X J, Cheng Z Y, Lin J. AMagnetic, Luminescent and Mesoporous Core-shell Structured CompositeMaterial as Drug Carrier[J]. Biomaterials,2009,30(27):4786-4795.
    [181] Li X B, Gai S L, Li C X, Wang D, Niu N, He F, Yang P P. MonodisperseLanthanide Fluoride Nanocrystals: Synthesis and Luminescent Properties[J].Inorganic Chemistry.2012,51(7):3963-3971.
    [182] Chaudhuri R G, Paria S. Core/Shell Nanoparticles: Classes, Properties,Synthesis Mechanisms, Characterization, and Applications[J]. ChemicalReviews,2012,112(4):2373-2433.
    [183] Zhuang J L, Wang J, Yang X F, Williams I D, Zhang W, Zhang Q Y, Feng Z M,Yang Z M, Liang C L, Wu M M, Su Q. Tunable Thickness andPhotoluminescence of Bipyramidal Hexagonal beta-NaYF4Microdisks[J].Chemistry of Materials,2009,21(1):160-168.
    [184] Guo H, Sun S. Lanthanide-doped Upconverting Phosphors for Bioassay andTherapy[J]. Nanoscale,2012,4(21):6692-6706.
    [185] Chatteriee D K, Rufalhah A J, Zhang Y. Upconversion Fluorescence Imagingof Cells and Small Animals Using Lanthanide Doped Nanocrystals[J].Biomaterials,2008,29(7):937-943.
    [186] Li, Z., Wang, L., Wang, Z., Liu, X., Xiong, Y. Modification of NaYF4: Yb,Er@SiO2Nanoparticles with Gold Nanocrystals for Tunable Green-to-RedUpconversion Emissions[J]. Journal of Physical Chemistry C,2011,115(8):3291.
    [187] Wang F, Banerjee D, Liu Y, Chen X, Liu X. Upconversion Nanoparticles inBiological Labeling, Imaging, and Therapy[J]. Analyst,2010,135(8):1839-1854.
    [188] Li C, Lin J. Rare Earth Fluoride Nano-/microcrystals: Synthesis, SurfaceModification and Application[J]. Journal of Materials Chemistry,2010,20(33):6831-6847.
    [189] Shan J, Qin X, Yao N, Ju Y. Synthesis of Monodisperse Hexagonal NaYF4: Yb,Ln (Ln=Er, Ho and Tm) Upconversion Nanocrystals in TOPO[J].Nanotechnology.2007,18(44):445607.
    [190] Zhang C, Sun L D, Zhang Y W, Yan C H. Rare Earth UpconversionNanophosphors: Synthesis, Functionalization and Application as Biolabels andEnergy Transfer Donors[J]. Journal of Rare Earths,2010,28(6):807-819.
    [191] Albrecht K, Greindl M, Deutel B, Kremser C, Wolf C, Talasz H, StollenwerkM M, Debbage P, Bernkop-Schnürch A. In Vivo Investigation ofThiomer--polyvinylpyrrolidon Nanoparticles Using Magnetic ResonanceImaging[J]. Journal of Pharmaceutical Sciences,2009,99(4):2008-2017.
    [192] Cheung E N M, Alvares R D, Oakden W, Chaudhary R, Hill M L, Pichaandi J,Mo G C H, Yip C, Macdonald P M, Stanisz G J, Van Veggel F C J M, ProsserR S. Polymer-stabilized Lanthanide Fluoride Nanoparticle Aggregates asContrast Agents for Magnetic Resonance Imaging and ComputedTomography[J]. Chemical. Materials,2010,22(16):4728-4739.
    [193] Zhou J, Yu M X, Sun Y, Zhang X Z, Zhu X J, Wu Z H, Wu D M, Li F Y.Fluorine-18-labeled Gd3+/Yb3+/Er3+co-doped NaYF4Nanophosphors forMultimodality PET/MR/UCL Imaging[J]. Biomaterials,2011,32(4):1148-1156.
    [194]Chen F, Bu W B, Zhang S G, Liu X H, Liu J N, Xing H Y, Xiao Q F, Zhou L P,Peng W J, Wang L Z, Shi J L. Positive and Negative Lattice Shielding EffectsCo-existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes[J].Advanced Functional Materials,2011,21(22):4285-4294.
    [195] Wang Z, Hao J H, Chan H L. Down-and Up-conversion Photoluminescence,Cathodoluminescence and Paramagnetic Properties of NaGdF4: Yb3+, Er3+Submicron Disks Assembled from Primary Nanocrystals[J]. J. Mater. Chem.,2010,20(16):3178-3185.
    [196] Das G K, Heng B C, Ng S, White T, Loo J S C, Silva L D, Padmanabhan P,Bhakoo K K, Selvan S T, Tan T T Y. Gadolinium Oxide Ultranarrow Nanorodsas Multimodal Contrast Agents for Optical and Magnetic ResonanceImaging[J]. Langmuir,2010,26(11):8959-8965.
    [197] Ren W L, Tian G, Zhou L J, Yin W Y, Yan L, Jin S, Zu Y, Li S J, GuZ J and Zhao Y L. Lanthanide Ion-doped GdPO4Nanorods with Dual-modalBio-optical and Magnetic Resonance Imaging Properties[J].Nanoscale2012:4,3754-3760.
    [198] Vetrone F, Capobianco J A. Lanthanide-doped Fluoride Nanoparticles:Luminescence, Upconversion, and Biological Applications[J]. InternationalJournal of Nanotechnology,2008,5(9):1306-1339.
    [199] Yi G S, Chow G M. Synthesis of Hexagonal-phase NaYF4: Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-conversion Fluorescence[J]. AdvancedFunctional Materials,2006,16(18):2324-2329.
    [200] Sun X, Zhang Y W, Du Y P, Yan Z G, Si R, You L P, Yan C H. FromTrifluoroacetate Complex Precursors to Monodisperse Rare-Earth Fluorideand Oxyfluoride Nanocrystals with Diverse Shapes through ControlledFluorination in Solution Phase[J]. Chemistry-a European Journal,2006,13(8):2320-2332.
    [201]李志国. CdS纳米晶的分子簇直接热解法制备及其结构与性能[D].哈尔滨:哈尔滨工业大学,2009:37-38.
    [202]梁鑫.稀土化合物纳米材料的调控合成与性质研究[D].北京:清华大学,2009:112-113
    [203] Wang Y, Liu K, Liu X M, Dohnalova K, Gregorkiewicz T, Kong X G, AaldersM, Buma W J, Zhang H. Critical Shell Thickness of Core/Shell UpconversionLuminescence Nanoplatform for FRET Application[J]. Journal of PhysicalChemistry Letters,2011,2(17):2083-2088.
    [204] Wang Z L, Hao J H, Chan H. Down-and Up-conversion Photoluminescence,Cathodoluminescence and Paramagnetic Properties of NaGdF4:Yb3+,Er3+Submicron Disks Assembled from Primary Nanocrystals[J]. Journal ofMaterials Chemistry,2010,20(16):3178-3185.
    [205]石峰. β-NaREF4: Yb, Tm纳米发光材料的合成及其强紫外光发射的研究
    [D].长春:吉林大学,2012:50-52
    [206] Thoma R E, Insley H, Hebert G M. The Sodium Fluoride-lanthanideTrifluoride Systems[J]. Inorganic Chemistry,1966,5(7):1222-1229.
    [207] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H.One-Dimensional Nanostructures: Synthesis, Characterization, andApplications[J]. Advanced Materials,2003,15(5):353-389.
    [208] Zhao J, Sun Y, Kong X, Tian L, Wang Y, Tu L, Zhao J, Zhang H. ControlledSynthesis, Formation Mechanism, and Great Enhancement of RedUpconversion Luminescence of NaYF4: Yb3+, Er3+Nanocrystals/Submicroplates at Low Doping Level[J]. The Journal of PhysicalChemistry B,2008,112(49):15666-15672.
    [209] Peng X G, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V ColloidalSemiconductor Nanocrystal Growth[J]. Journal of the American ChemicalSociety,1998,120(21):5343-5344.
    [210] Zhong C N, Yang P, Li X B, Li C X, Wang D, Gai S L, Lin J. MonodisperseBifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er Core-shellNanoparticles[J]. RSC Advances,2012,2(8):3194-3197.
    [211] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A. TheActive-Core/Active-Shell Approach: A Strategy to Enhance the UpconversionLuminescence in Lanthanide-Doped Nanoparticles[J]. Advanced FunctionalMaterials,2009,19(18):2924-2929.
    [212] Zhao Z X, Han Y N, Lin C H, Hu D, Wang F, Chen X L, Chen Z, Zheng N F.Multifunctional Core-Shell Upconverting Nanoparticles for Imaging andPhotodynamic Therapy of Liver Cancer Cells[J]. Chemistry-An Asian Journal,2012,7(4):830-837..
    [213] Zheng H, Gao D, Fu Z, Wang E, Lei Y, Tuan Y, Cui M. FluorescenceEnhancement of Ln3+Doped Nanoparticles[J]. Journal of Luminescence,2011,131(3):423-428.
    [214] Aebischer A, Heer S, Biner D, Kramer K, Haase M, Gudel H U. Visible LightEmission upon Near-infrared Excitation in a Transparent Solution ofNanocrystalline beta-NaGdF4: Yb3+, Er3+[J]. Chemical Physics Letters,2005,407(1-3):124-128.
    [215] Bednarkiewicz A, Maczka M, Strek W, Hanuza J, Karbowiak M. SizeDependence on Infrared Spectra of NaGdF4Nanocrystals[J]. Chemical PhysicsLetters,2006,418(1-3):75-78.
    [216] Wang Y, Qin W P, Zhang J S, Cao C Y, Zhang J S, Jin Y, Zhu P F, Wei G D,Wang G F, Wang L L. Bright Green Upconversion Fluorescence of Yb3+,Er3+-codoped Fluoride Colloidal Nanocrystal and SubmicrocrystalSolutions[J]. Chemistry Letters,2007,36(7):912-913.
    [217] Chen G Y, Liu H C, Liang H J, Somesfalean G, Zhang Z G. UpconversionEmission Enhancement in Yb3+/Er3+-codoped Y2O3Nanocrystals by Tridopingwith Li+Ions[J]. Journal of Physical Chemistry C,2008,112(31):12030-12036.
    [218] Huang Q M, Yu J C, Ma E, Lin K M. Synthesis and Characterization ofHighly Efficient Near-Infrared Upconversion Sc3+/Er3+/Yb3+TridopedNaYF4[J]. Journal of Physical Chemistry C,2010,114(10):4719-4724.
    [219] Baikie T, Ng G M H, Madhavi S, Pramana S S, Blake K, Elcombe M, White TJ. The Crystal Chemistry of the Alkaline-earth Apatites A10(PO4)6CuxOy(H) z(A=Ca, Sr and Ba)[J]. Dalton Trans.,2009(34):6722-6726.
    [220] Wang H Q, Nann T. Monodisperse Upconverting Nanocrystals byMicrowave-Assisted Synthesis [J]. ACS nano,2010,4(3):1768.
    [221] Dou Q, Zhang Y. Tuning of the Structure and Emission Spectra ofUpconversion Nanocrystals by Alkali Ion Doping[J]. Langmuir,2011,27(21):13236-13241.
    [222] Zhang Q, Yan B. Phase Control of Upconversion Nanocrystals and New RareEarth Fluorides though a Diffusion-controlled Strategy in a HydrothermalSystem[J]. Chemical Communications.2011,47(20):5867-5869.
    [223] Li Z Q, Zhang Y, Jiang S. Multicolor Core/Shell-Structured UpconversionFluorescent Nanoparticles[J]. Advanced Materials,2008,20(24):4765.
    [224] Qian H S, Li Z Q, Zhang Y. Multicolor Polystyrene Nanospheres Tagged withUp-conversion Fluorescent Nanocrystals[J]. Nanotechnology,2008,19(25560125).
    [225] Yu X F, Li M, Xie M Y, Chen L D, Li Y, Wang Q Q. Dopant-ControlledSynthesis of Water-Soluble Hexagonal NaYF4Nanorods with EfficientUpconversion Fluorescence for Multicolor Bioimaging[J]. Nano Research.2010,3(1):51-60.
    [226] Wang H Q, Tilley R D, Nann T. Size and Shape Evolution of UpconvertingNanoparticles Using Microwave Assisted Synthesis[J]. Crystengcommucations,2010,12(7):1993-1996.
    [227] Wang H Q, Nann T. Monodisperse Upconverting Nanocrystals byMicrowave-Assisted Synthesis[J]. ACS nano,2010,4(3):1768.
    [228] Shan J N, Kong W J, Wei R, Yao N, Ju Y G. An Investigation of the ThermalSensitivity and Stability of the beta-NaYF4:Yb, Er UpconversionNanophosphors[J]. Journal of Applied Physics,2010,107(0549015).
    [229] Heer S, Kompe K, Gudel H U, Haase M. Highly Efficient MulticolourUpconversion Emission in Transparent Colloids of Lanthanide-doped NaYF4Nanocrystals[J]. Advanced Materials,2004,16(23-24):2102.
    [230] Li D, Dong B A, Bai X, Wang Y, Song H W. Influence of the TGAModification on Upconversion Luminescence of Hexagonal-PhaseNaYF4:Yb3+, Er3+Nanoparticles[J]. Journal of Physical Chemistry C,2010,114(18):8219-8226.
    [231] Mai H X, Zhang Y W, Sun L D, Yan C H. Highly Efficient MulticolorUp-conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-structured Nanocrystals[J]. Journal of PhysicalChemistry C.2007,111(37):13721-13729.
    [232] Liu Y S, Tu D T, Zhu H M, Li R F, Luo W Q, Chen X Y. A Strategy toAchieve Efficient Dual-Mode Luminescence of Eu3+in Lanthanides DopedMultifunctional NaGdF4Nanocrystals[J]. Advanced Materials,2010,22(30):3266.
    [233] Huang T C, Hsieh W F. Er-Yb Codoped Ferroelectrics for Controlling VisibleUpconversion Emissions[J]. Journal of Fluorescence,2009,19(3):511-516.
    [234] Dou Q Q, Zhang Y. Tuning of the Structure and Emission Spectra ofUpconversion Nanocrystals by Alkali Ion Doping[J]. Langmuir,2011,27(21):13236-13241.
    [235] Chen F, Zhang S J, Bu W B, Liu X H, Chen Y, He Q J, Zhu M, Zhang L X,Zhou L P, Peng W J, Shi J L. A "Neck-Formation" Strategy for anAntiquenching Magnetic/Upconversion Fluorescent Bimodal Cancer Probe[J].Chemistry-a European Journal,2010,16(37):11254-11260.
    [236] Li Z Q, Zhang Y. Facile Synthesis of Lanthanide Nanoparticles withParamagnetic, Down-and Up-conversion Properties[J]. Nanoscale,2010,2(7):1240-1243.
    [237] Mi C C, Zhang J P, Gao H Y, Wu X L, Wang M, Wu Y F, Di Y Q, Xu Z R,Mao C B, Xu S K. Multifunctional Nanocomposites of SuperparamagneticFe3O4and NIR-responsive Rare Earth-doped Up-conversion FluorescentNaYF4: Yb, Er Nanoparticles and Their Applications in Biolabeling andFluorescent Imaging of Cancer Cells[J]. Nanoscale.2010,2(7):1141-1148.
    [238] Shen J, Sun L D, Zhang Y W, Yan C H. Superparamagnetic and UpconversionEmitting Fe3O4/NaYF4:Yb,Er Hetero-nanoparticles via a CrosslinkerAnchoring Strategy[J]. Chemical Communications.2010,6(31):5731-5733.
    [239] Bottrill M, Kwok L, Long N J. Lanthanides in Magnetic ResonanceImaging[J]. Chem. Soc. Rev.,2006,35(6):557-571.
    [240] Bridot J L, Faure A C, Laurent S, Riviére C, Billotey C, Hiba B, Janier M,Josserand V, Coll J L, Elst L V, Muller R, Roux S, Perriat P, Tillement O.Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for invivo Imaging[J]. Journal of the American Chemical Society,2007,129(16):5076-5084.
    [241] Sharma P., Brown S C, Walter G, Santra S, Scott E, Ichikawa H, Fukumori Y,Moudgil B M. Gd nanoparticulates: from Magnetic Resonance Imaging toNeutron Capture Therapy[J]. Advanced Powder Technology,2007,18(6):663-698.
    [242] Johnson N J J, Oakden W, Stanisz G J, Scott Prosser R, van Veggel F C J M.Size-Tunable, Ultrasmall NaGdF4Nanoparticles: Insights into Their T1MRIContrast Enhancement[J]. Chemistry of Materials,2011,23(16):3714-3722.
    [243] Norek M, Peters J A. MRI Contrast Agents Based on Dysprosium orHolmium[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2011,59(1):64-82.
    [244] Das G K, Johnson N J J, Cramen J, Blasiak B, Latta P, Tomanek B, vanVeggel F C J M. NaDyF4Nanoparticles as T2Contrast Agents for UltrahighField Magnetic Resonance Imaging[J]. The Journal of Physical ChemistryLetters,2012,3(4):524-529.
    [245] Zhang Y, Vijayaragavan V, Das G K, Bhakoo K K, Tan T T Y. Single-PhaseNaDyF4: Tb3+Nanocrystals as Multifunctional Contrast Agents in High-FieldMagnetic Resonance and Optical Imaging[J]. European Journal of InorganicChemistry,2012,2012(12):2044-2048.
    [246] Qian H S, Zhang Y. Synthesis of Hexagonal-Phase Core-Shell NaYF4Nanocrystals with Tunable Upconversion Fluorescence[J]. Langmuir,2008,24(21):12123-12125.
    [247] Zhong H, Li X, Shen R, Zhang J, Sun J, Zhong H, Cheng L, Tian Y, Chen B.Spectral and Thermal Properties of Dy3+Doped NaGdTiO4Phosphors[J].Journal of Alloys and Compounds,2011,517:170-175.
    [248] Sun X Y, Zhang J C, Liu X G, Lin L W. Enhanced Luminescence of NovelCa3B2O6: Dy3+Phosphors by Li+Codoping for LED Applications[J]. CeramicsInternational,2012,38(2):1065-1070.
    [249] Liu C H, Wang H, Zhang X R, Chen D P. Morphology-and Phase-controlledSynthesis of Monodisperse Lanthanide-doped NaGdF4Nanocrystals withMulticolor Photoluminescence[J]. Journal of Materials Chemistry,2009,19(4):489-496.
    [250] Ptacek P, Schafer H, Kompe K, Haase M. Crystal Phase Control ofLuminescing NaGdF4: Eu3+Nanocrystals[J]. Advanced Functional Materials,2007,17(18):3843-3848.
    [251] Wang F, Fan X P, Wang M Q, Zhang Y. Multicolour PEI/NaGdF4: Ce3+, Ln3+Nanocrystals by Single-wavelength Excitation[J]. Nanotechnology,2007,18(2):025701-025705
    [252] Liu Y S, Tu D T, Zhu H M, Li R F, Luo W Q, Chen X Y. A Strategy toAchieve Efficient Dual-Mode Luminescence of Eu3+in Lanthanides DopedMultifunctional NaGdF4Nanocrystals[J]. Advanced Materials,2010,22(30):3266.
    [253] Gai S, Yang P, Wang D, Li C, Niu N, He F, Li X. Monodisperse Gd2O3: Ln(Ln=Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+)Nanocrystals with Tunable Size and Multicolor Luminescent Properties[J].CrystEngComm,2011,13(17):5480-5487.
    [254] Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Jin S, Ren W, Xing G, Li W,Others. Size-tunable Synthesis of Lanthanide-doped Gd2O3Nanoparticles andTheir Applications for Optical and Magnetic Resonance Imaging[J]. Journal ofMaterials Chemistry,2012,22(3):966-974.
    [255]王锋.镧系掺杂氟化物发光生物标记纳米材料的制备与性能研究[D].浙江大学,2006:59-60
    [256] Weber M J. Radiative and Multiphonon Relaxation of Rare-Earth Ions inY2O3[J]. Physical Review,1968,171(2):283.
    [257] Yang D, Li G, Kang X, Cheng Z, Peng C, Lian H, Li C, Lin J. RoomTemperature Synthesis of Hydrophilic Ln3+-doped KGdF4(Ln=Ce,Eu,Tb,Dy)Nanoparticles with Controllable Size: Energy Transfer, Size-dependent andColor-tunable Luminescence Properties[J]. Nanoscale,2012,4(11):3450-3459.
    [258] Layne C B, Lowdermilk W H, Weber M J. Multiphonon Relaxation ofRare-earth Ions in Oxide Glasses[J]. Physical Review B,1977,16(1):10.
    [259] Yuan P, Lee Y H, Gnanasammandham M K, Guan Z P, Zhang Y, Xu Q H.Plasmon Enhanced Upconversion Luminescence of NaYF4: Yb, Er@SiO2@Ag Core-shell Nanocomposites for Cell Imaging[J]. Nanoscale,2012,4:5132-5137
    [260] Li Z, Wang L, Wang Z, Liu X, Xiong Y. Modification of NaYF4: Yb, Er@SiO2Nanoparticles with Gold Nanocrystals for Tunable Green-to-redUpconversion Emissions[J]. Journal of Physical Chemistry C,2011,115(8):3291.
    [261] Podhorodecki, A., Banski, M., Misiewicz, J. Synthesis and Optical Propertiesof Lanthanides Doped Ultrasmall NaYF4Markers for Bio-MedicalApplications[J]. Biopolymers and Cell,2011,27(2):154-157.
    [262] Hilderbrand S A, Shao F, Salthouse C, Mahmood U, Weissleder R.Upconverting Luminescent Nanomaterials: Application to in VivoBioimaging[J]. Chemical Communications,2009(28):4188-4190.
    [263] Qian L P, Yuan D, Yi G S, Chow G M. Critical Shell Thickness and EmissionEnhancement of NaYF4: Yb, Er/NaYF4/silica Core/Shell/ShellNanoparticles[J]. Journal of Materials Research,2009,24(12):3560.
    [264] Li W, Li Z, Jing F, Deng Y, Wei L, Liao P, Yang X, Li X, Pei F, Wang X.Synthesis and Evaluation of Gd-DTPA-labeled Arabinogalactans as PotentialMRI Contrast Agents[J]. Carbohydrate Research,2008,343(4):685-694.
    [265] Hedlund A, Ahrén M, Gustafsson H, Abrikossova N, Warntjes M, J nsson J I,Uvdal K, Engstr m M. Gd2O3Nanoparticles in Hematopoietic Cells for MRIContrast Enhancement[J]. International journal of nanomedicine,2011,6:3233.
    [266] Yoon Y, Lee B I, Lee K S, H. Heo, Lee J H, Byeon S H, Lee I S. Fabricationof a Silica Sphere with Fluorescent and MR Contrasting GdPO4Nanoparticlesfrom Layered Gadolinium Hydroxide[J]. Chemical Communications,2010,46(21):3654-3656.
    [267] Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, ShiJ. A Uniform Sub-50nm-Sized Magnetic/Upconversion Fluorescent BimodalImaging Agent Capable of Generating Singlet Oxygen by Using a980nmLaser[J]. Chemistry-a European Journal,2012,18(23):7082-7090.
    [268] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N,Choi S H, Baik S I, Others. Nonblinking and Nonbleaching UpconvertingNanoparticles as an Optical Imaging Nanoprobe and T1Magnetic ResonanceImaging Contrast Agent[J]. Advanced Materials,2009,21(44):4467-4471.
    [269] Guo H, Li Z, Qian H, Hu Y, Muhammad I N. Seed-mediated Synthesis ofNaYF4:Yb, Er/NaGdF4Nanocrystals with Improved UpconversionFluorescence and MR Relaxivity[J]. Nanotechnology.2010,21(12):125602(6).
    [270] Lyons S A, O'Neal J, Sontheimer H. Chlorotoxin, a Scorpion-derived Peptide,Specifically Binds to Gliomas and Tumors of Neuroectodermal Origin[J]. Glia,2002,39(2):162-173.
    [271] Shen S, Khazaeli M B, Gillespie G Y, Alvarez V L. Radiation Dosimetry of131I-chlorotoxin for Targeted Radiotherapy in Glioma-bearing Mice[J].Journal of Neuro-Oncology,2005,71(2):113-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700