几类薛定谔方程的整体适定性和爆破分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薛定谔方程一直是偏微方程研究的热点之一。尤其是70年代以后,随着调和分析方法的引入,该方面的研究获得了长足发展。著名数学家,如J. Bourgain(菲尔兹奖得主)、T. Tao(菲尔兹奖得主)、C. Kenig(国际数学家大会一小时报告人)、F. Merle等都在这方面做了许多重要工作,产生了深远影响,引起了很多后继研究。
     解的整体适定性和爆破分析是薛定谔方程研究的两个基本问题。粗略地讲,整体适定性研究解的长时间存在性,常用手段有连续性方法、守恒律方法和“I方法”等;爆破分析研究有限时间爆破解在爆破时刻的行为,常用手段有集中紧方法、谱分析方法和“profile分解”方法等。薛定谔方程的差异主要体现在非线性项上,进而在解的整体适定性和爆破行为上表现不同。当非线性项为power项时,这两方面都已有很多深刻的研究结果;但当非线性项为其他形式时,结果还不很丰富。
     本文研究了三种薛定谔方程解的整体适定性和爆破,即:二维广义的Gross-Pitaevskii方程解的整体适定性、带有Dipolar项的三维Gross-Pitaevskii方程解的整体适定性和爆破门槛,以及高维的质量临界四阶薛定谔方程爆破解的质量集中现象。针对这三个方程各自的特点,本文分别采用了不同的分析技巧,得到了一些新的结果,丰富了当前的研究成果。本文的创新点主要包括:
     利用经典的压缩映射不动点定理和守恒律方法,证明了二维广义的Gross-Pitaevskii方程在一个自然匹配的能量空间E内是整体适定的。空间E严格包含H1(R2),从而改进了熟知的研究结果;
     对于带有Dipolar项的三维Gross-Pitaevskii方程,通过构造合适的变分问题,建立新的不变集合,获得了新的整体适定性和爆破门槛,部分地回答了数学家R. Carles、P. Markowich和C. Sparber提出的问题;
     利用集中紧的分析技巧、T. Tao等人提出的“I方法”和四阶薛定谔方程的强色散效应,证明了高维质量临界四阶薛定谔方程,其Hs(Rd)(s0(d)Nonlinear Schr(o|¨)dinger equation (NLS) has received much attention. Since1970s,great progress has been made after introducing harmonic analysis technique. Sevaralfamous mathematicians, such as J. Bourgain and T. Tao (both are Fields medalists), C.Kenig (Plenary speaker of International Congress of Mathematicians), F. Merle, havedone a lot of important research and made great contributions.
     Global wellposedness and blow-up analysis are two basic problems of NLS.Roughly speaking, global wellposedness is related to the long time existence of the solu-tions. The usual approaches include continuity arguments, conservation laws,“I method”etc.. Blow-up analysis aims to investigate the behavior of the finite time blow-up solutionsnear the blow-up time. The usual approaches include concentration compactness argu-ment, spectral analysis,“profile decomposition”, etc.. NLS with diferent type nonlinearterms, will behave diferently in global wellposedness and blow-up. When the nonlinearterm is power type, many deep results have been proved; while the nonlinear terms are ofother types, research and results are still limited.
     This thesis will study the following three Schr(o|¨)dinger equations: the two dimen-sional generalized Gross-Pitaevskii equation, the Gross-Pitaevskii equation with trappedDipolar gases and the mass critical fourth-order Schr(o|¨)dinger equation in higher dimen-sions. According to the speciality of each equation, suitable techniques are applied andnew results are obtained. The contributions of this thesis include:
     Based on Banach fixed point theorem and conservation laws, the two dimensionalgeneralized Gross-Pitaevskii equation is proved to enjoy global wellposedness in aspace bigger than H1(R2), which extends the well-known result in literature;
     Through constructing proper variational problem, two novel invariant sets of theGross-Pitaevskii with trapped Dipolar gases are obtained. Hence, new sharp thresh-old of global wellposedness and blow-up is proposed;
     The finite time blow-up solutions for the mass critical fourth-order Schr(o|¨)dingerequation in Hs(Rd)(s0(d)
引文
[1] Willem M. Minimax theorems. Basel Boston Berlin: Birkha¨user,1996.
    [2] Kuzin I, Pohozaev S. Entire solutions of semilinear elliptic equations. Basel Boston Berlin:Birkha¨user,1997.
    [3] Tao T, Visan M, Zhang X. The nonlinear Schro¨inger equation with combined power-typenonlinearities. Comm. Partial Diferential Equations,2007,32(8):1281–1343.
    [4] Tao T. Nonlinear Dispersive Equations: Local and Global Analysis. Providence, Rhode Island:American Mathematical Society,2007.
    [5] Cazenave T. Semilinear Schro¨dinger Equations. New York: Courant Institute of MathematicalSciences,2003.
    [6] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schro¨dingeroperators. J. Math. Phys.,1977,8(9):1794–1797.
    [7] Ogawa T, Tsutsumi Y. Blow-up of H1solutions for the nonlinear Schro¨dinger equation. J.Diferential Equations,1991,92(2):317–330.
    [8] Weinstein M. Nonlinear Schro¨dinger equations and sharp interpolation estimates. Comm.Math. Phys.,1982,87(4):567–576.
    [9] Weinstein M. On the structure and formation of singularities in solutions to the nonlineardispersive evolution equations. Comm. Partial Diferential Equations,1986,11(5):545–565.
    [10] Ogawa T, Tsutsumi Y. On blow-up for the pseudo-conformally invariant nonlinear Schro¨dingerequation. Funkcialaj Ekvacioj,1989,32:417–428.
    [11] Merle F, Tsutsumi Y. L2concentration of blow-up solutions for the nonlinear Schro¨dingerequation with critical power nonlinearity. J. Diferential Equations,1990,84(2):205–214.
    [12] Hmidi T, Keraani S. Blowup theory for the critical nonlinear Schro¨dinger equations revisited.Int. Math. Res. Not.,2005,2005(46):2815–2828.
    [13] Colliander J, Raynor S, Sulem C, et al. Ground state mass concentration in the L2-criticalnonlinear Schro¨dinger equation below H1. Math. Res. Lett.,2005,12(2-3):357–375.
    [14] Visan M, Zhang X. On the blowup for the L2critical focusing nonlinear Schro¨dinger equationin higher dimensions below the energy class. SIAM J. Math. Anal.,2007,39(1):34–56.
    [15] Bourgain J. Refinements of Strichartz’s inequality and applications to2D-NLS with criticalnonlinearity. Intern. Mat. Res. Not.,1998,1998(5):253–283.
    [16] Tao T, Visan M, Zhang X. Global well-posedness and scattering for the mass-critical nonlinearSchro¨dinger equation for radial data in high dimensions. Duke Math. J.,2007,140(1):165–202.
    [17] Killip R, Tao T, Visan M. The cubic nonlinear Schro¨dinger equation in two dimensions withradial data. J. Eur. Math. Soc.,2009,11(6):1203–1258.
    [18] Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schro¨dingerequation with critical power. Duke Math.J.,1993,69(2):427–453.
    [19] Killip R, Li D, Visan M, et al. Characterization of minimal-mass blowup solutions to thefocusing mass-critical NLS. SIAM J. Math. Anal.,2009,41(1):219–236.
    [20] Li D, Zhang X. On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation. Adv. Math.,2009,220(4):1171–1192.
    [21] Merle F, Raphael P. The blowup dynamic and upper bound on the blowup rate for the criticalnonlinear Schro¨dinger equation. Ann. of Math,2005,161(1):157–222.
    [22] Merle F, Raphael P. Sharp upper bound on the blow-up rate for the critical nonlinearSchro¨dinger equation. Geom. Funct. Anal.,2003,13(3):591–642.
    [23] Perelman G. On the formation of singularities in solutions of the critical nonlinear Schro¨dingerequation. Ann. Henri Poincare′,2001,2(4):605–673.
    [24] Bourgain J, Wang W. Construction of blowup solutions for the nonlinear Schro¨dinger equationwith critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci.,1997,25(4):197–215.
    [25] Colliander J, Delort J, Kenig C, et al. Bilinear estimates and applications to2D NLS. Trans.Amer. Math. Soc.,2001,353(8):3307–3325.
    [26] Colliander J, Keel M, Staflani G, et al. Almost conservation laws and global rough solutionsto a nonlinear Schro¨dinger equation. Math. Res. Lett.,2002,9(5-6):659–682.
    [27] Colliander J, Keel M, Staflani G, et al. Global well-posedness for Schro¨dinger equations withderivative. SIAM J. Math. Anal.,2001,33(3):649–669.
    [28] Colliander J, Keel M, Staflani G, et al. A refined global wellposedness for the Schro¨dingerequations with derivative. SIAM J. Math. Anal.,2002,34(1):64–86.
    [29] Ginibre J, Velo G. On a class of nonlinear Schro¨dinger equations, special theories in dimen-sions1,2and3. Ann. Inst. Henri Poincare′,1978,28(3):287–316.
    [30] Ginibre J, Velo G. On a class of nonlinear Schro¨dinger equations. J. Funct. Anal.,1979,32(1):1–71.
    [31] Ginibre J, Velo G. On a class of nonlinear Schro¨dinger equations with nonlocal interaction.Math.Z.,1980,170(2):109–136.
    [32] Lin J, Strauss W. Decay and scattering of solutions of a nonlinear Schro¨dinger equation. J.Funct. Anal.,1978,30(2):245–263.
    [33] Morawetz C. Time decay for the nonlinear Klein Gordon equation. Proc. Roy. Soc,1968,306(1486):291–296.
    [34] Ginibre J, Velo G. Scattering theory in the energy space for a class of nonlinear Schro¨dingerequations. J. Math. Pures Appl.,1985,64(9):363–401.
    [35] Ginibre J, Velo G. Time decay of finite energy solution of the nonlinear Klein-Gordon andSchro¨dinger equations. Ann. Inst. H. Poincare′Phys. The′or.,1985,43(4):399–442.
    [36] Bourgain J. Global wellposedness of defocusing3D critical NLS in the radial case. J. Amer.Math. Soc.,1999,12(1):145–171.
    [37] Tao T. Global wellposedness and scattering for the higher-dimensional energy-critical nonlin-ear Schro¨dinger equation for radial data. New York J. Math.,2005,11:57–80.
    [38] Colliander J, Keel M, Staflani G, et al. Scattering for the3D cubic NLS below the energynorm. Comm. Pure Appl. Math.,2004,57(8):987–1014.
    [39] Colliander J, Keel M, Staflani G, et al. Global wellposedness and scattering in the energyspace for the critical nonlinear Schro¨dinger equation in R3. Ann. of Math.,2008,167(3):767–865.
    [40] Ryckman E, Visan M. Global wellposedness and scattering for the defocusing energy criticalnonlinear Schro¨dinger equation in R4. Amer. J. Math.,2007,129(1):1–60.
    [41] Visan M. The defocusing energy-critical nonlinear Schro¨dinger equation in higher dimensions.Duke Math. J.,2007,138(2):281–374.
    [42] Bahouri H, Ge′rard P. High frequency approximation of solutions to critical nonlinear waveequations. Amer. J. Math.,1999,121(1):131–175.
    [43] Keraani S. On the defect of compactness for the Strichartz estimates of the Schro¨dinger equa-tions. J. Diferential Equations,2001,175(2):353–392.
    [44] Kenig C E, Merle F. Global well-posedness, scattering and blow-up for the energy-critical,focusing, non-linear Schro¨dinger equation in the radial case. Invent. math.,2006,166(3):645–675.
    [45] Miao C, Xua G, Zhao L. Global well-posedness and scattering for the focusing energy-criticalnonlinear Schro¨dinger equations of fourth order in the radial case. J. Diferential Equations,2009,246(9):3715–3749.
    [46] Li D, Miao C, Zhang X. The focusing energy-critical Hartree equation. J. Diferential Equa-tions,2009,246(3):1139–1163.
    [47] Killip R, Visan M. Global well-posedness and scattering for the defocusing quintic NLS inthree dimensions. preprint,2011. http://arxiv.org/abs/1102.1192v2.
    [48] Holmer J, Roudenko S. A sharp condition for scattering of the radial3D cubic nonlinearSchro¨dinger equation. Comm. Math. Phys.,2008,282(2):435–467.
    [49] Duyckaerts T, Holmer J, Roudenko S. Scattering for the non-radial3D cubic nonlinearSchro¨dinger equation. Math. Res. Lett.,2008,15(6):1233–1250.
    [50] Duyckaerts T, Merle F. Dynamic of threshold solutions for energy-critical NLS. Geom. Funct.Anal.,2009,18(6):1787–1840.
    [51] Li D, Zhang X. Dynamics for the energy critical nonlinear Schro¨dinger equation in highdimensions. J. Funct. Anal.,2009,256(6):1928–1961.
    [52] Merle F, Vega L. Compactness at blow-up time for L2solutions of the critical nonlinearSchro¨dinger equation in2D. Intern. Math. Res. Not.,1998,1998(8):399–425.
    [53] Carles R, Keraani S. On the role of quadratic oscillations in nonlinear Schro¨dinger equations.II. The L2critical case. Trans. Amer. Math. Soc.,2007,359(1):33–62.
    [54] Be′gout P, Vargas A. Mass concentration phenomena for the L2critical nonlinear Schro¨dingerequation. Trans. Amer. Math. Soc.,2007,359(11):5257–5282.
    [55] Tao T, Visan M, Zhang X. Minimal-mass blowup solutions of the mass-critical NLS. ForumMath.,2008,20(5):881–919.
    [56] Dodson B. Global well-posedness and scattering for the defocusing, L2critical, nonlinearSchro¨dinger equation when d=2. preprint,2011. http://arxiv.org/abs/1006.1375v2.
    [57] Dodson B. Global well-posedness and scattering for the defocusing, L2critical, nonlinearSchro¨dinger equation when d≥3. preprint,2011. http://arxiv.org/abs/0912.2467v3.
    [58] Killip R, Visan M. The focusing energy-critical nonlinear Schro¨dinger equation in dimensionsfive and higher. Amer. J. Math.,2010,132(2):361–424.
    [59] Carles R. On the Cauchy problem in Sobolev spaces for nonlinear Schro¨dinger equations withpotential. Port. Math.,2008,65(2):191–209.
    [60] Banica V, Carles R, Duyckaerts T. Minimal blow-up solutions to the mass critical inhomoge-neous NLS equation. Comm. Partial Diferential Equations,2011,36(4):487–531.
    [61] Killip R, Visan M, Zhang X. Energy-critical NLS with quadratic potentials. Comm. PartialDiferential Equations,2009,34(10-12):1531–1565.
    [62] Banica V. The nonlinear Schro¨dinger equation on the hyperbolic space. Comm. Partial Difer-ential Equations,2007,32(10):1643–1677.
    [63] Banica V, Carles R, Duyckaerts T. On scattering for NLS: from Euclidean to hyperbolic space.Discrete Contin. Dyn. Syst.,2009,24(4):1113–1127.
    [64] Banica V, Carles R, Staflani G. Scattering theory for radial nonlinear Schro¨dinger equationson hyperbolic space. Geom. Funct. Anal.,2008,18(2):367–399.
    [65] Ionescu A, Pausader B, Staflani G. On the global wellposedness of energy critical Schro¨dingerequations in curved spaces. preprint,2010. http://arxiv.org/abs/1008.1237v2.
    [66] Ionescu A, Staflani G. Semilinear Schro¨dinger flows on hyperbolic spaces: scattering H1.Math. Ann.,2009,345(1):133–158.
    [67] Burq N, Ge′rard P, Tzvetkov N. Strichartz inequalities and the nonlinear Schro¨dinger equationon compact manifolds. Amer. J. Math,2004,126(3):569–605.
    [68] Burq N, Ge′rard P, Tzvetkov N. Bilinear eigenfunction estimates and the nonlinear Schro¨dingerequation on surfaces. Invent. Math.,2005,159(1):187–223.
    [69] Gerard P. The Cauchy problem for the Gross-Pitaevskii equation. Ann.I.H.Ponicare′-AN.,2006,23(5):765–779.
    [70] Strichartz R. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions ofwave equations. Duke Math. J.,1977,44(3):705–714.
    [71] Ginibre J, Velo G. The global Cauchy problem for the nonlinear Schro¨dinger equation revisited.Ann. Inst. H. Poincare′Anal. Non Line′aire,1985,2(4):309–327.
    [72] Keel M, Tao T. Endpoint Strichartz inequalities. Amer. J. Math.,1998,120(5):955–980.
    [73] Lieb E H, Loss M. Analysis. Providence, Rhode Island: American Mathematical Society,2001.
    [74] Stein E M. Harmonic Analysis. Princeton: Princeton University Press,1993.
    [75] Pausader B. Global well-posedness for energy critical fourth-order Schro¨dinger equations inthe radial case. Dyn. Partial Difer. Equ.,2007,4(3):197–225.
    [76] Wang B. Bessel (Riesz) potentials on Banach function spaces and their applications I Theory.Acta Math.Sinica.,1998,14(3):327―340.
    [77] Zhu S, Zhang J, Yang H. Limiting profile of the blow-up solutions for the fourth-order nonlin-ear Schro¨dinger equation. Dyn. Partial Difer. Equ.,2010,7(2):187–205.
    [78] Lassoued L, Lefter C. On a variant fo the Ginzburg-Landau energy. Nonlinear Difer. Equ.Appl.,1998,5(1):39–51.
    [79] Zhidkov P E. The Cauchy problem for a nonlinear Schro¨dinger equation. Joint Inst. NuclearRes.Dubna,1987,15:15.
    [80] Kato T. On nonlinear Schro¨dinger equations. Ann. Inst. H. Poincare′Phys. The′or,1987,46(1):113–129.
    [81] Yi S, You L. Trapped atomic condensates with anisotropic interactions. Phys. Rev.,2000,61(4):041604.
    [82] Ronen S, Bortolotti D, Blume D, et al. Dipolar Bose-Einstein condensates with dipole-dependent scattering length. Phys. Rev.,2006,74(3):033611.
    [83] Carles R, Markowich P A, Sparber C. On the Gross Pitaevskii equation for trapped dipolarquantam gases. Nonlinearity.,2008,21(11):2569–2590.
    [84] Berestycki H, Cazenave T. Instabilite desetats stationnaires dans lesequations de Schro¨dingeret de Klein Gordon non lineaires. C. R. Acad. Sci. Paris Ser. I Math.,1981,293(9):489–492.
    [85] Zhang J. Sharp conditions of global existence for nonlinear Schro¨dinger and Klein Gordonequations. Nonlinear Anal.,2002,48(2):191–207.
    [86] Stein E M. Singular integrals and diferentiability properties. Princeton: Princeton UniversityPress,1970.
    [87] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving criticalSobolev exponents. Comm. Pure Appl. Math.,1983,36(4):437–477.
    [88] Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: fourth ordernonlinear Schro¨dinger-type equations. Phys. Rev.,1996,53(2):1336–1339.
    [89] Fibich G, Ilan B, Papanicolaou G. Self-focusing with fourth order dispersion. SIAM J. Appl.Math.,2002,62(4):1437–1462.
    [90] Chae M, Hong S, Lee S. Mass concentration for the L2-critical nonlinear Schro¨dinger equationsof higher orders. preprint,2009. http://arxiv.org/abs/0904.3021v1.
    [91] Zhu S, Zhang J, Yang H. Blow-up of rough solutions to the fourth-order nonlinear Schro¨dingerequation. Nonlinear Anal.,2011,74(17):6186–6201.
    [92] Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals.Trans. Amer. Math. Soc.,1975,212:315–331.
    [93] Christ M, Weinstein M. Dispersion of small amplitude solutions of the generalized KortewegdeVries equation. J. Funct. Anal.,1991,100(1):87–109.
    [94] Colliander J, Raphael P. Rough blowup solutions to the L2critical NLS. Math. Ann.,2009,345(2):307–366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700