铟基硫卤玻璃及稀土掺杂氧氟玻璃的形成和光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一部分主要研究了元素铟对硫卤玻璃的形成、三阶非线性光学性能和稀土离子掺杂发光的影响。铟和镓属同族元素,但原子量较大,因此形成玻璃的声子能量更低、折射率更大,宏观上各种相应的性能也应有所提高,其主要研究结果如下:
     GeSe2-In2Se3-CsI准三元系统具有相当大的玻璃形成区。随着CsI含量的增加,短波截止边发生蓝移,玻璃的颜色由黑色逐渐向深红色,直至橙色过渡。玻璃的透过范围介于0.56-16μm之间。拉曼光谱表明,玻璃网络中主要存在[GeSe4]和[InSe4.xIx]结构单元。通过光克尔技术测试,得到71.25GeSe2-23.75In2Se3-5CsI玻璃中的χ(3)和n2分别为10.07×10-12esu和6.5×10-14 cm2/W,是As2S3玻璃的2倍多。分析其结构与χ(3)的关系,发现[GeSe4]和[InSe4]四面体结构单元浓度的增加有利于提高χ(3)值。
     首次在Tm3+离子掺杂的GeS2-In2S3-CsI玻璃中发现了位于700 nm的上转换红色发光,并且通过稀土离子共掺,也可以实现从红色到绿色波段之间的调整,有望用于特殊波长的固态激光或可调谐光源。随着基质中掺杂的Tm浓度增加,红色发光逐渐增强,在1mol%Tm2S3时,发光最强。通过吸收光子数测定,表明在808 nm泵浦时该发光是双光子吸收过程。结果表明:通过Er3+离子共掺、提高Tm3+离子和铟的含量都有利于700 nm的红色上转换发射。
     在808nm激发下,通过调整基质与稀土离子浓度,得到从1.35到1.7μm的半高宽大于160nm的超宽带近红外发射。最优化的组成为0.1mol% Er2S3和0.5mol% Tm2S3共掺杂的70GeS2-20In2S3-10CsI玻璃。发射光谱和荧光衰减曲线表明稀土离子共掺有利于形成混合键,从而抑制相同稀土离子之间的交叉弛豫,降低能级间的无辐射跃迁。
     第二部分主要研究了Pr3+/yb3+离子对在氧氟玻璃及微晶玻璃中下转换能量转移近红外发射。通过熔融淬冷法制备了Pr3+/Yb3+离子共掺的40SiO2-30Al2O3-18Na2O-12LaF3氧氟玻璃,得到近红外发射效率最高为6%。比较基玻璃与微晶玻璃的吸收光谱和发射光谱发现在微晶化过程中,由于玻璃中形成PrF3与LaF3晶体类型一致,因此Pr3+离子优先进入晶体并使其自身发射增强,导致在该氧氟玻璃中能量转移效率不能通过微晶化过程来提高。近红外发射的提高主要是由于Yb3+离子进入晶体后无辐射跃迁被抑制及微晶化后泵浦效率的提高。
The first part of the thesis mainly emphasized on the glass formation, third-order nonlinearity, and emission properties of the Indium-based chalcohalide glasses. For the presence of relatively heavy atoms (In), these glasses have the lower maximum phonon energy and higher refractive index. Thus higher radiative emission rates and larger nonlinearity could be yielded. The main results are shown as follows.
     A fairly large glass-forming domain of the GeSe2-In2Se3-CsI glasses is determined. These glasses show excellent transparency from 0.6 to 16μm. With the addition of CsI, the Tg decreases, the visible absorption edge shifts toward the short wavelength region. Correspondingly, the color of the samples varies from black through red to orange following the increased content of CsI. Raman spectra show that [GeSe4] and [InSe4.xIx] tetrahedral are the major structural units in the glass network. The obtainedχ(3) and n2 of 70GeSe2-20In2Se3-10CsI glass are as large as 10.07×10-12esu and 6.5×10-18m2/W, respectively, more than twice that of As2S3 glass. We have shown that the n2 variation may be related to the total number of [GeSe4] and [InSe4] tetrahedral units.
     Bright red emission in the Tm3+ ions doped GeS2-In2S3-CsI chalcohalide glasses pumped by an 808 nm near IR high power laser diode was observed for the first time. By codoping different concentration of Er3+ ions, emission can be tuned from monochromatic red to green, which is significant for their applications such as light emitting displays, lasers, and optoelectronic devices. The analysis demonstrates that the intensive red and green luminescence is generated from two-photon absorption process. The Er3+ ions codoping, higher concentrations of Tm+ ions and/or indium favor the 700nm red emission.
     Broadband emission extending from 1.35 to 1.7μm with the full width at half-maximum (FWHM) of-160 nm was obtained at room temperature in a 0.1 mol% Er2S3 and 0.5 mol% Tm2S3 co-doped 70GeS2-20In2S3-10CsI glass sample under 808 nm excitation. The emission spectra and fluorescence decay curves indicate that the Tm3+-Er3+ ions co-doping suppressed the cross relaxation between Tm-Tm or Er-Er ions due to formation of mixed bonds and therefore a decrease of non-radiation transition probability among each rare earth's energy levels.
     The second part works on the downconversion emission in the Pr3+/Yb3+ ions codoped oxyfluoride glasses. Near-IR downcoversion emission with the 6% quantum yield has been realized in the Pr3+/Yb3+ ions codoped 40SiO2-30Al2O3-18Na2O-12LaF3 glass. Comparing the absorption and emission spectra of the glasses with that of the glass ceramics, the Pr3+ ions have the priority to enter the LaF3 crystals due to the similar crystal lattice, thus the energy transfer efficiency decreased in the present glass by crystallization. The enhancement of the near IR emission is due to the suppressed non-radiative transition and the enhancement of the pumping efficiency.
引文
1. M. A. Popescu, ed. Non-Crystalline Chalcogenides. New York, Boston, Dordrecht, London, Moscow:Kluwer academic publishers,2002.
    2. A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas. Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics. Adv. Mater.2007,19(22):3796-800.
    3. L. Calvez, Nouveaux verres et vitroceramiques transparents dans l'infrarouge pour l'imagerie thermique [Doctor]. Universite de Rennes 1, Rennes,2006.
    4. L. Calvez, H. Ma, J. Lucas, and X. Zhang. Selenium-Based Glasses and Glass Ceramics Transmitting Light from the Visible to the Far-IR. Adv. Mater.2007,19(1):129-32.
    5. Z. Yang, L. Luo, and W. Chen. Red Color GeSe2-Based Chalcohalide Glasses for Infrared Optics. J. Am. Ceram. Soc.2006,89(7):2327-9.
    6. Y. Ledemi, L. Calvez, M. Roze, X. H. Zhang, B. Bureau, M. Poulain, and Y. Messaddeq. Totally visible transparent chloro-sulphide glasses based on Ga2S3-GeS2-CsCl. J. Optoelectron. Adv. Mater.2007,9(12):3751-5.
    7. Y. Ledemi, B. Bureau, L. Calvez, M. L. Floch, M. Roze, C. Lin, X. H. Zhang, M. Allix, G. Matzen, and Y. Messaddeq. Structural Investigations of Glass Ceramics in the Ga2S3-GeS2-CsCl System. J. Phys. Chem. B.2009,113(44):14574-80.
    8. Y. S. Tver'yanovich, E. G. Nedoshovenko, V. V. Aleksandrov, E. Y. Turkina, A. S. Tveryanovich, and I. A. Sokolov. Chalcogenide glasses containing metal chlorides. Glass Phys. Chem.1996,22(1):9-14.
    9.王德强,新型硫卤系统玻璃与非线性光波导[博士].华东理工大学,上海,1999.
    10.杨志勇,全波段透射和红外激光硫卤玻璃[博士].中国科学院,上海,2007.
    11.唐高,若干新型硫卤玻璃系统的形成、结构与性能研究[博士].中国科学院,上海,2009.
    12. S. L. Kuznetsov, M. D. Mikhailov, I. M. Pecheritsyn, and E. Y. Turkina. Structural chemical processes at the synthesis of chalcogenide glasses. J. Non-Cryst. Solids.1997,213-214:68-71.
    13. G. Dong, H. Tao, X. Xiao, C. Lin, Y. Gong, X. Zhao, S. Chu, S. Wang, and Q. Gong. Study on the third and second-order nonlinear optical properties of GeS2-Ga2S3-AgCl chalcohalide glasses. Opt. Express.2007,15(5):2398-408.
    14. G. Dong, H. Tao, X. Xiao, C. Lin, and X. Zhao. Formation, thermal, optical and physical properties of GeS2-Ga2S3-AgCl novel chalcohalide glasses. J. Mater. Sci.2007,42(23):9632-7.
    15. Y. S. Tver'yanovich, V. V. Aleksandrov, I. V. Murin, and E. G. Nedoshovenko. Glass-forming ability and cationic transport in gallium containing chalcohalide glasses. J. Non-Cryst. Solids.1999,256-257:237-41.
    16. Y. Ledemi, Verres et vitroceramiques a base de chalco-halogenures dopes par des ions de terres rares pour la luminescence dans le visible. [Doctor]. University of Rennes 1,2008.
    17. B. Petrova, M. Frumar, E. Cernoskova, and V. Cerny. New chalcohalide glasses from the system GeS2-Ga2S3-MnCl2. J. Non-Cryst. Solids.1993,161:316-9.
    18. H. Tao, G. Dong, Y. Zhai, H. Guo, X. Zhao, Z. Wang, S. Chu, S. Wang, and Q. Gong. Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-Cdl2 new chalcohalide glasses. Solid State Commun.2006,138(10-11):485-8.
    19. H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao. Synthesis and properties of GeS2-Ga2S3-Pbl2 chalcohalide glasses. Mater. Res. Bull.2007,42(6):1111-8.
    20. H. Tao, S. Mao, G. Dong, H. Xiao, and X. Zhao. Raman scattering studies of the Ge-In sulfide glasses. Solid State Commun.2006,137(8):408-12.
    21. G. Dong, H. Tao, S. Chu, S. Wang, X. Zhao, Q. Gong, X. Xiao, and C. Lin. Study on the structure dependent ultrafast third-order optical nonlinearity of GeS2-In2S3 chalcogenide glasses. Opt. Commun.2007,270(2):373-8.
    22. S. Sen, B. G. Aitken, and S. Khalid. Short-range structure and chemical order in In-Ge sulfide and selenide glasses by X-ray absorption fine structure spectroscopy. J. Non-Cryst. Solids. 2005,351(19-20):1710-5.
    23. M. Bilkova, P. Nemec, and M. Frumar. Spectroscopic properties of Pr3+ ions in Ge-In-S chalcogenide glasses. J. Optoelectron. Adv. Mater.2005,7(5):2247-53.
    24. M. Guignard, V. Nazabal, A. Moreac, S. Cherukulappurath, G. Boudebs, H. Zeghlache, G. Martinelli, Y. Quiquempois, F. Smektala, and J. L. Adam. Optical and structural properties of new chalcohalide glasses. J. Non-Cryst. Solids.2008,354(12-13):1322-6.
    25. S. Mao, H. Tao, X. Zhao, and G. Dong. Microstructure and thermal properties of the GeS2-In2S3-CsI glassy system. J. Non-Cryst. Solids.2008,354(12-13):1298-302.
    26. H. Tao, C. Lin, S. Chu, S. Mao, Y. Gong, X. Zhao, S. Wang, and Q. Gong. New chalcohalide glasses from the GeS2-In2S3-CsCl system. J. Non-Cryst. Solids.2008,354(12-13): 1303-7.
    27. H. Tao, S. Mao, W. Tong, and X. Zhao. Formation and properties of the GeS2-In2S3-KCl new chalcohalide glassy system. Mater. Lett.2006,60(6):741-5.
    28. V. Seznec, Verres et vitroceramiques de chalcohalogenures dopes terres rares Mise en forme par extrusion du verre GASIR [Doctor]. Universite de Rennes 1, Rennes.2006.
    29. H. Rawson, ed. Inorganic glass-forming systems. London and New York:Academic Press, 1967.
    30. N. F. Mott. Conduction in non-crystalline materials--Ⅲ. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag.1969,19(160):835-52.
    31. J. C. Phillips. Topology of covalent non-crystalline solids I:Short-range order in chalcogenide alloys. J. Non-Cryst. Solids.1979,34(2):153-81.
    32. A. M. Flank, D. Bazin, H. Dexpert, P. Lagarde, C. Hervo, and J. Y. Barraud. Structural study of various (As-Ge-Se-Te) amorphous chalcogenide glasses using X-ray absorption spectroscopy. J. Non-Cryst. Solids.1987,91(3):306-14.
    33. C. Lin, H. Tao, X. Zheng, R. Pan, H. Zang, and X. Zhao. Second-harmonic generation in IR-transparent β-GeS2 crystallized glasses. Opt. Lett.2009,34(4):437-9.
    34. J. Heo, and J. D. Mackenzie. Chalcohalide glasses:Ⅲ. Vibrational spectra of Ge---S---I glasses. J. Non-Cryst. Solids.1989,113(2-3):246-52.
    35. J. Heo, and J. D. Mackenzie. Chalcohalide glasses:Ⅱ. Vibrational spectra of Ge---S---Br glasses. J. Non-Cryst. Solids.1989,113(1):1-13.
    36. J. Heo, and J. D. Mackenzie. Chalcohalide glasses:Ⅰ. Synthesis and properties of Ge---S---Br and Ge---S---I glasses. J. Non-Cryst. Solids.1989,111(1):29-35.
    37. J. H. Song, Y. G. Choi, and J. Heo. Ge and Ga K-edge EXAFS analyses on the structure of Ge-Ga-S-CsBr glasses. J. Non-Cryst. Solids.2006,352:423-8.
    38. H. Tao, X. Zhao, and C. Jing. Raman spectroscopic study on the microstructure of GeS2-Ga2S3-KCl glasses. J. Mol. Struct.2004,697(1-3):23-7.
    39. H. Guo, H. Tao, Y. Zhai, S. Mao, and X. Zhao. Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses. Spectrochim. Acta, Part A.2007,67(5):1351-6.
    40. H. Guo, Y. Zhai, H. Tao, G. Dong, and X. Zhao. Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses. Mater. Sci. Eng., B.2007,138(3):235-40.
    41. R. K. Jain, and R. C. Lind. Degenerate four-wave mixing in semiconductor-doped glasses. J. Opt. Soc. Am.1983,73(5):647-53.
    42. T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature.1960,187(4736):493-4.
    43. A. Javan, W. R. Bennett, and D. R. Herriott. Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture. Phys. Rev. Lett.1961,6(3): 106-10.
    44. P. P. Sorokin, and M. J. Stevenson. Solid-State Optical Maser Using Divalent Samarium in Calcium Fluoride. IBM J. Res. Dev.1961,5(1):56-8.
    45. L. F. Johnson, and K. Nassau. Infrared and stimulated emission of Nd3+ in CaWO4. Proceedings of Institute of Radio Engineers.1961,49:1704-6.
    46. E. Snitzer. Optical Maser Action of Nd3+ in a Barium Crown Glass. Phys. Rev. Lett.1961, 7(12):444.
    47. E. Snitzer. Lasers and Glass Technology. Am. Ceram. Soc. Bull.1973,52(6):516-25.
    48. E. Snitzer, and R. Woodcock. Saturable absorption of color centers in Nd3+ and Nd3+-Yb3+ laser glass. IEEE J. Quantum Electron.1966,2(9):627-32.
    49. M. J. Weber. Science and technology of laser glass. J. Non-Cryst. Solids.1990,123(1-3): 208-22.
    50. C. J. Koester, and E. Snitzer. Amplification in a Fiber Laser. Appl. Opt.1964,3(10): 1182-6.
    51. M. Yamada, H. Ono, and Y. Ohishi. Low-noise, broadband Er3+-doped silica fibre amplifiers. Electron. Lett.1998,34(15):1490-1.
    52. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar.80 nm ultra-wideband erbium-doped silica fibre amplifier. Electron. Lett.1997,33(23):1965-7.
    53. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan. High gain, broadband,1.6 μm Er3+ doped silica fibre amplifier. Electron. Lett.1990,26(20):1645-6.
    54. W. J. Miniscalco. Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol.1991,9(2):234.
    55. M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi. Broadband and gain-flattened amplifier composed of a 1.55 μm-band and a 1.58 μm-band Er3+-doped fibre amplifier in a parallel configuration. Electron. Lett.1997,33(8):710-1.
    56. A. Buxens, H. N. Poulsen, and A. T. Clausen. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section. Electron. Lett.2000, 36(9):821-3
    57. H. Masuda, S. Kawai, and K. Aida. Ultra-wideband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fibre amplifier. Electron. Lett.1998,34(13):1342-4.
    58. H. Ono, M. Yamada, M. Shimizu, and Y. Ohishi. Signal output characteristics of 1.58 μm band gain-flattened Er3+-doped fibre amplifiers for WDM systems. Electron. Lett.1998,34(15): 1513-4.
    59. B. Clesca, D. Bayart, and J. L. Beylat.1.5 μm Fluoride-Based Fiber Amplifiers for Wideband Multichannel Transport Networks. Opt. Fiber Technol.1995,1(2):135-57.
    60. K. P. Hansen, M. D. Nielsen, and A. Bjarldev. Design optimisation of erbium-doped fibres for use in L-band amplifiers. Electron. Lett.2000,36(20):1685-6.
    61. Y. B. Lu, and P. L. Chu. Gain flattening by using dual-core fiber in erbium-doped fiber amplifier. IEEE Photonics Technol. Lett.2000,12(12):1616-7.
    62. L. Huang, A. Jha, S. Shen, and X. Liu. Broadband emission in Er3+-Tm3+codoped tellurite fibre. Opt. Express.2004,12(11):2429-34
    63. D. Chen, Y. Wang, F. Bao, and Y. Yu. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics. J. Appl. Phys.2007,101(11):113511.
    64. V. K. Tikhomirov, K. Driesen, C. Gorller-Walrand, and M. Mortier. Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+co-doped nano-glass-ceramics. Opt. Express.2007,15(15):9535-40.
    65. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge. Broadband infrared emission from Er-Tm: Al2O3 thin films. Appl. Phys. Lett.2005,87(11):111103.
    66. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen. Broadband near-infrared emission in Er3+-Tm3+codoped chalcohalide glasses. Opt. Lett.2008,33(20): 2293-5.
    67. Y. S. Han, D. J. Lee, and J. Heo.1.48 μm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+. J. Non-Cryst. Solids.2003,321(3):210-6.
    68. D. Jun Lee, J. Heo, and S. Ho Park. Energy transfer and 1.48 μm emission properties in chalcohalide glasses doped with Tm3+ and Tb3+. J. Non-Cryst. Solids.2003,331(1-3):184-9.
    69. J. H. Song, and J. Heo. Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass. J. Mater. Res.2006,21(9):2323.
    70. G. Wang, Q. Peng, and Y. Li. Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+ Nanocrystals. J. Am. Chem. Soc.2009,131(40):14200-1.
    71. A. Shalav, B. S. Richards, and M. A. Green. Luminescent layers for enhanced silicon solar cell performance:Up-conversion. Sol. Energy Mater. Sol. Cells.2007,91(9):829-42.
    72. T. Trupke, M. A. Green, and P. Wurfel. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys.2002,92(7):4117-22.
    73. X. Liang, X. Huang, and Q. Zhang. Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response. J. Fluo.2009,19(2):285-9.
    74. F. Auzel. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004,104(1):139-74.
    75. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett.2005,86(1):013505.
    76. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. d. Canizo, and I. Tobias. Modifying the solar spectrum to enhance silicon solar cell efficiency--An overview of available materials. Sol. Energy Mater. Sol. Cells.2007,91(4):238-49.
    77. V. Badescu. An extended model for upconversion in solar cells. J. Appl. Phys.2008,104: 113120-1-10.
    78. V. Badescu, and A. M. Badescu. Improved model for solar cells with up-conversion of low-energy photons. Renewable Energy.2009,34(6):1538-44.
    79. H. Lin, E. Y. B. Pun, and X. R. Liu. Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications. J. Non-Cryst. Solids.2001,283(1-3):27-33.
    80. J. Yang, N. Dai, S. Dai, L. Wen, L. Hu, and Z. Jiang. Enhancement of upconversion luminescence in Er3+ doped tellurite glasses due to the introduction of PbCl2. Chem. Phys. Lett. 2003,376(5-6):671-5.
    81. H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu. Optical transitions and frequency upconversion of Er3+ ions in Na2O·Ca3Al2Ge3012 glasses. J. Opt. Soc. Am. B.2001,18(5): 602-9.
    82. H. Nii, K. Ozaki, M. Herren, and M. Morita. Up-conversion fluorescence of Er3+-and Yb3+-doped TeO2-based oxide glass and single crystals. J. Lumin.1998,76-77:116-9.
    83. A. P. Otto, K. S. Brewer, and A. J. Silversmith. Red to blue upconversion in Tm-doped sol-gel silicate glasses. J. Non-Cryst. Solids.2000,265(1-2):176-80.
    84. J. Qiu, and Y. Kawamoto. Highly efficient blue up-conversion of Tm3+ in Nd3+-Yb3+-Tm3+ co-doped ZrF4-based fluoride glass. J. Fluorine Chem.2001,110(2):175-80.
    85. I. R. Martin, V. D. Rodriguez, V. Lavin, and U. R. Rodriguez-Mendoza. Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+-doped fluoroindate glasses. Spectrochim. Acta, Part A.1999,55(5):941-5.
    86. M.-F. Joubert. Photon avalanche upconversion in rare earth laser materials. Opt. Mater.1999, 11(2-3):181-203.
    87. H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura. Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3-GeS2-La2S3 glasses. J. Appl. Phys.1998,83(1):19-27.
    88. J. S. Sanghera, and I. D. Aggarwal. Active and passive chalcogenide glass optical fibers for IR applications:a review. J. Non-Cryst. Solids.1999,256-257:6-16.
    89. R. Balda, A. Mendioroz, J. Fernandez, M. A. Arriandiaga, L. S. Griscom, and J. L. Adam. Laser spectroscopy and upconversion studies of Pr3+-doped halide modified sulfide glasses. Opt. Mater.2001,16(1-2):249-54.
    90. J. Fernandez, R. Balda, A. Mendioroz, and A. J. Garcia-Adeva. Upconversion processes in Pr3+-doped chalcohalide glasses. J. Phys.:Condens. Matter.2001,13(46):10347-58.
    91. C. J. da Silva, and M. T. de Araujo. Thermal effect on upconversion fluorescence emission in Er3+-doped chalcogenide glasses under anti-Stokes, Stokes and resonant excitation. Opt. Mater. 2003,22(3):275-82.
    92. S. Mao, H. Tao, X. Zhao, G. Dong, and H. Guo. Structure dependence of ultrafast third-order optical nonlinearity for GeS2-In2S3-CsI chalcohalide glasses. Solid State Commun. 2007,142(8):453-6.
    93. G. Wang, Q. Nie, X. Wang, S. Dai, M. Zhu, X. Shen, K. Bai, and X. Zhang. Research on optical band gap of the novel GeSe2-In2Se3-KI chalcohalide glasses. Spectrochim. Acta, Part A. 2010,75(3):1125-9.
    94. Y. G. Choi. Enhancing fluorescence emission properties of Dy3+doped in chalcogenide glass via very small compositional modifications. J. Lumin.2009,129(6):620-3.
    95.彭明英,超宽带光纤放大器用新型铋掺杂激光玻璃的研究[博士].中国科学院,上海,2006.
    96. G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao. Broadband Infrared Luminescence from Bismuth-Doped GeS2-Ga2S3 Chalcogenide Glasses. Chin. Phys. Lett.2008,25(5):1891-4.
    97. J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen. Near Infrared Broadband Emission from Bismuth-Dysprosium Codoped Chalcohalide Glasses. Chin. Phys. Lett.2007,24(7): 1958-60.
    98. G. Yang, D. Chen, J. Ren, Y. Xu, H. Zeng, Y. Yang, and G. Chen. Effects of Melting Temperature on the Broadband Infrared Luminescence of Bi-Doped and Bi/Dy Co-Doped Chalcohalide Glasses. J. Am. Ceram. Soc.2007,90(11):3670-2.
    99. G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen. Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses. J. Eur. Ceram. Soc.2008,28(16):3189-91.
    100. 陈玮,王德强,and程继建.Ga2S3-GeS2-KCl系统玻璃的研究.华东理大大学学报,.1998,24(4):467-71.
    101. J. Tauc. Amorphous and Liquid semiconductors. New York:Plenium Press,1974.
    102. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer. Identification of the fundamental vibrational modes of trigonal, a-monoclinic and amorphous selenium. Solid State Commun.1967,5(2):113-7.
    103. G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils, and H. A. Six. Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1-xSx. Phys. Rev. B.1974,10(12):5134.
    104. P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips, and J. P. Remeika. Microscopic origin of the companion A1Raman line in glassy Ge(S, Se)2. Phys. Rev. B.1979, 20(10):4140.
    105. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki. Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra. J. Non-Cryst. Solids.1983,59-60(2): 883-6.
    106. Y. S. Tver'yanovich, M. Vlcek, and A. Tverjanovich. Formation of complex structural units and structure of some chalco-halide glasses. J. Non-Cryst. Solids.2004,333(1):85-9.
    107. W. J. Chung, and J. Heo. Spectroscopic Properties and Local Structure of Eu3+in Ge-Ga-S-CsBr (or CsCl) Glasses. J. Am. Ceram. Soc.2003,86(2):286-90.
    108. A. Tverjanovich, Y. S. Tveryanovich, and S. Loheider. Raman spectra of gallium sulfide based glasses. J. Non-Cryst. Solids.1996,208(1-2):49-55.
    109. R. W. Boyd, ed. Nonlinear Optics. New York:Academic Press,2008.
    110. A. D. Slepkov, F. A. Hegmann, Y. Zhao, R. R. Tykwinski, and K. Kamada. Ultrafast optical Kerr effect measurements of third-order nonlinearities in cross-conjugated iso-polydiacetylene oligomers. J. Chem. Phys.2002,116(9):3834-40.
    111. X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong. Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass. Chem. Phys. Lett.2004,399(1-3):230-3.
    112. Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen. Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation. Appl. Phys. Lett.2007,91(18):181917-3.
    113.F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis. Chalcogenide glasses with large non-linear refractive indices. J. Non-Cryst. Solids.1998, 239(1-3):139-42.
    114. R. C. Miller. Optical Second Harmonic Generation in Piezoelectric Crystals. Appl. Phys. Lett.1964,5(1):17-9.
    115. H. Guo, H. Tao, S. Gu, X. Zheng, Y. Zhai, S. Chu, X. Zhao, S. Wang, and Q. Gong. Third- and second-order optical nonlinearity of Ge-Ga-S-PbI2 chalcohalide glasses. J. Solid State Chem.2007,180(1):240-8.
    116. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin. Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications. J. Appl. Phys.2004,96(11):6931-3.
    117. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson. Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses. Mater. Res. Bull.2007,42(12):2107-16.
    118. R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J.-L. Adam. Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses. Phys. Rev. B.2001,64(14): 144101.
    119. B. R. Judd. Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev.1962,127: 750.
    120. G. S. Ofelt. Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys.1962, 37(3):511-20.
    121. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B.1992,46(6): 3305.
    122. N. Spector, R. Reisfeld, and L. Boehm. Eigenstates and radiative transition probabilites for Tm3+(4f12) in phosphate and tellurite glasses. Chem. Phys. Lett.1977,49(1):49-53.
    123. W. T. Carnall, P. R. Fields, and K. Rajnak. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968,49(10):4424-42.
    124. W. T. Carnall, P. R. Fields, and B. G. Wybourne. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+. J. Chem. Phys.1965, 42(11):3797-806.
    125. J. Sanz, R. Cases, and R. Alcala. Optical properties of Tm3+in fluorozirconate glass. J. Non-Cryst. Solids.1987,93(2-3):377-86.
    126. R. Jacobs, and M. Weber. Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition. IEEE J. Quantum Electron.1976,12(2):102-11.
    127. M. J. Weber, T. E. Varitimos, and B. H. Matsinger. Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate. Phys. Rev. B.1973,8(1):47.
    128. D. E. McCumber. Einstein Relations Connecting Broadband Emission and Absorption Spectra. Phys. Rev.1964,136(4A):A954.
    129. B. Aull, and H. Jenssen. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron.1982,18(5):925.
    130. T. H. Lee, and J. Heo.1.6 μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses. J. Appl. Phys.2005,98(11):113510.
    131. Z. G. Ivanova, Z. Aneva, R. Ganesan, D. Tonchev, E. S. R. Gopal, K. S. R. K. Rao, T. W. Allen, R. G. DeCorby, and S. O. Kasap. Low-temperature Er3+ emission in Ge-S-Ga glasses excited by host absorption. J. Non-Cryst. Solids.2007,353(13-15):1418-21.
    132. S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop. Photoluminescence and excitation spectroscopy of Er-doped AS2S3 glass:Novel broad band excitation mechanism. J. Appl. Phys.1995,77(7):3365-71.
    133. K. Tanaka, and M. Yamaguchi. Resonant Raman scattering in GeS2. J. Non-Cryst. Solids.1998,227-230(Part 2):757-60.
    134. A. Povolotskiy, T. Ivanova, A. Manshina, Y. Tver'yanovich, S.-K. Liaw, and C.-L. Chang. Er3+as glass structure modifier of Ga-Ge-S chalcogenide system. Appl. Phys. A.2009, 96(4):887-91.
    135. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen. Broadband near-infrared emission in Er3+-Tm3+codoped chalcohalide glasses. Opt. Lett.2008,33:2293-5.
    136. P. R. Diamente, M. Raudsepp, and F. C. J. M. v. Veggel. Dispersible Tm3+-Doped Nanoparticles that Exhibit Strong 1.47 μm Photoluminescence. Adv. Funct. Mater.2007,17(3): 363-8.
    137. A. Tverjanovich, Y. G. Grigoriev, S. V. Degtyarev, A. V. Kurochkin, A. A. Man'shina, and Y. S. Tver'yanovich. Up-conversion fluorescence in Er-doped chalcogenide glasses based on GeS2-Ga2S3 system. J. Non-Cryst. Solids.2001,286(1-2):89-92.
    138. R. Balda, S. Garcia-Revilla, J. Fernandez, V. Seznec, V. Nazabal, X. H. Zhang, J. L. Adam, M. Allix, and G. Matzen. Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics. Opt. Mater.2009,31(5):760-4.
    139. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage. Energy transfer between Er3+and Tm3+ions in a barium fluoride-thorium fluoride glass. Physical Review B (Condensed Matter and Materials Physics).1989,39(1):80.
    140. C. Shen, Q. Zhang, Y. Xu, D. Chen, H. Zeng, and G. Chen. Effects of the Tm3+ Ion Codoping on the Upconversion Luminescence of Er3+ Ion-Doped Chalcohalide Glasses. J. Am. Ceram. Soc.2009,92(12):3122-4.
    141. W. Wang, Y. Xu, C. Shen, Q. Yan, H. Zeng, and G. Chen. Infrared luminescence of Tm3+-doped chalcohalide glasses in GeS2-In2S3-CsBr system. J. Alloys Compd.2010,490(1-2): L37-L9.
    142. Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen. Broadband Near-IR Emission in Tm/Er-Codoped GeS2-In2S3-Based Chalcohalide Glasses. J. Am. Ceram. Soc.2009, 92(12):3088-91.
    143. L. Pauling. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc.1929,51(4):1010-26.
    144. G. Chen, Y. Yang, D. Zhao, F. Xia, S. Baccaro, A. Cecilia, and M. Nikl. Composition Effects on Optical Properties of Tb3+-Doped Heavy Germanate Glasses. J. Am. Ceram. Soc. 2005,88(2):293-6.
    145. T. Trupke, M. A. Green, and P. Wurfel. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys.2002,92(3):1668-74.
    146. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink. Visible Quantum Cutting in LiGdF4:Eu3+ Through Downconversion. Science.1999,283(5402):663-6.
    147. Q. Y. Zhang, and X. Y. Huang. Recent progress in quantum cutting phosphors. Prog. Mater Sci.2010,55(5):353-427.
    148. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji. Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors. Appl. Phys. Lett.2007, 90(6):061914-3.
    149. Q. Y. Zhang, C. H. Yang, and Y. X. Pan. Cooperative quantum cutting in one-dimensional (YbxGd1-x)Al3(BO3)4:Tb3+ nanorods. Appl. Phys. Lett.2007,90(2):021107-3.
    150. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang. Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+(RE=Pr, Tb, and Tm). Appl. Phys. Lett.2007,91(5):051903-3.
    151. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+. Phys. Rev. B.2005,71(1):014119.
    152. B. S. Richards. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells.2006,90(15):2329-37.
    153. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum:A review. Sol. Energy Mater. Sol. Cells.2009,93(8):1182-94.
    154. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses. J. Appl. Phys.2008,104(11): 116105.
    155. G. Lakshminarayana, H. Yang, S. Ye, Y. Liu, and J. Qiu. Co-operative downconversion luminescence in Tm3+/Yb3+:SiO2-Al2O3-LiF-GdF3 glasses. J. Phys. D:Appl. Phys.2008,41(17): 175111.
    156. G. Lakshminarayana, H. C. Yang, S. Ye, Y. Liu, and J. R. Qiu. Cooperative downconversion luminescence in Pr3+/Yb3+:SiO2-Al2O3-BaF2-GdF3 glasses. J. Mater. Res.2008, 23(11):3090-5.
    157. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu. Cooperative downconversion in Yb3+-RE3+(RE=Tm or Pr) codoped lanthanum borogermanate glasses. Opt. Lett.2008,33(23):2858-60.
    158. S. Ye, B. Zhu, J. Chen, J. Luo, and J. R. Qiu. Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals. Appl. Phys. Lett.2008,92(14): 141112-3.
    159. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng. Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics. J. Phys. Chem. C.2009,113(16):6406-10.
    160. G. Lakshminarayana, and J. Qiu. Near-infrared quantum cutting in RE3+/Yb3+(RE=Pr, Tb, and Tm):GeO2-B2O3-ZnO-LaF3 glasses via downconversion. J. Alloys Compd.2009, 481(1-2):582-9.
    161. X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu. Cooperative downconversion and near-infrared luminescence of Tb3+-Yb3+codoped lanthanum borogermanate glasses. Appl. Phys. B.2009,96(1):51-5.
    162. S. Ye, B. Zhu, Y. X. Zhuang, X. F. Liu, J. Luo, L. Wang, and J. R. Qiu, "Spectral modification and quantum cutting in RE3+-Yb3+(R=Pr, Tm, and Tb) codoped transparent glass-ceramics containing CaF2 nanocrystals," in IOP Conference Series:Materials Science and Engineering(2009), p.012008.
    163.Q. Zhang, X. F. Liu, S. Ye, B. Zhu, Y. B. Qiao, G. P. Dong, B. Qian, D. P. Chen, Q. L. Zhou, and J. R. Qiu. Cooperative Quantum Cutting in Yb3+-Tb3+Codoped Borosilicate Glasses. IEEE Photonics Technol. Lett.2009,21(17):1169-71.
    164. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+. Physical Review B.2005.71:014119.
    165. J.-X. Chen, S. Ye, X. Wang, and J. Qiu. Cooperative Quantum Cutting of Nano-Crystalline BaF2:Tb3+, Yb3+ in Oxyfluoride Glass Ceramics. Chin. Phys. Lett.2008,25(6): 2078-80.
    166. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu. Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Opt. Express.2008,16(12):8989-94.
    167. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng. Near-infrared quantum cutting in transparent nanostructured glass ceramics. Opt. Lett.2008,33(16):1884-6.
    168. J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu. Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses. Appl. Phys. Lett.2009,95(14):141101-3.
    169. B. M. v. d. Ende, L. Aarts, and A. Meijerink. Near-Infrared Quantum Cutting for Photovoltaics. Adv. Mater.2009,21(30):3073-7.
    170. G. Liu, and B. Jacquier, eds. Spectroscopic Properties of Rare Earths in Optical Materials. Springer Springer 2005.
    171. H. S. Nalwa, and L. S. Rohwer, eds. Inorganic Display Materials. American Scientific Publishers,2003.
    172. D. L. Dexter. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys.1953, 21(5):836-50.
    173. J. D. Axe, and P. F. Weller. Fluorescence and Energy Transfer in Y2O3:Eu3+. J. Chem. Phys.1964,40(10):3066-9.
    174. T. Miyakawa, and D. L. Dexter. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B.1970,1: 2961-9.
    175. R. Reisfeld, "Excited states and energy transfer from donor cations to rare earths in the condensed phase," in Rare Earths(Springer Berlin/Heidelberg,1976), pp.65-97.
    176. N. Yamada, S. Shionoya, and T. Kushida. Phonon-Assisted Energy Transfer between Trivalent Rare Earth Ions. J. Phys. Soc. Jpn.1972,32(6):1577-86.
    177. C. Ronda. Luminescent materials with quantum efficiency larger than 1, status and prospects. J. Lumin.2002,100(1-4):301-5.
    178. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink. Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion. J. Lumin.1999,82(2):93-104.
    179. D. Chen, Y. Wang, Y. Yu, and E. Ma. Influence of Yb3+content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals. Mater. Chem. Phys. 2007,101(2-3):464-9.
    180. S. Bhattacharyya, T. Hoche, N. Hemono, M. J. Pascual, and P. A. van Aken. Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass. J. Cryst. Growth.2009,311(18):4350-5.
    181. D. Chen, Y. Yu, P. Huang, and Y. Wang. Nanocrystallization of lanthanide trifluoride in an aluminosilicate glass matrix:dimorphism and rare earth partition. CrystEngComm.2009, 11(8):1686-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700