光学碱度对稀土离子掺杂锗酸盐玻璃荧光特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素由于其独特的电子层结构具有上转换、下转换、近红外发光性质而被广泛的应用于全固态激光器、立体显示、光纤放大器用增益材料等发光材料中,稀土离子掺杂材料的各种应用都需要较高的发光效率作为基础,稀土离子的发光效率与其所处基质光学碱度环境相关,基质光学碱度对稀土离子电子在各能级的布居、能量传递有较大影响。稀土离子的发光性质可通过光学碱度调控。本文研究了光学碱度对稀土掺杂玻璃发光性质的影响。
     研究了碱金属、碱土金属锗酸盐基质玻璃的结构。随着碱金属/碱土金属离子半径的增加,对Ge-O-Ge键削弱增加,形成的非桥氧键增多,引入的富于氧原子,锗氧四面体[GeO4]向锗氧[GeO6]八面体转变。在不同激发波长激发下,基质玻璃的折射率随加入的碱/碱土金属离子半径增大而增加。
     研究了光学碱度对Er3+掺杂碱金属/碱土金属锗酸盐玻璃的上转换发光性质的影响。通过改变碱/碱土金属离子种类及离子浓度,调控基质玻璃的光学碱度。研究结果表明,随着碱/碱土金属离子半径及离子浓度的增加,基质光学碱度增加。在980nm激光激发下,随着光学碱度增加,红绿上转换的Hi1/2, S3/2, F9/2能级粒子布居数降低,Er3+掺杂碱金属/碱土金属锗酸盐玻璃的红绿上转换的发光强度降低。另一方面,光学碱度增加,玻璃基质共价性降低,Er3+离子受周围环境的束缚降低,Er3+离子之间的距离增大,能量传递效率降低,导致红色上转换发光强度降低更为明显。
     研究了光学碱度对Er3+、Tm3+、Bi离子单掺杂锗酸盐玻璃的近红外发光性质的影响。通过改变碱/碱土金属离子半径及离子浓度,调控玻璃基质的光学碱度。研究结果表明,在980nm激光激发下,随光学碱度增加,晶体场参数Ω6降低,吸收和发射截面积减小,4I13/2能级的寿命降低,半高宽减小,Er3+掺杂锗酸盐玻璃在1.55μm处出现近红外发光随着光学碱度的增加而降低。在808nm激光激发下,Tm3+掺杂玻璃的近红外发光强度随光学碱度的增加而降低,半高宽减小。对Bi离子单掺杂锗酸盐玻璃的近红外发光研究结果表明,玻璃基质的光学碱度改变,Bi离子的红外超宽带发光强度、荧光带宽以及荧光寿命等都随之发生变化,在690nm激光激发下,半高宽最宽可达428nm。通过调控玻璃基质的光学碱度,实现对Bi离子发光强度及半高宽的调控。本研究成果将对今后超宽带光放大材料领域的研究工作提供一定的理论基础。
     研究了不同泵浦源下,光学碱度对Bi/Yb3+离子共掺杂锗酸盐玻璃近红外宽带发光性质的影响。研究结果表明,Bi/Yb3+离子间的相互能量传递机制随着光学碱度的变化而改变,随着光学碱度的增加,Bi/Yb3+离子共掺杂锗酸盐玻璃近红外宽带发光强度降低。
Rare-earth (RE) ions are proper activators in the photoluminescence materials due to their abundant energy levels and physical-chemical properties. The RE doped upconversion materials have potential applications in solid-state lasers, color display and information processing. Optical fiber telecommunication benefits a lot from the invention of EDFA. It should be noted that a key consideration of RE ions doped material applications is the photoluminescence efficiency since every application need high signal-noise ratio. However, at the current stage, efficiency of rare-earth doped material luminescence is still fairly low, which greatly restricts its applications.
     This thesis provides a comprehensive review on the upconversion, near-infrared lunminescence (NIR) and downconversion luminescence characteristics of RE ions doped materials, gives an overview of the recent progress and problems,and puts forwards their future research directions. The effect of optical basicity and struc on the upconversion, NIR, downcoversion lunminescence is inversitigated, to develop the novel light source with the typical characteristics of "estimate" and "tunable". Thermal analysis (DTA), IR absorption spectra, Raman spectra, Absorption spectra, photoluminescence spectropy (PL) were used to study the structure and lunminescence properties of the materials. A series of important conclusions and innovative results with practical significancewere obtained.
     The structure of alkali metal and alkali earth germanate glass are investigated. With the alkali metal and alkali earth ions increase, result in breaking the Ge-O-Ge bonds and forming Ge-O-, there are more and more NBOs in the structure, the O/Ge ratio increases and most of O2-get involoved in transition from [GeO4] to [GeO6]. And the refractive index of germanate glass under different excitation wavelengths are increased.
     The effect of optical basicity on the Er3+-doped germanate glasses is investigated. The materials optical basity changes by adjusting network modification of ionic radius and the concertion. It is found that, the red and green upconversion luminescence decreased with the optical basicity inceased, under980nm semiconductor laser excitation. In the alkali metal germanate glasses, the red upconversion luminescence intensity is higer than green, comparing with green up-conversion luminescence, the red up-conversion luminescence intensity decreases rapidly with increasing optical basicity, and The color of up-conversion luminescence changed from red to green. The green upconversion luminescence mechanisms is ESA, and the red is ESA, energy transfer and the non-radiative process from4S3/2level. With the optical basicity increased, the Ω6decreased, the population at the4I13/2level decreased, and then the upconversion lunminescence intensity decreased. On the other hand, the red lunminescence intensity decreased remarkably due to that, the optical basicity increased, these changes indicate that the covalency of the Er-O bond decreases, the energy transfer effecity decreased.
     Effect of optical basicity on broadband infrared fluorescence in Er3+-doped, Tm3+-doped, Bi-doped germanate glasses are investigated, respectively. The materials optical basity changes by adjusting network modification of ionic radius and the concertion. The study found that, the emission intensity at1.55μm in Er3+-doped germanate glass is decreased, with the increasing of optical basicity, and the Ω6, the absorption, emission cross-sections, the radiative lifetime of Er3+at the excited level4I13/2and FWHM are decreased, under980nm excitation. The effect of optical basicity on Tm3+-doped germanate glasses is same with Er3+-doped. Finally, under808nm excitation, with the optical basicity increasing, the1300nm lunminescence intensity of Bi-doped germanate glasses decreased and the FWHM increased, the NIR emission from900nm to2000nm. Under690nm excitation, it is appeared two peak position (1200nm and1400nm, respectively.) with the optical basicity increasing, the peak position move to long wavelength, the FWHM increased and higher to428nm. Through our research, the optical bacsicity could change the luminescence intensity and the FWHM.
     The dependence of optical basicity and Bi/Yb3+co-doped germanate glasses is also study. The optical basicity changes by adding the concertion of Yb+ion. The result shows that, under808nm excitation, there are two peaks, Bi ion of1300nm and Yb3+of1030nm which is due to the ET from Bi ion, respectively. The1300nm emission intensity of Bi ion decreased, because of the ET and optical basicity increasing. The Yb3+ion of1030nm firstly increased and then decreased with the optical basicity increase.under690nm excitation, there are three peaks, Bi ion of1300nm and1160nm, and Yb3+of1030nm which is due to the ET from Bi ion, respectively, the optical basicity increase and ET from Yb3+ion to Bi ion cause the higher1160nm NIR luminescence, the optical basicity increase and ET from Bi ion to Yb3+ion cause the lower1300nm NIR, but the effect of optical basicity on the NIR lunminescence is dominate, and lastly lead to the NIR lunminescence intensity decresed. Finally, the ET from Yb3+ion to1160nm of Bi ion is proved.
引文
[1]Shiqing Xu, Zhongmin Yang, Shixun Dai, et al. Up-conversion fluorescence spectroscopy of Er3+doped lead oxyfluoride germanate glass [J]. Mater. Lett., 2004,58:1026-1029.
    [2]M. Mortier, Y. D. Huang, F. Auzel. Crystal field analysis of Er3+-doped glasses: germanate, silicate and ZBLAN [J]. J. Alloy. Compd.2000,300-301:407-413.
    [3]Hideo Yamada, Kazuo Kojima. Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses [J]. J. Non-Cryst. Solids,1999,259:57-62.
    [4]Yanmin Yang, Zhiping Yang, Baojiu Chen, et al. Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J. Alloy Compd. 2009,479:883-887.
    [5]Yanmin Yang, Baojiu Chen, Cheng Wang, et al. Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J. Non-Cryst. Solids 2008,354:3747-3751.
    [6]M. J. Dejneka, J. P. J. Desandro, A. M. Mayolet, et al. Thulium-Doped Germanate Glass Composition and Device for Optical Amplification [J]. US Patent No. 09/897294, June 29,2003.
    [7]S. Q. Xu, S. X. Dai, J. J. Zhang, et al. Broadband 1.5-μm emission of erbium-doped TeO2-WO3-Nb2Os glass for potential WDM amplifier [J]. Chin. Opt. Lett.2004,2:106.
    [8]D. C. Yeh, W. A. Sibley, M. Suscavage, et al. Multiphonon relaxation and infrared-to-visible conversion of Er3+and Yb3+ions in barium-thorium fluoride glass [J]. J. Appl. Phys.1987,62:266-275.
    [9]Pan. Z., Morgan, S. H., Loper, A., et al. Infrared to visible upconversion in Er3+-doped-lead-germanate glass:Effects of Er+ion concentration [J]. J Applied Physics,1995,77:4688.
    [10]Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies [J]. Proc, IEEE,1966,113:1151-1153.
    [11]Ogoshi Haruki, Chino Seiji, Kurotori Katsuya. Broadband optical amplifiers for DWDM systems [J]. Furukawa Review,2000,19:17-20.
    [12]Ohishi Y, Mori A, Yamada M, et al. Gain characteristics of tellurite based erbium doped fiber amplifiers for 1.5 μm broad band amplification [J]. Opt. Lett.,1998, 23(4):274-276.
    [13]Bracket C A. Forward:is there an emerging consensus on WDM networking [J]. J.Light Tech.,1996,14(6):936-941.
    [14]Tanabe S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication [J]. Comptes Rendus Chimie,2002,5(12):815-824.
    [15]Yamada M, Ono H, Kanamori T, et al. Broadband and gainflattened amplifier composed of a 1.53 μm band and a 1.58 μm band Er doped fiber amplifier in a paralle configuration [J]. Electron. Lett.1997,33:710-712.
    [16]Buxens A, Poulsen H N, Clausen A T, et al. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section [J]. Electron. Lett.2000,36(9):821-823.
    [17]Hansen K P, Nielsen M D, Bjarldev A. Design optimization of erbium doped fibers for use in L-band amplifiers [J].2000,36(20):1685-1686.
    [18]Y. Fujimoto, M. Nakatsuka. Infrared luminescence from bismuth-doped silica glass [J]. Japanese Journal of Applied Physics Part 2-Letters,2001,40: L279-L281.
    [19]Q.Q. Yan, C Shen, W. Wang, et al. Near Infrared Emission and Energy Transfer of Bismuth-Thulium Co-doped Chalcohalide Glasses [J]. Journal of The American Ceramic Society,2010 93:3539-3541
    [20]QY Zhang, XY Huang. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci.,2010,55:353-427.
    [21]S.F. Zhou, N. Jiang, B. Zhu, et al. Multifunctional bismuth-doped nanoporous silica glass:From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers [J]. Advanced Functional Materials,2008,18: 1407-1413.
    [22]Wegh RT, Donker H, Oskam KD, et al. Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion [J]. Science,1999,283:663-666.
    [23]徐叙瑢,苏勉曾.发光学与发光材料[M].化学工业出版社,2004.
    [24]Meijer JM, Aarts L, van der Ende BM, et al. Downconversion for solar cells in YF3:Nd3+, Yb3+[J]. Phys. Rev. B,2010,81:035107.
    [25]Liang W, Wang YH. Visible quantum cutting through downconversion in Eu3+-doped K2GdZr(PO4)3 phosphor [J]. Mater. Chem. Phys.,2010,119: 214-217.
    [26]Badescu V, Badescu AM. Improved model for solar cells with up-conversion of low-energy photons [J]. Renewable energy,2009,34:1538-1544.
    [27]Kiick S, Sokolska I, Henke M. Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3-doped fluoride compounds [J]. Phys. Rev. B,2005,71:165112-1-165112-15.
    [28]Van der Ende BM, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells [J]. Phys. Chem. Chem. Phys.,2009,11:11081-11095.
    [29]彼得·乌夫尔.太阳能电池从原理到新概念[M].化学工业出版社,2009.
    [30]Nagayoshi H, Terajima K, Nishimaru S, et al. Patent of JAP [J]. Application number:2004-382437.
    [31]Lakshminarayana G, Qiu JR. Near-infrared quantum cutting in RE3+/Yb3+(RE= Pr, Tb, and Tm):GeO2-B2O3-ZnO-LaF3 glasses via downconversion [J]. J. Alloys Compd.,2009,481:582-589.
    [32]Teng Y, Zhou JJ, Liu XF, et al. Broad-band excited quantum cutting in Eu2+ Yb3+Co-doped aluminosilicate glasses [J]. Opt. Express,2010,18:9671-9676.
    [33]Zhang Q, Zhu B, Zhuang YX, et al. Quantum cutting in Tm/Yb3-codoped lanthanum aluminum germanate glasses [J]. J. AM. Ceram. Soc.,2010,93: 654-657.
    [34]Teng Y, Zhou JJ, Ye S, et al. Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-doped CaAl2O4 phosphor [J]. J. Electrochem. Soc.,2010,157: A1073-A1075.
    [35]Deng KM, Gong T, Hu LX, et al. Efficient near-infrared quantum cutting in NaYF4:Ho3+, Yb3+for solar photovoltaics [J]. Opt. Express,2011,19: 1749-1754.
    [36]Zhang QY, Yang CH, Pan YX. Cooperative quantum cutting in one-dimensional (YbxGd1-x)Al3(BO3)4:Tb3+ nanorods [J]. Appl. Phys. Lett.,2007,90:021107.
    [37]Liu XF, Teng Y, Zhuang YX, et al. Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet [J]. Opt. Lett.,2009,34:3565-3567.
    [38]Zhou JJ, Zhuang YX, Ye S, et al. Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses [J]. Appl. Phys. Lett.,2009,95:141101.
    [39]Wegh T, van Loef EVD, Meijerink A. Visible quantum cutting via downconversion in LiGdF4:Er3+, Tb3+ upon Er3+ 4f11→ 4f105d excitation [J]. J. Lumin.,2000,90:111-122.
    [40]Zhou JJ, Teng Y, Ye S, et al. Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+-Yb3+ doped borate glasses [J]. Chem. Phys. Lett.,2010, 486:116-118.
    [41]Zhang QY, Yang GF, Jiang ZH. Cooperative downconversion in GdAl3(BO3)4: RE3+,Yb3+(RE=Pr,Tb, and Tm) [J]. Appl. Phys. Lett.,2007,91:051903.
    [42]Chen DQ, Wang YS, Yu YL, et al. Near-infrared quantum cutting in transparent nanostructured glass ceramics [J]. Opt. Lett.,2008,33:1884-1886.
    [43]Huang XY, Zhang QY. Efficient near-infrared down conversion in Zn2SiO4:Tb3+,Yb3+ thin-films [J]. J. Appl. Phys.,2009,105:053521.
    [44]Van der Ende BM, Aarts L, Meijerink A. Near-Infrared Quantum Cutting for Photovoltaics [J]. Adv. Mater.,2009,21:3073.
    [45]Yablononith E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J]. Phys. Rev. Lett.,1987,58:2059-2062.
    [46]Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev.,1962, 127:750-761.
    [47]Ofelt G S. Intensities of crystal spectra of rare earth ions [J]. J. Chem. Phys.,1962, 37:511-520.
    [48]Wang J S., Vogel E. M., Snitzer E. Telluirte glass:a new candidate for fiber devices [J]. Optical Mateirals,1994,3:187-203.
    [49]Mori A, Ohishi Y, Sudo S. Erbium-doped tellurite glass fiber laser and amplifier [J]. Electronics Leters,1997,33(10):863-864.
    [50]Carnall W T, Fields P R, Wybourne B G. Spectral intensities of the trivalent lanthanides and actinides in solution. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+[J]. J. Chem. Phys.,1965,42:3797-3806.
    [51]Carnall W T, Fields P R., Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys.,1968,49:4424-4442.
    [52]Wybourne B G. Spectroscopic Properties of rare earths [J]. Wiley, New York, 1965. Chapter 3.
    [53]Ozen G, Aydinli A, Cenk S A. Sennaroglu. Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass [J]. Journal of Luminescence,2003, 101:293-306.
    [54]Balda R, Lacha L M, Fernandez J, et al. Spectroscopic properties of the 1.4 μm emission of Tm3+ ions in TeO2-WO3-PbO glasses [J]. Optics Express,2008, 16(16):11836-11846.
    [55]McCumber D E. Einstein relations connecting broadband emission and absorption spectra [J]. Phy. Rev.,1964,136:A954-A957.
    [56]Aull B F, Jenssen H. P.. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section [J]. IEEE J. Quant. Electron.,1982, QE18:925-930.
    [57]McCumber D E. Theory of phonon-terminated optical masers [J]. Phys. Rev., 1964,134(2A):A299-A306.
    [58]Zou X, Izumitani T. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses [J]. J. Non-Cryst. Solids,1993,162:68-80.
    [59]Weber M J, Myers J D, Blackburn D H. Optical properties of Nd3+ in tellurite gand phosphotellurite glasses [J]. J. Appl. Phys.,1981,52:2944-2949.
    [60]J. A. Duffy. Redox equilibria of glass [J]. J. Non-Cryst. Solids,1996,196:45.
    [61]Sungping Szu, Chanping Shu, Luu-Gen Hwa [J]. J. Non-Cryst. Solids.1998,240: 22-28.
    [62]L.L. Neindre, S.B. Jiang, B.C. Hwang, et al. N. Peyghambarian [J]. J. Non-Cryst. Solids,1999,255:97-102.
    [63]M.G. Drexhage, O.H. El Bayoumi, C.T. Moyniyan, et al. J. Am. Ceram. Soc. 1982, C65:168-173.
    [64]G Lakshminarayana., Jianrong Qiu. J Alloy Compd.2009,481:582-589.
    [65]闻格,梁婉雪,章正刚等.矿物红外光谱学[M].重庆:重亲大学出版社,1988:1-2.
    [66]阳国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师,2008,1:34-36.
    [67]刘玉龙.激光拉曼散射和表面增强拉曼散射的原理与应用[J].物理教学.2007,29(5):2-6.
    [68]Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys Rev,1962, 127:750-761.
    [69]OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J Chem Phys, 1962,37:511-520.
    [70]ZHOU Dacheng, SONG Zhiguo, CHI Guangwei, et al. NIR broadband luminescence and energy transfer in Er3+-Tm3+-co-doped tellurite glasses [J]. J Alloy Compd,2009,481:881-884.
    [71]Tateyama Y, Sakida S, Nanba T, et al.. Correlation between the basicity and optical property of Er3+ion in oxide glasses [J]. Mater Sci Tech-Lond.2006,1: 555-565.
    [72]Yang Yanmin, Yang Zhiping, Chen Baojiu, et al.. Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J Alloy Compd, 2009,479:883-887.
    [73]D. E. McCumber. Phys. Rev.1964,134:299.
    [74]W. J. Miniscalco, R.S. Quimby. Opt. Lett.1991,16:258.
    [75]J. A. Duffy and M. D. Ingrain. J. Non-Cryst. Solids.2002,297:275
    [76]干福熹.光学玻璃上、中、下册[M].科学出版社,1982.146-158.
    [77]Sungping Szu, Chanping Shu, Luu-Gen Hwa. Structure and properties of lanthanum galliogermanate glasses [J]. J. Non-Cryst. Solids.1998,240:22-28.
    [78]Ananev AV, Bogdanov V N, Champagnon B, et al. Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2 [J]. Journal of Non-Crystalline Solids,2008,354:3049-3058.
    [79]Henderson G S, Daniel R. Neuville, Benjamin Cochain, et al.. The structure of GeO2-SiO2 glasses and melts:A Raman spectroscopy study [J]. Journal of Non-Crystalline Solids,2009,355:468-476.
    [80]Laudisio G Catauro M, Aronne A, Pemice P. Glass transition temperature and devitrification behaviour of lithium-titanium-germanate glasses [J]. ThermochimicaActa,1997,294(2):173-178.
    [81]Rocard Y. New diffused radiations. Compt. rend.1928,186:1109.
    [82]Hoppe U, Kranold R, H-J Weber, et al. The change of the Ge-O coordination number in potassium germanate glasses probed by neutron diffraction with high real-space resolution [J]. Journal of Non-Crystalline Solids,1999,248(1):1-10.
    [83]G. Lakshminarayana., Jianrong Qiu. Near-infrared quantum cutting in RE3+/Yb3+ (RE=Pr, Tb, and Tm):GeO2-B2O3-ZnO-LaF3 glasses via downconversion [J]. J Alloy Compd.481 (2009) 582-589.
    [84]L.L. Neindre, S.B. Jiang, B.C. Hwang, et al. Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses [J]. J. Non-Cryst. Solids, 1999,255,97-102.
    [85]Li Baibing. On the Recursive Estimation of Vehicular Speed Using Data from a Single Inductance Loop Detector:A Bayesian Approach [J]. Transportation Research Part B:Methodological,2009,43(4):391-402.
    [86]Li Baibing. Bayesian Inference for Vehicle Speed and Vehicle Length Using Dual loop Detector Data [J]. Transportation Research Par t B:Methodological,2010, 44(1):108-119.
    [87]Amos R T, Henderson G S. The Effects of Alkali Cation M ass and Radii on the Density of Alkali Germanate and Alkali Germano-phosphate Glasses [J]. Journal ofNon-crystalline Solids,2003,331:108-121.
    [88]Henderson G S. The Germanate Anomaly:What do we know? [J]. Journal of Non-Crystalline Solids,2007,353(18-21):1695-1704.
    [89]曹国喜,胡和方,干福熹.BaF2替代BaO对钡镓锗酸盐玻璃光学性质的影响[J].光学学报,2005.25(1):72-76.
    [90]Dennis L M, Laubengayer A W. Germanium XVII. Fused Germanium Dioxide and Some Germanium [J]. The Journal of Physical Chemistry,1926.30(11): 1510-1526.
    [91]Hannon A C, Martino D D, Santos L F, et al. A model for the Ge-O coordination in germanate glasses [J]. Journal of Non-Crystalline Solids,2007,353(18-21): 1688-1694.
    [92]M. Ferraris, D. Milanese, C. Contardi, et al. UV-Vis, FT-IR and EPR investigation on multi-component germano-silicate glasses for photonics [J]. Journal of Non-Crystalline Solids,2004,347:246-253.
    [93]Li Baibing. Bayesian Inference for Vehicle Speed and Vehicle Length Using Dual-loop Detector Data [J]. Transportation Research Part B:Methodological, 2010,44(1):108-119.
    [94]Huang W C Jain H, Meitzner G. The structure of potassium germanate glasses by EXAFS [J]. Journal of Non-Crystalline Solids,1996,196:155-161.
    [95]Huang W C, Jain H, Meitzner G The local structure of mixed alkali germanate glasses by EXAFS [J]. Journal of Non-Crystalline Solids,1999,255(1): 103-111.
    [96]Huang W C, Jain H. Local structure and electrical response of Rb and (Rb, Ag) germanate glasses:electrical conductivity relaxation [J]. Journal of Non-Crystalline Solids,1997,212(2-3):117-125.
    [97]Hoppe U. Behavior of the packing densities of alkali germanate glasses [J]. Journal of Non-Crystalline Solids,1999,248(1):11-18.
    [98]Hussin R, Holland D, Dupree R. Does six-coordinate germanium exist in Na2O-GeO2 glasses? Oxygen-17 nuclear magnetic resonance measurements [J]. Journal of Non-Crystalline Solids,1998,232.234:440-445.
    [99]Martino D D, Santos L F, Marques AC, et al. Vibrational spectra and structure of alkali germanate glasses [J]. Journal of Non-Crystalline Solids,2001,293,295: 394-401.
    [100]Laudisio G Catauro M. Glass transition temperature and devitrification behaviour of glasses in the Na2O-4GeO2-K2O-4GeO2 composition range [J]. Materials Chemistry and Physics,1997,51(1):54-58.
    [101]Lipinska Kalita K E, Mowbray D J. The structure of Al, Fe, K silica-germanate glasses investigated by Raman and infrared spectroscopy [J]. Journal of Non-Crystalline Solids,1990,122(1):1-9.
    [102]Smekal A. The quantum theory of dispersion [J]. Naturwiss,1923,11:873.
    [103]Raman C V, Krishman K S. A New Type of Secondary Radiation [J]. Nature, 1928,121:501-502.
    [104]Landsberg G Mandelstam L. A novel effect of light scattering in crystals [J]. Naturwiss,1928,16:557-772.
    [105]Cabannes J. New optical phenomenon:pulsations produced when anisotropic molecules in rotation and vibration diffuse visible and ultra-violet light [J]. Compt. Rend,1928,186:1201.
    [106]Shiqing Xu, Dawei Fang, Zaixuan Zhang, et al. Effect of OH-on upconversion luminescence of Er3+-doped oxyhalide tellurite glasses [J]. J. Solid. State. Chem.178 (2005) 2159-2162.
    [107]H. Sun, L. Zhang, L. Wen, et al. Effect of PbC12 addition on structure, OH-content, and upconversion luminescence in Yb3+/Er3+-codoped germanate glasses [J]. Appl. Phys. B.80 (2005) 881-888.
    [108]Yan Y C, Faber A J, Waal H D. Luminescence quenching by OH groups in highly Er-doped phosphate glasses [J]. J Non-Cryst Solids,1995,181(3): 283-290.
    [109]Feng X, Tanabe S, Hanada T. Hydroxyl groups in erbium-doped germanotellurite glasses [J]. J Non-Cryst Solids,2001,281(1/3):48-54.
    [110]Snoeks E, Kik P G, Polman A. Concentration quenching in erbium implanted alkali silicate glasses [J]. Opt Mater,1996,5(3):159-167.
    [111]Bayya S S, Harbison B B, Sanghera J S, et al. BaO-Ga2O3-GeO2 glasses with enhanced properties [J]. Journal of Non-Crystalline Solids,1997,212(2-3): 198-207.
    [112]Andrzej. Kudelski. Raman spectroscopy of surfaces [J]. Surface Science, 2009,603(10-12):1328-1334.
    [113]王媛媛,尤静林,蒋国昌.M4Ge9020碱金属锗酸盐晶体、玻璃及熔体结构的拉曼光谱研究[J].无机化学学报,2008,24(5):765-771.
    [114]Andrzej. Kudelski. Analytical applications of Raman spectroscopy [J]. Talanta,2008,76(11):1-8.
    [115]张光寅,蓝国祥,王玉芳.晶格振动光谱学[M].北京:高等教育出版 社.2001:111-112.
    [116]J.扎齐斯基主编,干福熹,侯立松等译.玻璃与非晶态材料[M].北京:科学出社,2001.
    [117]V.C.法默.矿物的红外光谱[M].北京:科学出版社,1982:92-93.
    [118]卡恩R W,哈森只克雷默E J.玻璃与非晶态材料[M].北京:科学出版社,2001.
    [119]作花济夫著,蒋幼梅,钱钧,武忠仁等译.玻璃非晶态材料[M].北京:中国建筑工业出版社.1986:100-115.
    [120]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2003:68-72.
    [121]C.H. Kam, S. Buddhudu. J. Quant. Spectrosc. Radiat. Trans.2004,87: 325-337.
    [122]B. R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev.1962, 127:750-761.
    [123]G. S. Ofelt, Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys. 1962,37:511-520.
    [124]Shiqing Xu, Zhongmin Yang, Shixun Dai, et al. Up-conversion fluorescence spectroscopy of Er3+doped lead oxyfluoride germanate glass [J]. Mater. Lett., 2004,58:1026-1029
    [125]M. Mortier, Y. D. Huang, F. Auzel. Crystal field analysis of Er3+-doped glasses:germanate, silicate and ZBLAN [J]. J. Alloy. Compd.2000,300-301: 407-413.
    [126]Hideo Yamada, Kazuo Kojima. Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses [J]. J. Non-Cryst. Solids,1999,259:57-62.
    [127]Yanmin Yang, Zhiping Yang, Baojiu Chen, et al..Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J. Alloy Compd. 2009,479:883-887.
    [128]Yanmin Yang, Baojiu Chen, Cheng Wang, et al. Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J. Non-Cryst. Solids 2008,354:3747-3751.
    [129]Y. Tateyama, S. Sakida, T. Nanba, Y. Miura. Correlation between the basicity and optical property of Er3+ion in oxide glasses [J]. Mater. Sci. Tech-lond.2006, 1:555-565.
    [130]Dacheng Zhou, Zhiguo Song, Guangwei Chi et al. NIR broadband luminescence and energy transfer in Er3+-Tm3+-co-doped tellurite glasses [J]. J. Alloy. Compd.2009,481:881-884.
    [131]J. A. Duffy. The Electronic Polarizability of Oxygen in Glass and the Effect of Composition [J]. J. Non-Cryst. Solids 2002,297:275-284.
    [132]Tokuro NANBA, Yoshinari MIURA, Shinchi SAKIDA. Consideration on the cor-relation between basicity of oxide glasses and ols chemical shift in XPS [J], J. Ceram. Soc. Japan.2005,113:44-50.
    [133]R. R. Reddy, Y. Nazeer Ahammed, P. Azeem, et al.. Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity [J]. J. Non-Cryst. Solids.2001,286:169-180.
    [134]T. Honma, R. Sato, Y. Benino, et al. Electronic polarizability, optical basicity and XPS spectra of Sb2O3-B2O3 glasses [J]. J. Non-Cryst. Solids 2000,272: 1-13.
    [135]Jianbei Qiu, Masanori Shojiya, Yoji Kawamoto, et al. Energy transfer process and Tb3+up-conversion luminescence in Nd3+/Yb3+/Tb3+co-doped fnorozirconate glasses [J]. J. Lumin.,2000,86:23-31.
    [136]W. T. Carnall, P. R. Fields, B. J. Wybourne. Spectral intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+[J]. J. Chem. Phys,1965,42:3797-3806.
    [137]Shiori Nishibu, Susumu Yonezawa, Masayuki Takashima. Preparation and Optical Properties of HoF3-BaF2-AlF3-GeO2 Glasses [J]. J. Non-Cryst. Solids, 2005,351:1239-1245.
    [138]L.R.P. Kassab, A. de Oliveira Preto, W. Lozano, et al. Maciel. Optical properties and infrared-to-visible up-conversion in Er3+-doped GeOr-Bi2O3 and GeO2-PbO-Bi2O3 glasses [J]. J. Non-Cryst. Solids,2005,351:3468-3475.
    [139]D.V.R. Murthy, A. Mohan Babu, B.C. Jamalaiah, et al. Photoluminescence properties of Er3+-doped alkaline earth titanium phosphate glasses [J]. J. Alloy. Compd,2010,491:349-353.
    [140]Kaushal Kumar, S.B. Rai, D.K. Rai. Upconversion studies in Er3+ doped TeO2-M20 (M=Li, Na and K) binary glasses [J]. Solid. State. Commun.,2006, 139:363-369.
    [141]I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, et al. Increase of the 800 nm excited Tm3+ blue up-conversion emission in fluoroindate glasses by codoping with Yb3+ ions [J]. Optical Materials.2003,22:327-333.
    [142]V. K. Tikhomirov, D. Furniss, I. M. Reaney, et al. Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics [J]. Appl. Phys. Lett.,2002,81:1937-1939.
    [143]M. Mortier, P. Goldner, C. Chateau, et al. Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions [J]. J. Alloys Comp.,2001,323-324:245.
    [144]B. Karmakar, R. N. Dwivedi. FT-IRRS, UV-Vis-NIR absorption and green up-conversion in Er3+ doped lead silicate glass [J]. J. Non-Cryst. Solids,2004, 342:132-139.
    [145]A. Kanoun, N. Jaba, A. Brenier. Time-resolved up-converted luminescence in Er3+-doped TeO2-ZnO glass [J]. Opt. Mater.,2004,26:79-83.
    [146]B. R. Judd. Optical absorption intensities of rare-earth ions [J]. Phys. Rev. 1962,127:750-761.
    [147]G. S. Ofelt.. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys. 1962,37:511-520.
    [148]G. Tripathi, V. K. Rai, S. B. Rai, et al. Up-conversion and temperature sensing behavior of Er3+ doped Bi2O3 Li2O BaO PbO tertiary glass [J]. Opt. Mater.,2007,30:201-206.
    [149]H. T. Sun, S. X. Dai, S. Q. Xu, et al. Frequency upconversion emission of Er3+-doped strontium-lead-bismuth glasses [J]. Chin. Phys. Lett.,2004,21:2292.
    [150]Yanmin Yang, Baojiu Chen, Cheng Wang, et al. Spectroscopic properties and thermal stability of Er3+-doped germanate-borate glasses [J]. J Non-Crystalline Solids,2008,354:3747-3751.
    [151]Tirtha Som, Basudeb Karmakar. Efficient green and red fluorescence up-conversion in erbium doped new low phonon antimony glasses [J]. Optical Materials.2009,31:609-618.
    [152]Hong tao Sun, Liyan Zhang, Meisong Liao, et al. Host dependent frequency upconversion of Er3+-doped oxyfluoride germinate glasses [J]. J Luminescence. 2006,117:179-186.
    [153]A. J. Barbosa, L. J. Q. Maia, A. M. Nascimento, et al. Er3+-doped germinate glasses for active waveguides prepared by Ag+/K+→Na+ion-exchange [J]. J Non-Crystalline Solids,2008,354:4743-4748.
    [154]H. T. Sun, S. X. Dai, S. Q. Xu, et al. Upconversion emission in Er3+doped novel bismuthate glass [J]. J Rare Earths,2005,23:331-335.
    [155]Z. Pan, A. Ueda, R. Mu, et al. Up-conversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics [J]. J Luminescence,2007,126:251-256.
    [156]L.R.P. Kassab, A. de Oliveira Preto, W. Lozano, et al. Optical properties and infrared-to-visible up-conversion in Er3+-doped GeO2-Bi2O3 and GeO2-PbO-Bi2O3 glasses [J]. J Non-Crystalline Solids,2005,351:3468-3475.
    [157]Auzel F. Up-conversion in RE-doped Solids.In:Liu G.,Jacquier B.,editors. Spectroscopic properties of rare earths in optical materials [J]. Springer,2005: 266-319.
    [158]Nalwa H.S., Rohwer L.S., Inorganic display materials. Handbook of luminescence, display materials, and devices [J]. American Scientific Publishers, 2003.vol.2.
    [159]Dexter D.L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953,21:836-850.
    [160]Axe J.D., Weller P.F. Fluorescence and energy transfer in Y2O3:Eu3+[J]. J. Chem. Phys.,1964,40:3066-3069.
    [161]Miyakawa T., Dexter D.L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids [J]. Phys.Rev.B,1970,1:2961-2969.
    [162]Foster T., Zwischenmolekulare Energiewanderung und Fluoreszens [J]. Annalen. Der.Physik.,1948,2:55-75.
    [163]Reisfeld R. Excited states and energy transfer from donor cations to rare earths in the condensed phase [J]. Struct. Bond,1976,30:65-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700