降钙素基因相关肽对下颌骨骨折愈合的影响及其信号转导通路的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统在不同水平参与骨折修复和改建以及正常骨代谢的调控。神经系统与其它系统或局部因子相互作用的机制非常复杂,其调控作用最终通过分布在骨组织局部的末梢神经释放神经肽等信号分子,影响成骨细胞和破骨细胞功能来实现[1-5]。降钙素基因相关肽(Calcitonin gene-related peptide CGRP)主要来源于感觉神经,具有多种生理功能。近年研究表明:CGRP参与骨折愈合的调控,并可能是通过影响成骨细胞功能实现的,但CGRP调控骨折愈合的分子机制及其对成骨细胞作用的胞内信号转导通路的研究国内外鲜见报道。
     我们在以往的研究中从组织学水平探讨了下牙槽神经(Inferior alveolar nerve IAN)对下颌骨骨折愈合的影响及其可能机制[6、7]。本研究通过建立失IAN和保留IAN兔下颌骨骨折动物模型,运用骨组织形态计量学(Bone histomorphometry)技术从细胞水平探讨IAN和CGRP对下颌骨骨折愈合的影响;通过原代培养兔颅骨成骨细胞,在分子水平上阐明hCGRP作用于兔成骨细胞的信号转导通路,以进一步探讨感觉神经调控骨折愈合的分子机制。
     目的:探讨CGRP对兔下颌骨骨折愈合的影响及其作用于兔成骨细胞的胞内信号转导通路,以进一步探讨感觉神经调控骨折愈合的分子机制。
     方法:选用中国大白兔105只,随机分为三组,实验组(35只)为给予LY303870(P物质受体拮抗剂)保留IAN下颌骨骨折组,对照组(70只)为失IAN下颌骨骨折组(对照组1,35只)和保留IAN下颌骨骨折组(对照组2,35只);分别在术后第7、14、21、28天处死动物,制取冰冻切片和未脱钙骨切片两种标本。冰冻切片用于HE染色观察骨痂愈合方式,免疫组化染色观察P物质(Substance P SP)和CGRP在新生骨痂中的表达;四环素双标的未脱钙骨切片用于Goldner’s Masson Trichrome Stain染色和骨组织形态计量学分析。用二次酶消化法原代培养兔颅骨成骨细胞,按hCGRP终浓度分为6组,第1组和第2组为对照组,分别为不含hCGRP的DMEM液和10-9mol/L hCGRP+10-6mol/L hCGRP(8-37)的DMEM液,第3、4、5和6组分别为含hCGRP终浓度为10-10mol/L、10-9mol/L、10-8mol/L和10-7mol/L的DMEM液。用激光扫描共聚焦显微镜技术监测胞内游离Ca2+浓度变化,放免法检测胞内cAMP浓度,凝胶迁移试验(Electrophoretic mobility shift assay EMSA)检测激活转录因子4(Activiting transcrigtion factor 4 ATF4)活性,Western Blot检测ATF4、骨钙素(Osteocalcin OC)、核因子-κB受体活化因子配体(Receptor activator of nuclear factor-κB ligand RANKL)和骨保护素(Osteoprotegerin OPG)的表达,Northern Blot检测OC、RANKL和OPG mRNA的表达。结果:1. SP和CGRP在新生骨痂中的表达:与保留神经组相比,在骨折愈合不同阶段SP和CGRP在失神经组骨痂中的表达显著减少(p<0.01)。保留神经组在术后第7天,SP和CGRP呈阳性表达;术后第14天,SP持续阳性表达,CGRP呈高表达并达峰值;术后第21天, SP表达减弱,CGRP仍呈阳性表达;术后第28天,SP表达显著增强,CGRP表达显著减弱。
     2. CGRP对骨折愈合的影响:成骨细胞形成表面和成骨细胞指数在实验组和对照组中差异无统计学意义;实验组破骨细胞吸收表面和破骨细胞指数明显低于对照组1,对照组1明显低于对照组2,各组间差异有统计学意义;类骨质表面对照组1高于实验组和对照组2,差异有统计学意义,实验组和对照组2之间差异无统计学意义;矿化骨痂体积实验组高于对照组1和对照组2,实验组与对照组1之间差异有统计学意义,与对照组2差异无统计学意义;骨形成率实验组高于对照组1和对照组2,实验组与对照组1差异有统计学意义,实验组和对照组2之间差异无统计学意义。
     3. hCGRP对兔成骨细胞内游离Ca2+浓度的影响:hCGRP不能改变兔成骨细胞内游离Ca2+浓度,各组间差异无统计学意义。
     4. hCGRP对兔成骨细胞内cAMP浓度的影响:hCGRP可促进兔成骨细胞内cAMP浓度升高,并且呈剂量依赖性,在hCGRP终浓度为10-9mol/L时达到峰值,hCGRP(8-37)可以抑制其促进作用。
     5. hCGRP对兔成骨细胞内ATF4活性的影响:hCGRP可增强兔成骨细胞内ATF4活性,并且呈剂量依赖性,在hCGRP10-9mol/L时达到峰值,hCGRP(8-37)可以抑制其促进作用。
     6. hCGRP对兔成骨细胞内ATF4蛋白表达的影响:hCGRP可促进兔成骨细胞内ATF4蛋白表达,并且呈剂量依赖性,在hCGRP终浓度为10-9mol/L时达到峰值,hCGRP(8-37)可以抑制其促进作用。
     7. hCGRP对兔成骨细胞内OC及其mRNA表达的影响:hCGRP可促进和上调兔成骨细胞内OC及其mRNA表达,并且呈剂量依赖性,在hCGRP10-9mol/L时达到峰值,hCGRP(8-37)可以抑制其促进作用。
     8. hCGRP对兔成骨细胞内RANKL及其mRNA表达的影响:hCGRP可抑制和下调兔成骨细胞内RANKL及其mRNA表达,并且呈剂量依赖性,在hCGRP终浓度为10-9mol/L时抑制作用最为明显,hCGRP(8-37)可以阻断其抑制作用。
     9. hCGRP对兔成骨细胞内OPG及其mRNA表达的影响:hCGRP可促进和上调兔成骨细胞内OPG及其mRNA表达,并且呈剂量依赖性,在hCGRP10-9mol/L时达到峰值,hCGRP(8-37)可以抑制其促进作用。
     10.采用Pearson相关系数描述每两个指标之间(cAMP、ATF4、OC、OPG、RANKL和RANKL/OPG)的相关程度,cAMP与其它指标的相关系数在0.713~0.988之间,ATF4与其它指标的相关系数在0.777~0.975之间,OC与其它指标的相关系数在0.803~0.988之间, OPG与其它指标的相关系数在0.712~0.988之间;RANKL与其它指标的相关系数在0.777~0.982之间, RANKL/OPG与其它指标的相关系数在0.717~0.975之间。经相关系数的假设检验均有统计学意义(p<0.01)。可认为cAMP、ATF4、OC、OPG、RANKL和RANKL/OPG的变化趋势相同。
     结论:1. IAN损伤影响骨痂愈合的质量,可能是通过影响矿化骨痂的形成和骨改建来实现;
     2.骨折愈合过程中CGRP和SP在骨痂中表达是动态变化的,并且与骨折愈合过程相适应,提示神经系统对骨折愈合调控是通过分布在骨组织局部的末梢神经分泌神经肽实现的;
     3. CGRP对骨折愈合的调控作用可能是通过影响成骨细胞功能及破骨细胞分化和功能实现的;
     4. hCGRP对兔成骨细胞功能影响可能的细胞信号转导通路是:hCGRP与成骨细胞上特异性受体CRLR结合,激活腺苷酸环化酶活性,促使胞内第二信使cAMP生成,通过cAMP信号系统促使胞内ATF4积聚并使ATF4磷酸化,启动成骨细胞分化相关基因OC/RANKL/OPG的表达;
     5. CGRP可以通过调控成骨细胞合成RANKL和OPG来影响破骨细胞分化,实现对骨折修复和改建的调控。
The nervous system involves in the regulation of the process of repair and remodeling of fracture and bone metabolism at different levels. The mechanism, of which systemic and local factors cooperate with nervous system, is quite complicated. However, the regulation achieves finally through the effect of neural signals on function of osteoblasts and osteoclasts in bone, which are released from the nerve terminals distributed in bone[1-5]. Calcitonin gene-related peptide (CGRP) secrected by sensory nerve has many kinds of physiological activities. Previous studies have found that CGRP is involved in repair and remodeling of fracture through influencing functions of osteoblasts, and little is known about the molecular mechanism and cell sigal transduction of CGRP’s modulating the healing process of fracture at the present time.
     In our previous studies, we explored the effect of inferior alveolar nerve(IAN) amputation on the healing of mandibular fracture and its possible mechanism at the level of tissue[6,7]. To explore the molecular mechanism of the nervous system’s modulating fracture healing, in this study we will explore further the effect of CGRP on mandibular fracture healing at the level of cell with bone histomorphometry through the foundation of animal model of mandibular fracture with or without IAN amputation, and clarify cell signal transduction of osteoblasts at the level of molecule by the primary rabbit osteoblast cultures of neonatal calvaria.
     Purpose
     The aims of the study were to explore the possible mechanism of CGRP’s modulating the healing of rabbit mandibular fracture and cell signal transduction of rabbit cultured osteoblast acted by hCGRP, and so that to explore further the molecular mechanism of sensory nerve’s modulating fracture healing.
     Methods
     105 adult China white rabbits were randomly divided into two groups (experimental and control groups). They all suffered from a fracture in the left mandible. Animals in experimental group were injected by LY303870, an antagonist to Substance P receptor, without IAN amputation. The control group was divided into two groups, and half of them with or without IAN amputation. The rabbits were sacrified on 7, 14, 21 and 28 day after operation, and the specimens were collected and stained with hematoxylin-eosin and for immunochemistry to observe the process of fracture healing and the expression of SP and CGRP in bone calllus, and stained with Goldner’s Masson Trichrome stain and the double marks of tetracycline to analyse the newly callus quantitively with bone histomorphometry. Osteoblast cultures were isolated from newly-born rabbit calvaria by sequential enzymatic digestion. The cultured osteoblasts were divided into six groups according to the final concentration of CGRP. The control group was divided into two groups. One is DMEM without CGRP or CGRP(8-37), and the other is DMEM with 10-9mol/L CGRP and 10-6mol/L CGRP(8-37) together. The other four groups are DMEM with 10-10mol/L, 10-9mol/L, 10-8mol/L and 10-7mol/L CGRP respectively and without CGRP(8-37). The detection of cAMP accumulation in cultured cells was performed using radioimmunology assay and the change of cyto free Ca2+ concentration was monitored by laser scanning confocal microscopy. The activity of activiting transcription factor 4(ATF4) was measured in electrophoretic mobility shift assay, and the expression and their mRNA of ATF4, osteocalcin, receptor activator of nulear factor-κB ligand and osteoprotegin in cultured cells were detected by Western Blot and Northern Blot respectively.
     Results:
     The expression of SP and CGRP in cullus:
     Immunoreactivities of SP in callus occurred strong in the group without IAN amputation on Day 7 after operation, and became stronger on Day 14 and less on Day 21 after operation, and became stronger again on Day 28 after operation. Immunoreactivities of CGRP in callus occurred strong in the group without IAN amptation, became the strongest on Day 14 and less stronger gradually on Day 21 and 28 after operation. Immonoreactivities of SP and CGRP in callus occurred weakly at early stage and became stronger at late one in the group with IAN amputation. There were significant differences in the expression of SP and CGRP in callus between two groups.
     The effect of CGRP on the healing of mandibular fracture: there were no significant differences in ob?s/BS and ob?Nb/BPm among three groups. On the contrary, there were significant differences among three groups in oc?s.BS, N?oc/BS, BFR, OS and MLV by analysing the callus using bone morphometry.
     The effect of hCGRP on free Ca2+ concentration in rabbit cultured osteoblasts: hCGRP can’t increase cyto free Ca2+ concentration in cultured osteoblasts. There were no signifficant differences among three groups.
     The effect of hCGRP on cAMP concentration in rabbit cultured osteoblasts: hCGRP can stimulate the accumulation of cAMP in cultured osteoblasts. And it displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     The effect of hCGRP on ATF4 activity in cultured osteoblasts: hCGRP can promot the activities of ATF4 in cultured osteoblasts. It displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     The effect of hCGRP on the expression of ATF4 in cultured osteoblasts: hCGRP can enhance the expression of ATF4 in cultured osteoblasts. It displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     The effect of hCGRP on the expression of ATF4 in cultured osteoblasts: hCGRP can promote the expression of ATF4 in cultured osteoblasts. It displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     The effect of hCGRP on the expression of OPG and its mRNA in cultured osteoblasts: hCGRP can promote the expression of OPG and up-regulate its mRNA in cultured osteoblasts. It displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     The effect of hCGRP on the expression of RANKL and its mRNA in cultured osteoblasts: hCGRP can inhibit the expression of RANKL and down-regulate its mRNA in cultured osteoblasts. It displayed a dosage-effect relationship, which can be blocked by CGRP(8-37).
     All the obtained data in vitro experiments were evaluated by the statistical analysis using Pearson’s correlation coefficient to describe the degree of corelation in each index. And there was significant difference in corelation among cAMP, ATF4, OC, OPG and RANKL.
     Conlusion:
     1. The injury of IAN can influence the quality of newly callus through affecting the mineralization and remodeling of bone callus.
     2. The expression of SP and CGRP in callus is dynamic, which is coherent with the healing process of fracture. It suggests that nervous system’s modulating the healing process of fracture may achieve by neuropeptides releasing from the nerve ending distributed in bone.
     3. The involvement of CGRP in regulation of the healing process of fracture may achieve through affecting the function of osteoblasts and the function and differentiation of osteoclasts.
     4. It may be one of the cell signal transductions of rabbit cultured osteoblast that the hCGRP’s binding to CRLR can activate AC and promote the accumulation of cAMP, as a result, PKA may be activated and stimulate phosphorylation and accumulation of ATF4, and at last induce osteoblast-specific gene expressioin.
     5. In order to modulate the repair and remodeling of fracture, CGRP may affect the production of OPG and RNAKL in osteoblasts and accordingly influence the differentiation of osteoclasts.
引文
1. Florent Elefteriou. Regulation of bone remodeling by the central and peripheral nervous system. Archives of Biochemistry and Biophysics, 2008,473: 231–236.
    2. Elmquist JK, Strewler GL. Physiology: do neural signals remodel bone? Nature,2005, 434(7032): 447-4789.
    3. Florent E. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci, 2005, 62: 2339-2349.
    4. Takeda S. Central control of bone remodeling. Biochemical and Biophysical Research Communications, 2005, 328: 697–69.
    5. Sheng-Dan Jiang, Lei-Sheng, Jiang et al. Mechanisms of osteoporosis in spinal cord injury. Clinical Endocrinology, 2006, 65: 555–565
    6.何海涛,谭颖徽,王建,徐琳。P物质在去下牙槽神经下颌骨骨折愈合中的表达。实用口腔医学杂志,2007,23(3):423-425.
    7.徐琳,谭颖徽,何海涛,降钙素基因相关肽对免成骨细胞OPG/RANKL mRNA表达的影响。实用口腔医学杂志,2005,21(3):396-398.
    8. Hurrell DJ. The nerve supply of bone. J Anat, 1937, 72: 54 -61.
    9. Chenu .C.Role of innervation in the control of bone remodeling.J Musculoskel Neuron Interact, 2004; 4(2): 132-134.
    10. Sarah C Offley, Tian-Zhi Guo, Tzuping Wei, J David Clark, Hannes Vogel, Derek P Lindsey, Christopher R Jacobs, Wei Yao, Nancy E Lane, Wade S Kingery. Capsaicin-Sensitive Sensory Neurons Contribute to the Maintenance of Trabecular Bone Integrity. J Bone Miner Res, 2005, 20(2): 257–267.
    11. Chantal Chenu, Massimo Marenzana. Sympathetic nervous system and bone remodeling. Joint Bone Spine, 2005, 72: 481–483.
    12. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 2000; 100: 197-207.
    13. Florent Elefteriou, Jong Deok Ahn, Shu Takeda et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514-520.
    14. Takeda S, Eletterior F, Levasseur R et al. Leptin regulates bone formation via thesympathetic nervous system. Cell, 2002, 111:305-317.
    15. Burt-Pichat M H, Lafage-Proust, F Duboeuf et al. Dramatic decrease of innervation density in bone after ovariectomy. Endocrinology, 2005, 146(1):503-510.
    16. Hukkanen M,Konttinen YT,Santavirta S et al. Effect of Sciatic Nerve Seciton on Neural Ingrowth into the Rat Tibial Fracture Callus. Clin Orthop, 1995, 311:247-257.
    17. Kingery WS, Offley SC et al.A substance P receptor (NK1) antagonist enhances the widespread osteoporotic effects of sciatic nerve section. Bone, 2003, 6: 927-936.
    18. M Cherruar, P Facchinetti, B Baroukh et al. Chemical Sympathectomy Impairs Bone Resorption in Rats: a Role for the Sympathetic System on Bone Metabolism.Bone, 1999, 26(5): 545-551.
    19. Malcangio M , Garrett NE , Tomlinson DR. Nerve growth factor treatment increases stimulus - evoked release of sensory neuropeptides in the rat spinal cord. Eur J Neurosci, 1997, 9:1101 - 1104.
    20. Sisask G, Bjurholm A, Ahmed M et al. The develepment of autonomic innervation in bone and joints of the rat. J Auton Nerv Syst, 1996, 59: 27 - 33.
    21. Sisask G, Bjurholm A, Ahmed M, et al. Ontogeny of sensory nerves in the developing skeleton. Anat Rec, 1995, 243: 234 - 240.
    22. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY- immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 1991, 264:469–480.
    23. Bjurholm A. Neuroendocrine peptides in bone. Int Orthop 1991, 15: 325–329.
    24. Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides, 1988, 9:165–171.
    25. Bjurholm A, Kreicbergs A, Schultzberg M. Fixation and demineralization of bone tissue for immunohistochemical staining of neuropeptides. Calcif Tissue Int 1989, 45:227–231.
    26. Hukkanen M, Konttinen YT, Rees RG, Gibson SJ, Santavirta S, Polak JM.. Innervation of bone from healthy and arthritic rats by substance P and calcitonin gene related peptide containing sensory fibers. J Rheumatol, 1992 19:1252–1259.
    27. Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM. Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscusand bone. Int J Tissue React, 1992, 14:1–10.
    28. Hara-Irie F, Amizuka N, Ozawa H. Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone, 1996, 18:29–39.
    29. Imai S, Tokunaga Y, Maeda T, Kikkawa M, Hukuda S. Calcitonin gene-related peptide, substance P, and tyrosine droxylaseimmunoreactive innervation of rat bone marrows: an immunohistochemical and ultrastructural investigation on possible efferent and afferent mechanisms. J Orthop Res, 1997, 15:133–140.
    30. Kundu B, Khare SK, Singh G. Role of polypeptides in the treatment and diagnosis of osteoprosis. Peptides, 1999, 20: 523-537.
    31. Pondel M. Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol, 2000, 81 (6): 405-422.
    32. Shang LJ, Zang YM, Wang CM, et al. Effecto of CGRP on intracellular calcium concentratioin in cardiomyocytes under ishchemia and hypoxia conditions. J Fourth Mil Med Univ, 2000, 21(4): 408-410.
    33. Valentijn K, Gutow AP, Trioano N, et al. Effects of calcitonin gene-related peptide on bone turnover in ovariectomized rats. Bone, 1997, 21: 269-274.
    34. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature, 1985, 313:54–56.
    35. Ishida-Yamamoto A, Tohyama M. Calcitonin gene-related peptide in the nervous tissue. Prog Neurobiol, 1989, 33:335–386.
    36. Kruger L, Silverman JD, Mantyh PW, Sternini C, Brecha NC. Peripheral patterns of calcitonin-gene-related peptide general somatic sensory innervation: cutaneous and deep terminations. J Comp Neurol, 1989, 280:291–302.
    37. MacIntyre I, Alevizaki M, Bevis PJ, Zaidi M. Calcitonin and the peptides from the calcitonin gene. Clin Orthop, 1987, 217:45–55.
    38. Grace GC, Dusting GJ, Kemp BE, Martin TJ. Endothelium and the vasodilator action of rat calcitonin gene-related peptide (CGRP). Br J Pharmacol, 1987, 91:729–733.
    39. Ignarro LJ, Kadowitz PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol, 1985, 25:171–191.
    40. Toshihisa Komori. Regulation of Osteoblast Differentiation byTranscription Factors Journal of Cellular Biochemistry, 2006, 99:1233–1239.
    41. Xiangli Yang, Koichi Matsuda, Peter Bialek et al. ATF4 Is a Substrate of RSK2 and an Essential Regulator of Osteoblast Biology: Implication for Coffin-Lowry Syndrome. Cell, 2004, 117 387–398.
    42. Enomoto H, Furuich T, Zanma A, et al. Runx2 deficiency in chondrocytes auses adipogenic changes in vitro. J Cell Sci, 2004, 117 (3): 417-425.
    43. Guozhi Xiao, Di Jiang, Chunxi Ge et al. Cooperative Interactions between Activating Transcription Factor 4 and Runx2/Cbfa1 Stimulate Osteoblast-specific Osteocalcin Gene Expression. The Journal of Biological Chemistry, 2005, 280 (35): 30689-30696.
    44. Choi KY, Kim HJ, Lee MH et al. Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn, 2005, 233(1):115-121.
    45. Lee MH, Kim YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem, 2003, 278(36): 34387-34394.
    46. Lee MH, Kwon TG, Park HS, et al. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun, 2003, 309(3):689-694.
    47. Schultze-Mosgau S, Erbe M, RudolpH D, Ott R,Neukam, FW. Prospective study on post-traumatic and postoperative sensory disturbances of the inferior alveolar nerve and infraorbital nerve in mandibular and midfacial fractures. J Craniomaxillofac Surg, 1999, 2: 86-93.
    48. Lizuka T, Lindqvist C. Rigid internal fixation of mandibular fractures: An analysis of
    270 fractures treated using the AO/ASIF method. Int J Oral Maxillofic Surg, 1992, 2: 65-69.
    49.刘向辉,斯方杰,饶正林。鼠三叉神经节中神经肽阳性胞体的分布与密度。临床口腔医学杂志,2000,1:5-7.
    50. Poyner D, Marshall I, Brain SD. The CRRP Family. 1st eds. Landes Bioscience. USA: Texas, 1999. 173-252.
    51. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM. Rapid proliferation of calcitonin generelatedpeptide-immunoreactive nervesduring healing of rat tibial fracture suggests neural involvement in bone growth and remodelling Neuroscience, 1993, 54(4): 969–979.
    52. Santavirta S, Konttinen YT, Nordstrom D, Makela A, Sorsa T, Hukkanen M, Rokkanen P. Immunologic studies of nonunited fractures. Acta Orthop Scand 1992, 63: 579–586.
    53. Aoki M, Tamai K, Saotome K. Substance P- and calcitonin gene-related peptide-immunofluorescent nerves in the repair of experimental bone defects. Int Orthop, 1994, 18:317–324.
    54. Madsen JE,Hukkanen M, Aspenberg P, Polak J, Nordsletten L. Time-dependent sensory nerve ingrowth into a bone conduction chamber. Acta Orthop Scand, 2000, 71:74–79.
    55. Madsen JE, Wang JS, Hukkanen M, Nordsletten L, Konttinen YT, Santavirta S, Polak JM, Aspenberg P.Sensory nerve ingrowth during bone graft incorporation in the rat. Acta Orthop Scand, 1996, 67:217–220.
    56. Imai S, Rauvala H, Konttinen YT, Tokunaga T, Maeda T, Hukuda S, Santavirta S. Efferent targets of osseous CGRP-immunoreactive nerve fiber before and after bone destruction in adjuvant arthritic rat: an ultramorphological study on their terminal-target relations. J Bone Miner Res,1997,12:1018–102
    57. Alam AS, Moonga BS, Bevis PJ, Huang CL, Zaidi M. Selective antagonism of calcitonin-induced osteoclastic quiescence (Q effect) by human calcitonin gene-related peptide-(Val8Phe37). Biochem Biophys Res Commun, 1991, 179:134–139.
    58. Akopian A, Demulder A, Ouriaghli F, Corazza F, Fondu P, Bergmann P. Effects of CGRP on human osteoclast-like cell formation: a possible connection with the bone loss in neurological disorders? Peptides, 2000, 21:559–564.
    59. Kashihara Y, Sakaguchi M, Kuno M. Axonal transport and distribution of endogenous calcitonin gene-related peptide in rat peripheral nerve. J Neurosci, 1989, 9:3796–3802.
    60. Bjurholm A, Kreicbergs A, Schultzberg M, Lerner UH. Neuroendocrine regulation of cyclic AMP formation in osteoblastic cell lines (UMR-106-01, ROS 17/2.8, MC3T3-E1, and Saos-2) and primary bone cells. J Bone Miner Res , 1992, 7:1011–1019
    61. Michelangeli VP, Findlay DM, Fletcher A, Martin TJ. Calcitonin gene-related peptide (CGRP) acts independently of calcitonin on cyclic AMP formation in clonal osteogenicsarcoma cells (UMR 106-01). Calcif Tissue Int, 1986, 39: 44–48.
    62. Michelangeli VP, Fletcher AE, Allan EH, Nicholson GC, Martin TJ. Effects of calcitonin gene-related peptide on cyclic AMP formation in chicken, rat, and mouse bone cells. J Bone Miner Res, 1989, 4:269–272.
    63. Tamura T, Miyaura C, Owan I, Suda T. Mechanism of action of amylin in bone. J Cell Physiol, 1992, 153:6–14.
    64. Kawase T, Howard GA, Roos BA, Burns DM. Diverse actions of calcitonin gene-related peptide on intracellular free Ca2 + concentrations in UMR 106 osteoblastic cells. Bone, 1995, 16:379S–384S.
    65. Bernard GW, Shih C. The osteogenic stimulating effect of neuroactive calcitonin gene-related peptide. Peptides, 1990, 11:625–632.
    66. Shih C, Bernard GW. Calcitonin gene related peptide enhances bone colony development in vitro. Clin Orthop, 1997, 334: 335–344.
    67.蔡文琴主编现代实用细胞与分子生物学实验技术,第一版,人民军医出版社,2003,69。
    68.蔡文琴主编现代实用细胞与分子生物学实验技术,第一版,人民军医出版社,2003,67。
    69. Cruber Helen E. Adaption of Goldner’s Masson Trichrome stain for the study of undecalcified plastic embedded bone. Biotechnic Histochemistry, 1992, 67(1): 30-34.
    70.杜冠华主编.实验药理学,第一版,中国协会医科大学出版社,2004,27-28.
    71. M Cherruar, P Facchinetti, B Baroukh et al. Chemical Sympathectoomy Impairs Bone Resorption in Rats:a Role for the Sympathetic System on Bone Metabolism.Bone, 1999, 26(5):545-551.
    72. Jian Li, Tashfeen Ahmad, Mariana Spetea et al. Bone Reinnervation after Fracture: A Study in the Rat. J Bone Miner Res, 2001, 16(8):1505-1511.
    73. Madsen JE, Hukkanen M, Aune AK, Basran I,Moller JF, Polak JM, Nordsletten L. Fracture healing and callus innervation after peripHeral nerve resection in rats. Clin-Orthop, 1998, 351: 230-240.
    74. Aro H, Eerola E, Aho AJ, et al. Healing of experimental fractures in the denervated limbs of the rat. Clin Orthop, 1981, 155: 211-217.
    75. Madsen JE, Aune AK, Falch JA, et al. Neural involvement in post-traumaticosteopenia: An experimental study in the rat. Bone, 1996, 18:411-416
    76. Goto T, Yamaza T, Kido MA et al. Light and electric-microscopic study of distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Tissue Res, 1998, 1:87-93.
    77. Mori T, Ogata T, Okumura H, Shibata T, Nakamura Y, Kataoka K. Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption.Biochem BiopHys Res Commun, 1999, 2:418-422.
    78. Lai XN, Li SG, Zhang LC.Changes in substance P in a firearm wound and its significance. Peptides, 1998, 7:1209-1213.
    79.何海涛,谭颖徽,王建华. SP诱导体外破骨细胞内PDGF-β及其mRNA表达及意义.中华创伤杂志,2008,24(3):228-231。
    80. Hoff AO, Catala-Lehnen P, Thomas PM et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene.J Clin Invest, 2002, 110:1849-1857.
    81. Schinke T, Liese S, Priemel M, Haberland M et al.Decreased bone formation and osteopenia in mice lackingα-calcitonin gene-related peptide. J Bone Miner Res, 2004, 19: 2049-2056.
    82. Chole RA, Tinling SP.Adaptive bone modeling in the middle ear is substance-P dependent. Am J Otol, 1998, 4: 521-524.
    83. Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304: 129-135.
    84. Aiyar N, Rand K, Elshourbagy NA, Zeng Z, Adamou JE, Bergsma DJ, Li Y A cDNA encoding the calcitonin generelated peptide type 1 receptor. J Biol Chem, 1996, 271:11325–11329.
    85. Drissi H., Hott M., Marie PJ, Lasmoles F. Expression of the CT CGRP gene and its regulation by dibutyryl cyclic adenosine monophosphate in human osteoblastic cells. J. Bone Miner. Res, 1997, 12:1805–1814.
    86. Drissi H, Lieberherr M, Hott M, Marie PJ, Lasmoles F. Calcitonin gene-related peptide CGRP increases intracellular free Ca++ concentrations but not cyclic AMP formation inCGRP receptor-positive osteosarcoma cells OHS-4 . Cytokine, 1999, 11:200–207.
    87. Ballica R, Valentijn K, Khachatryan A., Guerder S, Kapadia S, Gundberg C., Glligan T, Flavell RA, Vignery A. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. J. Bone Miner Res, 1999, 14:1067–1074.
    88. Crawford A, Evans B, Skjodt H, Beresford JN,et al .Effect of human calcitonin gene related peptide on human bone-derived cells in culture. Bone, 1985, 7:156–157.
    89. Millet I, Juluru K, McCarthy TL, Centrella M, Casinghino S, Vignery A Calcitonin gene-related peptide differentially regulates cytokines (TNF-a, IL-6) and insulin-like growth factor-1 production by primary osteoblasts. J Bone Miner Res, 1995, 10:S272.
    90. Vignery A, MacCarthy TL , The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor 1 production by primary fetal rat osteoblasts. Bone, 1996, 18:331–335.
    91. Michelangeli VP, Fletcher A, Allan EH, Nicholson GC, Martin TJ, Effect of Calcitonin gene-related peptide on cyclic AMP formation in chicken, rat and mouse bone cells. J Bone Miner Res, 1989, 4:269–272.
    92. Sakagami Y, Girasole G, Yu XP, Boswell HS, Manolagas SC,Stimulation of interleukin-6 production by either calcitonin gene-related peptide or parathyroid hormone in two phenotypically distinct marrow-derived murine stroma cells. J Bone Miner Res, 1993, 8:811–816.
    93. Demarest KT, Xu JZ,Minor LK, Gunnet J, Cryan E , Calcitonin gene related peptide (CGRP) receptor in human SAOS-2 and TE-85 osteosarcoma cells (Abstract). J Bone Miner Res, 1996, 11:S372.
    94. Farley JR, Hall SL, Herring S. Calcitonin acutely increases net 45Ca uptake and alters alkaline phosphatase specific activity in human osteosarcoma cells. Metabolism, 1993, 42:97–104.
    95. Van Valen F, Keck E, Ju¨rgens H. Functional characteristics of calcitonin gene related peptide receptors in human Ewing’s sarcoma WE-68 cells. FEBS Lett 1989, 256:170–174.
    96. Burns DM, Hill EL, Howard GA, Roos BA. Are osteoblasts the skeletal target for the actions of calcitonin generelated peptide? J Bone Miner Res 1991, 6:S285.
    97. Zaidi M, Datta HK, Chambers TJ, MacIntyre I. Production and characterisation ofimmunoreactive calcitonin generelated peptide (CGRP) from a CGRP receptor-positive cloned osteosarcoma cell line (UMR 106-01). Biochem Biophys Res Commun, 1989,168:214–219
    98. Thiebaud D, Akatsu T, Yamashita T, Suda T, Noda T Martin RE, Fletcher AE, Martin TJ . Structure-activity relationships in calcitonin gene-related peptide: cyclic AMP response in a preosteoblast cell line (KS-4). J Bone Miner Res 1991, 6:1137–1142.
    99.王洪复主编.骨细胞图谱与骨细胞体外培养技术,上海科学技术出版社, 2001,61-61。
    100. Isabella Villa a, Raffaella Melzi a, Francesca Pagani b, Flavio Ravasi a, Alessandro Rubinacci a, Francesca Guidobono b. Effects of calcitonin gene-related peptide and amylin on humanosteoblast-like cells proliferation. European Journal of Pharmacology, 2000, 409: 273–278
    101. Oliver KR, Kane SA, Salvatore CA,et al. Cloning, characterization and central nervous system distribution of receptor activity modifying proteins in the rat. Eur J Neurosci, 2001, 14: 618-628.
    102. Katafuchi T, Kikumoto K, Hamano K, et al. Calcitonin Receptor-stimulating Peptide , a New Member of the Calcitonin Gen-related Peptide Family. J Biol Chem, 2003, 278: 12046-12054.
    103. Born W, Fischer JA, Muff R, et al. Receptors for calcitonin gene-related peptide, adrenomedullin and amylin: the contribution of novel receptor-activity-modifying proteins. Receptors Channels, 2002, 8: 201-209.
    104. Gergana Dobreva, Maria Chahrour, Marcel Dautzenberg, Laura Chirivella, Benoit Kanzler, Isabel Farin as, Gerard Karsenty, and Rudolf Grosschedl1. SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation. Cell, 2006, 125:971–986.
    105. Toshihisa Komori. Regulation of Osteoblast Differentiation by Transcription Factors. Journal of Cellular Biochemistry, 2006, 99:1233–1239.
    106. Xiangli Yang, Gerard Karsenty. ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells. The Journal of Biological Chenmistry, 2004, 279(45): 47109-47114.
    107. Wei Fulan, Wang Chunling, Zhou Gengyin, Liu Dongxu, Zhang Xiaofang, Zhao Yanhong, Zhang Yuhua, Yang Qifeng. The effect of centrifugal force on the mRNA and protein levels of ATF4 in cultured human periodontal ligament fibroblasts. Archivesoforal biology, 2008, 53: 35– 43.
    108. Kazunori Hamamura, Hiroki Yokota. Stress to endoplasmic reticulum of mouse osteoblasts induces apoptosis and transcriptional activation for bone remodeling. Federation of European Biochemical Societies, 2007, 581: 1769–1774.
    109. Florent Elefteriou, Jong Deok Ahn, Shu Takeda et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 2005, 434: 514-520.
    110. Lacey DL, Timms E, Tan HL, et al. osteoprotegerin ligand is a cytokine that regulate osteoclast differentiation and activation. Cell, 1998, 93: 165-176.
    111. Yasuda H, Shima N, Nakagawa N, et al. osteoclast differentiation fator is a ligand for osteoprotegerin/osteoclastgenesis inhibitory factor and is identical to TRANCE/ RANKL. Proc Natl Acad Sci USA, 1998, 95: 3597-3602.
    112. Nakagawa N, Kinosaki, K, Yamaguchi k, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastgenesis. Biochem Biophys Res Commun, 1998, 253: 395-400.
    113. Buchwalter JA, Einhorn TA, Bolander ME,et al.Healing of the musculoskeletal tissues in fracures in adults. Philadelphia, 2001, Lipincott-Racen.
    114. Emery JG, Mcdonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem, 1998, 273:14363-14367.
    115. Shiotani A, Takami M, Itoh K. Regulation of osteoclast differentiation and function by receptor activivator of NF-κB ligand and osteoprotegerin. Anat Rec, 2002, 268(2): 137-146.
    116. Atdons GJ, Haynes DR, Geary SM, et al. Coordinates cytokine expression by stromal and hematopoietic cells during human osteoclast differentiation. Bone, 2000, 26: 653-661.
    117. Chomczynski P, Sacchi N.Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlorform extraction.Anal Biochem,1987, 162: 150-159
    118. Lian JB, Gundberg CM. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop ,1988 ,1 (226) :267
    119. Garrel DR, Delmas PD, Malaval L et al. Serum bone Gla protein: A marker of bone turnover in hyperth2yroidism. J Clin Endocrinol Metab, 1986 ,62 (7) :1052
    120. Szule P, Chapuy MC, Meunier PJ, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in eldly women. J Clin Invest , 1993 ,91 (10) :1769
    121. V.W.C. Yu, R. St-Arnaud. Inhibition of FIAT (factor inhibiting ATF4-mediated. Bone, 2006, 38: S5–S22.
    122. Cornish J, Callon KE, Bava U,et al.Effects of Calcitonin, Amylin, and Calcitonin Gene-related Peptide on Osteoclast Development. Bone, 2001, 29( 2): 162–168/
    123. Aram Akopian, Anne Demulder, Frank Ouriaghli, Francis Corazza, Pierre ondu, Pierre Bergmann. Effects of CGRP on human osteoclast-like cell formation: a possible connection with the bone loss in eurological disorders? Peptides, 2000, 21: 559–564.
    124. Kyoko Ishizuka, Koji Hirukawaa, Hiroshi Nakamur, Akifumi Togari. Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol. Neuroscience Letters, 2005, 379: 47–51.
    125. Wedemeyer C, Neuerburg C, Pfeiffer A, Heckelei A, Bylski D, von Knoch F, Schinke T, Hilken G, Gosheger G, von Knoch M, L?er F, Saxler G. Polyethylene particle-induced bone resorption in alpha-calcitonin gene-related peptide-deficient mice. J Bone Miner Res. 2007, 22(7):1011-9.
    126. Kayoko Nakao, Tetsuya Goto, Kaori Gunjigake, Tetsuro Konoo, Shigeru Kobayashi, Kazunori Yamaguchi. Neuropeptides modulate RANKL and OPG expression in human periodontal ligament cells. Orthodontic waves, 2007, 66: 33– 40.
    127. Chantal Chenu, Massimo Marenzana. Sympathetic nervous system and bone remodeling. Joint Bone Spine, 2005, 72: 481–483.
    1. A.G. Robling, A.B. Castillo, C.H. Turner, Ann. Rev. Biomed. Eng. 8(2006) 455–498.
    2. S.H. Ralston, Proc. Nutr. Soc. 66 (2007) 158–165.
    3. E. Canalis, A. Giustina, J.P. Bilezikian, N. Engl. J. Med. 357 (2007)905–916.
    4. R. Muff, W. Born, T.A. Lutz, J.A. Fischer, Peptides 25 (2004) 2027–2038.
    5. J. Cornish, D. Naot, I.R. Reid, Regul. Pept. 112 (2003) 79–86.
    6. J. Cornish, K.E. Callon, U. Bava, S.A. Kamona, G.J. Cooper, I.R. Reid, Bone 29 (2001) 162–168.
    7. S.J. Wimalawansa, Crit. Rev. Neurobiol. 11 (1997) 167–239.
    8. S.G. Amara, V. Jonas, M.G. Rosenfeld, E.S. Ong, R.M. Evans, Nature 298 (1982) 240–244.
    9. M.G. Rosenfeld, J.J. Mermod, S.G. Amara, L.W. Swanson, P.E.Sawchenko, J. Rivier, W.W. Vale, R.M. Evans, Nature 304 (1983) 129–135.
    10. S.G. Amara, J.L. Arriza, S.E. Leff, L.W. Swanson, R.M. Evans,M.G. Rosenfeld, Science 229 (1985) 1094–1097.
    11. M.M. Bennett, S.G. Amara, Ann. N.Y. Acad. Sci. 657 (1992) 36–49.
    12. S. Wallach, J.B. Carstens Jr., L.V. Avioli, Calcif. Tissue Int. 47 (1990) 388–391.
    13. S.D. Brain, A.D. Grant, Physiol. Rev. 84 (2004) 903–934.
    14. A. Ishida-Yamamoto, M. Tohyama, Prog. Neurobiol. 33 (1989) 335–386.
    15. Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita,Y. Imai, Y. Kayaba, H. Nishimatsu, Y. Suematsu, Y. Hirata, Y. Yazaki, R. Nagai, T. Kuwaki, H. Kurihara, Circ. Res. 89 (2001) 983–990.
    16. P.F. Hirsch, G.E. Lester, R.V. Talmage, J. Musculoskelet. Neuronal Interact. 1 (2001) 299–305.
    17. M. Zaidi, B.S. Moonga, E. Abe, J. Clin. Invest. 110 (2002) 1769–1771.
    18. A.O. Hoff, P. Catala-Lehnen, P.M. Thomas, M. Priemel, J.M. Rueger, I. Nasonkin, A. Bradley, M.R. Hughes, N. Ordonez, G.J. Cote, M. Amling, R.F. Gagel, J. Clin. Invest. 110 (2002) 1849–1857.
    19. J.T. Lu, Y.J. Son, J. Lee, T.L. Jetton, M. Shiota, L. Moscoso, K.D. Niswender, A.D. Loewy, M.A. Magnuson, J.R. Sanes, R.B. Emeson, Mol. Cell. Neurosci. 14 (1999) 99–120.
    20. B.J. Thompson, M.K. Washington, U. Kurre, M. Singh, E.Y. Rula, R.B. Emeson, Dig. Dis. Sci., 2007 (Epub ahead of print).
    21. T. Schinke, S. Liese, M. Priemel, M. Haberland, A.F. Schilling, P. Catala-Lehnen, D. Blicharski, J.M. Rueger, R.F. Gagel, R.B. Emeson, M. Amling, J. Bone Miner. Res. 19 (2004) 2049–2056.
    22. A.K. Huebner, T. Schinke, M. Priemel, S. Schilling, A.F. Schilling, R.B. Emeson, J.M. Rueger, M. Amling, J. Bone Miner. Res. 21 (2006) 1924–1934.
    23. D.H. Copp, B. Cheney, Nature 193 (1962) 381–382.
    24. G.V. Foster, A. Baghdiantz, M.A. Kumar, E. Slack, H.A. Soliman, I. MacIntyre, Nature 202 (1964) 1303–1305.
    25. J.M. LeMoullec, A. Jullienne, J. Chenais, F. Lasmoles, J.M. Guliana, G. Milhaud, M.S. Moukhtar, FEBS Lett. 167 (1984) 93–97.
    26. H.Y. Lin, T.L. Harris, M.S. Flannery, A. Aruffo, E.H. Kaji, A. Gorn, L.F. Kolakowski Jr., H.F. Lodish, S.R. Goldring, Science 254 (1991) 1022–1024.
    27. J.A. Fischer, P.H. Tobler, M. Kaufmann, W. Born, H. Henke, P.E. Cooper, S.M. Sagar, J.B. Martin, Proc. Natl. Acad. Sci. USA 78 (1981) 7801–7805.
    28. D. Goltzman, J. Mitchell, Science 227 (1985) 1343–1345.
    29. G.C. Nicholson, C.S. D’Santos, T. Evans, J.M. Moseley, B.E. Kemp, V.P. Michelangeli,T.J. Martin, Biochem. J. 250 (1988) 877–882.
    30. S.J. Marx, G.D. Aurbach, J.R. Gavin 3rd, D.W. Buell, J. Biol. Chem. 249 (1974) 6812–6816.
    31. J. Friedman, L.G. Raisz, Science 150 (1965) 1465–1467.
    32. L.G. Raisz, W.Y. Au, J. Friedman, I. Niemann, Am. J. Med. 43 (1967) 684–690.
    33. H. Warshawsky, D. Goltzman, M.F. Rouleau, J.J. Bergeron, J. Cell Biol. 85 (1980) 682–694.
    34. T.J. Chambers, C.J. Magnus, J. Pathol. 136 (1982) 27–39.
    35. G.C. Nicholson, J.M. Moseley, P.M. Sexton, F.A. Mendelsohn, T.J. Martin, J. Clin. Invest. 78 (1986) 355–360.
    36. B.S. Moonga, A.S. Alam, P.J. Bevis, F. Avaldi, R. Soncini, C.L. Huang, M. Zaidi, J. Endocrinol. 132 (1992) 241–249.
    37. A.S. Alam, C.M. Bax, V.S. Shankar, B.E. Bax, P.J. Bevis, C.L. Huang, B.S. Moonga, M. Pazianas, M. Zaidi, J. Endocrinol. 136 (1993) 7–15.
    38. D.L. Hurley, R.D. Tiegs, H.W. Wahner, H. Heath 3rd, N. Engl. J. Med. 317 (1987) 537–541.
    39. E.F. Wagner, G. Karsenty, Curr. Opin. Genet. Dev. 11 (2001) 527–532.
    40. P. Ducy, M. Amling, S. Takeda, M. Priemel, A.F. Schilling, F.T. Beil, J. Shen, C. Vinson, J.M. Rueger, G. Karsenty, Cell 100 (2000)197–207.
    41. S. Takeda, F. Elefteriou, R. Levasseur, X. Liu, L. Zhao, K.L. Parker, D. Armstrong, P. Ducy, G. Karsenty, Cell 111 (2002) 305–317.
    42. F. Elefteriou, J.D. Ahn, S. Takeda, M. Starbuck, X. Yang, X. Liu, H. Kondo, W.G. Richards, T.W. Bannon, M. Noda, K. Clement, C. Vaisse, G. Karsenty, Nature 434 (2005) 514–520.
    43. P.M. Sexton, Mol. Neurobiol. 5 (1991) 251–273.
    44. R. Layfield, Expert Rev. Mol. Med. 9 (2007) 1–13.
    45. I. Villa, R. Melzi, F. Pagani, F. Ravasi, A. Rubinacci, F. Guidobono, Eur. J. Pharmacol. 409 (2000) 273–278.
    46. J. Cornish, K.E. Callon, C.Q. Lin, C.L. Xiao, G.D. Gamble, G.J. Cooper, I.R. Reid, J. Bone Miner. Res. 14 (1999) 1302–1309.
    47. K. Valentijn, A.P. Gutow, N. Troiano, C. Gundberg, J.P. Gilligan, A.Vignery, Bone 21(1997) 69–274.
    48. R. Ballica, K. Valentijn, A. Khachatryan, S. Guerder, S. Kapadia, C. Gundberg, J. Gilligan, R.A. Flavell, A. Vignery, J. Bone Miner. Res. 14 (1999) 1067–1074.
    49. S.J. Wimalawansa, Endocr. Rev. 17 (1996) 533–585.
    50. S. Imai, Y. Matsusue, Microsc. Res. Technol. 58 (2002) 61–69.
    51. K. Irie, F. Hara-Irie, H. Ozawa, T. Yajima, Microsc. Res. Technol. 58 (2002) 85–90.
    52. J.A. Pasco, M.J. Henry, K.M. Sanders, M.A. Kotowicz, E. Seeman, G.C. Nicholson, J. Bone Miner. Res. 19 (2004) 19–24.
    53. Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita, Y. Imai, Y. Kayaba, H. Nishimatsu, Y. Suematsu, Y. Hirata, Y. Yazaki, R. Nagai, T. Kuwaki, H. Kurihara, Circ. Res. 89 (2001) 983–990.
    54. L.A. Tartaglia, M. Dembski, X. Weng, N. Deng, J. Culpepper, R. Devos, G.J. Richards, L.A. Campfield, F.T. Clark, J. Deeds, C. Muir, S. Sanker, A. Moriarty, K.J. Moore, J.S. Smutko, G.G. Mays, E.A. Wool, C.A. Monroe, R.I. Tepper, Cell 83 (1995)1263–1271.
    55. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Nature 372 (1994) 25–432.
    56. P.M. Sexton, A. Albiston, M. Morfis, N. Tilakaratne, Cell. Signal. 13(2001) 73–83.
    57. W. Born, R. Muff, J.A. Fischer, Microsc. Res. Technol. 57 (2002) 14–22.
    58. R. Dacquin, R.A. Davey, C. Laplace, R. Levasseur, H.A. Morris,S.R. Goldring, S. Gebre-Medhin, D.L. Galson, J.D. Zajac, G.Karsenty, J. Cell Biol. 164 (2004) 509–514.
    59. R.T. Dackor, K. Fritz-Six, W.P. Dunworth, C.L. Gibbons, O.Smithies, K.M. Caron, Mol. Cell. Biol. 26 (2006) 2511–2518.
    60. K.M. Caron, O. Smithies, Proc. Natl. Acad. Sci. USA 98 (2001) 615–619.
    61. J. Cornish, K.E. Callon, A.R. King, G.J. Cooper, I.R. Reid, Am. J.Physiol. 275 (1998) E694–E699.
    1. Ahima, R.S.,Saper, C.B.,Flier,J.S.Elmquist,J.K. Neuroendcrinol. 2000, 21: 263-307.
    2. Friedman,J.M. Nutr. Rev.2000, 60:S1-S14.
    3. Flier, J.S. Cell.2004, 116:337-350.
    4. Zigman,J.M. Elmquist,J.K. Endocrinology. 2003,144: 3749-3756.
    5. Tekeda,S. et al.Cell. 2002, 111: 305-307.
    6. Ducy, P. et al. Cell. 2000, 100:197-207.
    7. Elefteriou, F. et al. Nature. 2005, 434:514-520.
    8. Burt-Pichat, B. et al. Endocrinology.2005, 146: 503-510.
    9. Pasco, J.A. et al.J Bone Miner Res.2004, 19: 19-24.
    10. Rejnmark, L. et al. Calcif Tissue Int.2004, 75: 365-372.
    11. Schlienger, R.G. Kraenzlin, M.E. Jick, S.S. Meier, C.R. J Am Med Assoc, 2004, 292: 1326-1332.
    12. Kristensen P. et al. Nature, 1998, 393: 72-76.
    13. Elias, C.F. et al. Neuron. 1998, 21: 1375-1385.
    14. Balthasar, N. et al. Neuron. 2004, 42: 983-991.
    15. Elias, C.F. et al. J Comp Neurol. 2001, 432: 1-19
    16. Reseland, J. E. Gordeladze, J. O. FEBS Lett. 2002, 528:40-42.
    1. Suhultze MS, Erbe M, Rudolph D, et al: Prospective study on post traumatic and postoperative sensory disturbances of the inferior alveolar nerve and infraorbital nerve in mandibular and midfacial fractures. J Craniomaxillafac Surg 2:86,1999
    2. Hukkanen M: Effect of sciatic nerve section on neural ingrowth into the rat tibial fracture callus. Clin Orthop 311:247,1995
    3. Adam C, Llorens A, Baroukh B, et al: Effects of capsaicin-induced sensory denervation on osteoclastic resorption in adult rats. Exp Physiol 85:62,2000
    4. Onuoha, GN: Circulating sensory peptide levels within 24 h of human bone fracture. Peptides 22: 1107, 2001
    5. Meyer MH, Etienne W, Meyer RA: Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskeletal Disorders 5:24,2004
    6. Chole RA, Tinling SP: Adaptive bone modeling in the middle ear is substance P dependent. Am J Otol 19:521,1998
    7. Kingery WS, Offley SC: A substance P receptor (NK1) antagonist enhances the widespread osteoporotic effects of sciatic nerve section. Bone 33:927, 2003
    8. Rude RK, Gruber HE, Norton HJ, et al: Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-alpha. J Nutr 134:79, 2004
    9. Robert K, Rude, Helen E, et al: Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37:211, 2005
    10. Mohler LR, Hanel DP: Closed fracture complicated by peripheral nerve injury. J Am Acad Orthop Surg 14:32, 2006
    11. Mori T, Ogata T, Okumura H, et al. Substance P regulates the function of rabbit cultured osteoclast: increase of intracellular free calcium concentration and enhancement of bone resorption. Biochem Biophys Res Commun 262:418,1999
    12. Sohn SJ: Substance P upregulates osteoclastogenensis by activating nuclear factor kappa B in osteoclast precursors. Acta Otolaryngol 125:130, 2005
    13. Takaaki M, Tetsuya G, Eiji F, et al. Neuropeptide substance P stimulates the formationof osteoclasts via synovial fibroblastic cells. Biochem Biophys Res Commun 3:756, 2005
    14. Dyck PJ, Stevens JC, O Brien PC, et al: Neurogenic arthropathy and recurrent fracture with subclinical inherited neuropathy. Neurology 33:357, 1983
    15. Cherruau M, Facchinetti P, Baroukh B, et al: Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone 25:545,1999
    16. Madsen JE, Hukkanen M, Aspenberg P, et al: Time-dependent sensory nerve ingrowth into a bone conduction chamber. Acta-Orthop-Scand 1:74,2000
    17. Aoki M, Tamai K, Saotome K: Substance P and calcitonin gene-related peptide immunofluorescent nerves in the repair of experimental bone defects. Int Orthop 5:317,1994
    18. Lai XN, Li SG, Zhang LC: Changes in substance P in a firearm wound and its significance. Peptides 7:1209, 1998
    19. Chavolla Calderon M, Bayer MK, Fontan JJ: Bone marrow transplantation reveals an essential synergy between neuronal and hemopoietic cell neurokinin production in pulmonary inflammation. J Clin Invest 111:973,2003
    20. Sherman BE, Chole RA: A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg 113:569, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700