高阶非线性抛物方程解的性质及其数值解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性高阶抛物型方程作为数学模型描述了很多物理学、化学、信息科学、生命科学、地理科学、环境科学以及空间科学等领域中出现的现象,是非线性科学的重要组成部分.
     本文研究了三种具有广泛物理背景的高阶非线性抛物型方程解的性质及其数值解法.
     首先,我们研究了扩散系数依赖于未知函数本身的薄膜外延增长方程的初边值问题利用Leyar-Schauder不动点定理,Campanato空间的性质和先验估计,我们得到了初边值问题(1)整体解的存在唯一性以及古典解的存在性.
     然后,我们研究了描述薄膜外延增长的方程和晶体表面生长的方程的解的长时间行为问题.借用[1,2]中关于整体吸引子的存在性定理,我们得到了在分数维空间Hk(0≤k<5)中方程(2)的整体吸引子的存在性以及在分数维空间Hk(0≤k<+∞)中方程(3)整体吸引子的存在性.需要强调的是方程(2)中p的取值不但可以是整数,还可以是分数.当我们对方程(2)进行先验估计的时候,如果对非线性项div(|(?)u|p-2(?)u)微分多次,则会出现负指数的情形(这种情形的先验估计很难得到).因此,我们只能得到在Hk(0≤k<5)空间中方程(2)的整体吸引子存在性.而方程(3)就不存在这种情况,我们可以利用迭代法得到其在更广泛的分数维空间Hk(0≤k<+∞)中整体吸引子的存在性.
     另外,我们考虑了晶体表面生长方程和薄膜外延增长方程的数值解法.文献[3]曾经对Cahn-Hilliard方程进行过有限元分析.借助于一个双调和问题的有限元投影逼近,作者得到了方程(4)的最优阶L2模误差估计.本文中,我们考虑方程(2)和方程(3)的一维情形的有限元方法.我们也借助于一个双调和问题的有限元投影逼近,得到了方程的最优阶L2模误差估计,并进行了数值分析.需要特别指出的是,在[3]中,方程的非线性项是(?)2/(?)x2φ(u),在建立逼近格式的时候,可以通过两次分部积分(在适当的边界条件下)和先验估计结果来进行分析,即其中Sh(k)为剖分上分段k≥3次多项式构成的有限元空间.而后利用双调和方程标准的有限元分析方法[4]得到想要的结果.而我们所考虑的两个方程的非线性项与[3]中不同.在建立逼近格式的时候只能分部积分一次(在适当的边界条件下),利用先验估计结果可得由于有一阶导数项的存在,此时利用双调和方程标准的有限元分析方法[4],空间上的误差精度会下降一阶.
     修正Swift-Hohenberg方程也是一类带有一阶导数项的高阶抛物型方程.我们利用Fourier谱方法对该方程的数值解进行分析,建立了半离散格式和全离散格式,给出了误差估计.在对修正Swift-Hohenberg方程进行Fourier谱分析的时候也会遇到类似上面的问题.但是,方程(5)的一阶导数项是二次的,运用合适的分部积分和先验估计,可以避免空间上误差精度的下降.
As mathematics models, higher-order nonlinear parabolic type equations describe many phenomenons which exist in Physics, Chemistry, Informatics, Bioscience, Geo-science, Environmental science, Space science and so on. Higher-order nonlinear parabol-ic type equations is an important part of Nonlinear science.
     In this paper, we consider the properties of solutions and numerical solutions for three types of higher order nonlinear parabolic equation with extensive physical back-ground.
     Firstly, we consider the higher order nonlinear parabolic equation describing thin-film epitaxial growth whose diffusion coefficient dependents on the unknown function Using Leyar-Schauder fixed point theorem, the qualities of Campanato space and a prior estimates, we get the existence and uniqueness of global solutions and the existence of classical solutions for IBVP (1).
     Secondly, we study the long time behavior of solutions for the higher order non-linear parabolic equation describing thin-film epitaxial growth and the higher order nonlinear parabolic equation describing process growing of a crys-tal surface Using the theorem of existence of global attractor in [1,2], we obtain the existence of global attractor for equation (2) in fractal dimension space Hk(0≤k<5) and the existence of global attractor for equation (3) in fractal dimension space Hk(0≤k<+∞). Noticing that the value of p is not only integer, but also fraction in (2), when we consider the a prior estimates for equation (2), if differential many times for term div(|(?)u|p-2(?)u), it maybe exists negative exponential (the a priori estimates of this kind of situation are hard to obtain). So, we have to obtain the existence of global attractor for (2) in space Hk(0≤k<5). On the other hand, there is no this kind of situation for equation (3), we can use iteration method get the existence of global attractor for equation (3) in space Hk(0≤k<+∞).
     Thirdly, we consider the numerical solutions for the higher order nonlinear parabol-ic equations describing thin-film epitaxial growth and process growing of a crystal sur-face. Using finite element method,[3] studied the Cahn-Hilliard equation Basing on the finite element projection approximation of a biharmonic problem, he ob-tain the optimal order L2-norm error estimate for equation4. In this paper, we consider the finite element method for equation (2) and equation (3). We also use the finite ele-ment projection approximation of a biharmonic problem, obtain the optimal order L2-norm error estimate, get the numerical analysis. Moreover, in [3], the nonlinear term of equation is (?)2/(?)x2φ(u). when establishing the approximation form, we can integration by parts two times (under sufficiently boundary value conditions) and the a prior estimates, that is where Sh(k) is a finite element space which constituted by the k≥3piecewise polyno-mial. Then, using the finite element analysis method for biharmonic equation [4], we can obtain the result. But the nonlinear terms of the two equations considered by us are different from [3]. When we establish the approximation form, we can only integration by parts one time (under sufficiently boundary value conditions), using the result of a prior estimate, we get Because there exist the derivative term, by the finite element analysis method for bihar-monic equation [4], the error precision of space will decline in one order.
     The modified Swift-Hohenberg equation is also a higher order nonlinear parabolic equation with a derivative term. Using Fourier spectral method, we study the numerical solutions for equation (5). We establish the semi-discrete form and full-discrete form, get the error estimates. We can also meet the same problem when we analyse the equation. But, the derivative term is a quadratic term, using sufficient integration by parts and the a prior estimates, we can avoid the decline of error precision of space.
引文
[1]Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics [M], Springer-Verlag, Berlin/New York,1988.
    [2]马天,汪守宏.非线性演化方程的稳定性与分歧[M].北京:科学出版社,2006.
    [3]张铁,Cahn-Hilliard方程的有限元分析[J].计算数学,28(2006),281-292.
    [4]Ciarlet P., The Finite Element Method for Elliptic Problems [J]. North-Holland, Amsterdam,1978.
    [5]谷超豪,李大潜,陈恕行,数学物理方程(第二版)[M].北京:高等教育出版社,2002.
    [6]朱春蓉,不变子空间方法在非线性偏微分方程中的应用[D].西安:西北大学数学系,2009.
    [7]Barrett J. W., Blowey J. F., Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility [J], Math. Comput.,68(1999),487-517.
    [8]He Yinnian, Liu Yunxian, Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation [J]. Numerical Methods for Partial Dif-feretial Equations,24(2008),1485-1500.
    [9]Boyer F. Lapuerta C., Study of a three component Cahn-Hilliard flow model [J], ESAIM:Mathematical Modelling and Numerical Analysis,40(2006),653-687.
    [10]Feng Xiaobing, Wu Haijun, A posteriori error estimates for finite element approx-imations of the Cahn-Hilliard equation and the Hele-Shaw flow [J]. J. Comput. Math.,26(2008),767-796.
    [11]Cahn J. M., J. E. Hilliard, Free energy of a non-uniform system Ⅰ. Interfacial free energy [J], J. Chem. Phys.,28(1958),258-367.
    [12]Hazewinkel M., Kaashoek J. F. Leynse B., Pattern formation for a one dimen-sional evolution equation based on Yhom's river basin model [R], Report8519/B, Econometric Institute, Erasmu University (1985).
    [13]Cohen D. S., Murray J. D., A generalized diffusion model for growth and dispersal in a population [J], J. Math. Biology,12(1981),237-249.
    [14]梁波,几类高阶非线性抛物方程解的存在性与渐近性[D].大连:大连理工大学数学科学学院,2009.
    [15]Bernis F. Friedman A., Higher order nonlinear degenerate parabolic equations [J]. J. Differential Equations,83(1990),179-206.
    [16]Flitton J. C., King J. R., Moving-boundary and fixed-domain problems for a sixth-order thin-film equation [J]. Euro. J. Appl. Math.,15(2004),713-754.
    [17]Barrett J. W., Langdon S. Nurnberg R., Finite element approximation of sixth order nonlinear degenerate parabolic equation [J]. Number. Math.,96(2004),401-434.
    [18]Evans J. D., Galaktionov V. A., King J. R., Unstable six-order thin film equation: I. Blow-up similarity solutions [J],. Nonlinearity,20(2007),1799-1841.
    [19]Ansini L. Giacomelli L, Doubly nonlinear thin-film equations in one space di-mension [J]. Arch. Ration. Mech. Anal.,173(2004),89-131.
    [20]Ye Lina, Yan Guangwu, Li Tingting, Numerical method based on the lattice Boltzmann model for the Kuramoto-Sivashinsky equation [J]. J. Sci. Comput.,49(2011),195-210.
    [21]Michelson Daniel, Radial asymptotically periodic solutions of the Kuramoto-Sivashinsky equation [J]. Phys. D,237(2008),351-358.
    [22]Guo Fei, Global weak solutions and wave breaking phenomena to the peri-odic Degasperis-Procesi equation with strong dispersion [J]. Nonlinear Anal.,71(2009),5280-5295.
    [23]Tian Lixin, Shen Chunyun, Optimal control of the viscous Degasperis-Procesi equation [J]. J. Math. Phys.,48(2007),113513.
    [24]Fan Xinghua, Yang Shouxiang, Yin Jiuli, Tian Lixin, Bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation [J]. Commun. Nonlinear Sci. Numer. Simulat.,16(2011),3956-3963.
    [25]李兴鳌,杨建平,左安友,翁祝林,薄膜外延生长中表面原子过程的动力学研究[J].湖北民族学院学报(自然科学版),23(2005),172-176.
    [26]Zangwill A., Some causes and a consequence of epitaxial roughening [J]. J. Cryst. Growth,163(1996),8-21.
    [27]Ortiz M., Repetto E. A., Si H., A continuum model of kinetic roughening and coarsening in thin films [J], J. Mech. Phys. Solids,47(1999),697-730.
    [28]Stein O., Therole of the transition function in a continuum model for kinetic roughening and coarsening in thin films [R], ICAM Report99-07-02, Virginia Tech.,1999.
    [29]Edwards S. F., Wilkinson D. R., The surface statistics of a granular aggregate [J]. Proc. Roy. Soc. London Ser. A,381(1982),17-31.
    [30]Mullins W. W., Theory of thermal grooving [J]. J. Appl. Phys.,28(1957),333-339.
    [31]Herring C., Surface tension as a motivation for sintering, in:W.E. Kingston (Ed.)[M]. The Physics of Powder Metallurgy, McGraw-Hill, New York,1951.
    [32]Dassarma S., Ghaisas S. V, Solid-on-solid rule sand models for nonequilibrium growth in2+1dimensions [J], Phys. Rev. Lett.,69(1992),3762-3765.
    [33]King B. B., Stein O., Winkler M., A fourth order parabolic equation modeling epitaxial thin film growth [J], J. Math. Anal. Appl.,286(2003),459-490.
    [34] Kohn R. V., Yan X., Upper bound on the coarsening rate for an epitaxial growthmodel [J], Comm. Pure. Appl. Math.,56(2003),1549-1564.
    [35] Liu Changchun, Regularity of solutions for a fourth order parabolic equation [J],Bull. Belgi. Math. Soc.-Simon Stevin,13(2006),527-535.
    [36] Liu Changchun, A fourth order parabolic equation with nonlinear principal part[J], Nonlinear Anal.,68(2008),393-401.
    [37] Liu Changchun, A fourth-order parabolic equation in two space dimensions [J].Math. methods Appl. Sci.,30(2007),1913-1930.
    [38] Rost M., Smilauer P., Krug J., Unstable epitaxy on vicinal surfaces [J]. SurfaceScience,20(1996),393-402.
    [39] Stroscio J. A., Pierce D. T., Stiles M., Zangwill A., Sander L. M., Coarseningof unstable surface features during Fe(001) homoepitaxy [J]. Phys. Rev. Lett.,75(1995),4246-4249.
    [40] Mullins W. W., Flateening of nearly plane surfaces due to caplllarity [J]. J. Appl.Phys.,30(1959),77-87.
    [41] Krug J., Plischke M., Siegert M., Surface diffusion currents and the universalityclasses of growth [J]. Phys. Rev. Lett.,70(1993),3271-3274.
    [42] Krug J., Schimschak M., Metastability of step flow growth in1+1dimensions[J]. J. Phys.(France) I,5(1995),1065-1086.
    [43] Johnson M.D., Orme C., Hunt A. W., Graff D., Sudijono J., Sander L. M., Orr B.G., Stable and unstable growth in molecular beam epitaxy [J]. Phys. Rev. Lett.,72(1994),116-119.
    [44] Rost M., Krug J., Coarsening of surface structures in unstable epitaxial growth[J]. Phys. Rev. E,55(1997),3952-3957.
    [45] Pierre-Louis O., Misbah C., Saito Y., New nonlinear evolution equation for stepsduringmolecularbeamepitaxyonvicinalsurfaces[J],Phys.Rev.Lett.,80(1998),4221-4224.
    [46] Fujimura H., Yagi A., Dynamical system for BCF model describing crystal sur-face growth [J], Vestnik Chelyab. Univ. Ser.3Mat. Mekh. Inform.,10(2008),75–88.
    [47] Fujimura H., Yagi A., Asymptotic behavior of solutions for dynamical systemfor BCF model describing crystal surface growth [J], Int. Math. Forum.,3(2008),1803–1812.
    [48] Grasselli M., Mola G., Yagi A., On the longtime behavior of solutions to a modelfor epitaxial growth [J], Osaka J. Math.,48(2011),987-1004.
    [49] Fujimura H., Yagi A., Homogeneous stationary solution for BCF model describ-ing crystal surface growth [J], Sci. Math. Jpn.,69(2009),295-302.
    [50] Hunt A. W., Orme C., Williams D. R. M., Orr B. G., Sander L. M., Instabilitiesin MBE growth [J], Europhys. Lett.,27(1994),611–616.
    [51] Johnson M. D., Orme C., Hunt A. W., Graff D., Sudijion J., Sauder L. M., OrrB. G., Stable and unstable growth in molecular beam epitaxy [J], Pys. Rev. Lett.,72(1994),116-119.
    [52] Zhao Xiaopeng, Liu Changchun, Global attractor for a nonlinear model with peri-odic boundary value condition [J], Portugaliae Mathematica,69(2012),221-231.
    [53] Zhao Xiaopeng, Liu Bo, Duan Ning, Time-periodic solution for a fourth-orderparabolic equation describing crystal surface growth [J], Electric Journal of Qual-itative Theory of Differential Equations, No7,2013,1-15.
    [54] Swift J., Hohenberg P. C., Hydrodynamics fluctuations at the convective instabil-ity [J]. Phys. Rev. A.15(1977),319–328.
    [55] Doelman A., Standstede B., Scheel A., Schneider G., Propagation of hexagonalpatterns near onset [J]. European J. Appl. Math.,14(2003),85–110.
    [56] Kuramoto Y., Diffusion-induced chaos in reaction systems [J]. Supp. Prog. The-oret. Phys.,64(1978),346–347.
    [57]Sivashinsky G. L., Nonlinear analysis of hydrodynamic instability in laminar flames [J]. Acta Astron.,4(1977),1177-1206.
    [58]Peletier L. A., Rottschafer V, Large time behavior of solution of the Swift-Hohenberg equation [J]. C. R. Acad. Sci. Paries, Ser. I,336(2003),225-230.
    [59]Lega J., Moloney J. V, Newell A.C., Swift-Hohenberg equation for lasers [J]. Phys. Rev. Lett.,73(1994),2978-2981.
    [60]Cross M. G., Rabinowitz P. H., Pattern formation outside of equilibrium [J]. Rev. Mod. Phys.,65(1993),851-1112.
    [61]Dawes J. H. P., Localized pattern formation with a large-Scale model:Slanted snaking [J]. SIAM J. Appl. Dyn. Syst.,7(2008),186-206.
    [62]Polat M., Global attractor for a modified Swift-Hohenberg equation [J], J. Math. Anal. Appl.,57(2009),62-66.
    [63]Sell G., You Y, Dynamics of Evolutionary Equations[M]. Springer, New York,2002.
    [64]Song Lingyu, Zhang Yindi, Ma Tian, Global attractor of a modified Swift-Hohenberg equation in Hk spaces [J], Nonlinear Anal.,72(2010),183-191.
    [65]李开泰,黄艾香,黄庆怀,有限元方法及其应用[M].北京:科学出版社,2006.
    [66]孙玉晓,对流扩散方程的有限差分法[D].成都:西南石油大学理学院,2011.
    [67]樊方成,Cahn-Hilliard方程的有限元分析[D].沈阳:东北大学理学院数学系,2008.
    [68]Canuto C., Quarteroni, Error estimates for spectral and pesudospectral approxi-mations of hyperbolic equations [J]. SIAM J. Numer. Anal.,19(1982),629-643.
    [69]Canuto C., Hussaini M. Y, Quarteroni, Zang T. A., Spectral Methods in Fluid Dynamics [M]. Springer-Verlag, New-York,1987.
    [70]郭本瑜, Kdv-Burges方程谱方法的误差估计[J].数学学报,1(1985),1-15.
    [71]Quarteroni A., Valli A., Numerical approximation of Partial Differential Equa-tions [M]. Springer-Verlag, New York,1997.
    [72]李荣华,边值问题的Galerkin有限元法[M].北京:科学出版社,2005.
    [73]李荣华,刘播,微分方程数值解法(第四版)[M].北京:高等教育出版社,2009.
    [74]Milner, F. A., A mixed finite element method for the Cahn-Hilliard and the Sivashinsky equations [J]. Mat. Apl. Comput.,9(1990),3-22.
    [75]Gong Wei, Yan Ningning, A mixed finite element scheme for optimal control problems with pointwise state constraints [J]. J. Sci. Comput.,46(2011),182-203.
    [76]Feng Xiaobing, Prohl Andreas, Error analysis of a mixed finite element method for the Cahn-Hilliard equation [J]. Numer. Math.,99(2004),47-84.
    [77]Elliott Charles M., French Donald A., A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation [J]. SIAM J. Numer. Anal.,26(1989),884-903.
    [78]Zhang Shuo, Wang Ming, A nonconforming finite element method for the Cahn-Hilliard equation [J]. J. Comput. Phys.,229(2010),7361-7372.
    [79]Kay David, Styles Vanessa, Suli Endre, Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection [J]. SIAM J. Numer. Anal.,47(2009),2660-2685.
    [80]张铁,李铮,一阶双曲问题间断有限元的后验误差分析[J].计算数学,34(2012),215-224.
    [81]Xia Yinhua, Xu Yan, Shu Chi-Wang, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys.5(2009), no.2-4,821-835.
    [82]Yu Xijun, Dai Qingfang, The Runge-Kutta DG finite element method and the KFVS scheme for compressible flow simulations [J]. Numer. Methods Partial D-ifferential Equations,22(2006),1455-1478.
    [83]Fix George M., Hybrid finite element methods [J]. SIAM Rev.,18(1976),460-484.
    [84]Ooi E. T., Yang Z. J., A hybrid finite element-scaled boundary finite element method for crack propagation modelling [J]. Comput. Methods Appl. Mech. En-grg.,199(2010),1178-1192.
    [85]Russo Anahi Dello, Alonso Ana, Hybrid finite element analysis of fluid-structure systems with coupling on curved interfaces [J]. IMA J. Numer. Anal.,31(2011),1636-1682.
    [86]李荣华,陈仲英,微分方程广义差分法[M].长春:吉林大学出版社,1994.
    [87]Wang Shuai, Yuan Guangwei, Li Yonghai, Sheng Zhiqiang, A monotone finite volume scheme for advection-diffusion equations on distorted meshes [J]. Inter-nat. J. Numer. Methods Fluids,69(2012),1283-1298.
    [88]Akrivis G. D., Finite difference discretization of the Kuramoto-Sivashinsky equa-tion [J]. Numer. Math.,63(1992),1-11.
    [89]Choo S. M., Chung S. K., Conservative nonlinear difference scheme for the Cahn-Hilliard equation [J]. Comput. Math. Appl.,36(1998),31-39.
    [90]Furihata Daisuke, A stable and conservative finite difference scheme for the Cahn-Hilliard equation [J]. Numer. Math.,87(2001),675-699.
    [91]Khiari N., Achouri T., Ben Mohamed M. L., Omrani K., Finite difference ap-proximate solutions for the Cahn-Hilliard equation [J]. Numer. Methods Partial Differential Equations,23(2007),437-455.
    [92]Sun Z. Z., A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation [J]. Math. Comput.,64(212)(1995),1463-1471.
    [93]Khiari N., Omrani K., Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions [J]. Computers and Mathematics with Applications,62(2011),4151-4160.
    [94]Qiao Zhonghua, Sun Zhizhong, Zhang Songru, The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model [J]. Numerical Methods for Partial Differetial Equations,28(2012),1893-1915.
    [95]Shen Jie, Tang Tao, Spectral and High-Order Methods with Application [M]. Sci-ence Press, Beijing,2006.
    [96]Ye X., The Fourier collocation method for the Cahn-Hilliard equation [J]. Com-put. Math. Appl.,44(2002),213-229.
    [97]Ye X., Cheng X., The Fourier spectral method for the Cahn-Hilliard equation [J]. Appl. Math. Comput.,171(2005),345-357.
    [98]He Yinnian, Liu Yuxian, Tangtao, On large time-stepping methods for the Cahn-Hilliard equation [J]. Appl. Numer. Math.,57(2007),616-628.
    [99]Xu Chuanju, Tang Tao, Stability analysis of large time-stepping methods for epi-taxial growth models [J]. SIAM J. Numer. Anal.,44(2006),1759-1779.
    [100]叶兴德,程晓良, Cahn-Hilliard方程的Legendre谱逼近[J].计算数学,25(2003),157-170.
    [101]Feng W. M., Yu P., Hu S. Y, Liu Z. K., Du Q., Chen L. Q., A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity [J]. Commun. Comupt. Phys.,5(2009),582-599.
    [102]Howard P., Spectral analysis for periodic solutions of the Cahn-Hilliard equation on R [J]. Nonlinear Differ. Equ. Appl.,18(2011),1-26.
    [103]Barrett J. W., Blowey J. F., Garcke H., Finite element approximation of a fourth order nonlinear degenerate parabolic equation [J]. Numer. Math.,80(1998),525-556.
    [104]Injrou S., Pierre M., Error estimates for a finite element discretization of the Cahn-Hilliard-Gurtin equations [J]. Advances in Differential Equations,15(2010),1161-1192.
    [105]Banas Lubomir, Nurnberg Robert, Adaptive finite element methods for Cahn-Hilliard equations [J]. J. Comput. Appl. Math.,218(2008),2-11.
    [106]吴微,解非线性分枝问题的扩展方程方法[D].北京:科学出版社,1993.
    [107]伍卓群,尹景学,王春朋,椭圆与抛物型方程引论[M].北京:科学出版社,2003.
    [108]Adams R. A., Sobolev Space, New York-San Francisco-London:Academic Press,1975.
    [109]Elliott C. M., Zheng Songmu, On the Cahn-Hilliard equation [J], Arch. Rat. Mech. Anal.,96(1986),339-357.
    [110]Lii Shujuan, Lu Qishao, Fourier spectral approximation to long-time behavior of dissipative generalized KdV-Burgers equations [J]. SIAM J. Numer. Anal.,44(2006),561-585.
    [111]Yin Jingxue, On the Cahn-Hilliard equation with nonlinear principal part [J], J. Partial Differential Equations,7(1994),77-96.
    [112]Yin Jingxue, Liu Changchun, Regularity of solutions of the Cahn-Hilliard equa-tion with concentration dependent mobility [J]. Nonlinear Anal.,45(2001),543-554.
    [113]Jin Chunhua, Yin Jingxue, Yin Li, Existence and blow-up of solutions of a fourth-order nonlinear diffusion equation [J], Nonlinear Anal.:Real World Appl.,9(2008),2313-2325.
    [114]Huang Rui, Yin Jingxue, Wang Liangwei, Non-blow-up phenomenon for the Cahn-Hilliard equation with non-constant mobility [J]. J. Math. Anal. Appl.,379(2011),58-64.
    [115]Zheng S. M., Asymptotic behavior of solution to the Cahn-Hilliard equation [J]. Appl. Anal.,23(1986),165-184.
    [116]Zhao Xiaopeng, Zhang Min, Liu Changchun, Some properties of solutions for a fourth-order parabolic equation [J], Mathematical Methods in the Applied Sci-ences,36(2013),169-181.
    [117]伍卓群,赵俊宁,尹景学,李辉来.非线性扩散方程[M].长春:吉林大学出版社,1996.
    [118]Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear El-liptic System [M]. Princeton Univ. Press, Princeton, NJ,1983.
    [119]郭柏灵.无穷维动力系统[M].北京:国防工业出版社,2000.
    [120]赵晓朋,四阶抛物方程的整体吸引子[D].长春:吉林大学数学研究所,2010.
    [121]Wu Hao, Zheng Songmu, Global attractor for the1-D thin film equation [J]. Asym. Anal.,51(2007),101-111.
    [122]Duan Ning, Zhao Xiaopeng, Global attractor for a fourth-order parabolic equa-tion modeling epitaxial thin film growth [J], Bulletin of the Polish Academy of Sciences Mathematics,60(2012),259-268.
    [123]Cheskidov A., Foias C., On global attractors of the3D Navier-Stokes equations [J]. J. Differential Equations,231(2006),714-754.
    [124]Xie Yongqin, Zhong Chengkui, The existence of global attractors for a class non-linear evolution equation [J]. J. Math. Anal. Appl.,336(2007),54-69.
    [125]Song Lingyu, He Yinnian, Zhang Yindi, The existence of global attractors for semilinear parabolic equation in Hk spaces [J], Nonlinear Anal.,68(2008),3541-3549.
    [126]Song Lingyu, Zhang Yindi, Ma Tian, Global attractor of the Cahn-Hilliard euqa-tion in Hk spaces [J], J. Math. Anal. Appl.,355(2009),53-62.
    [127]Gru n G., On Bernis' interpolation inequalities in multiple space dimensions [J]. Z. Anal. Anwendungen,20(4)(2001),987-998.
    [128]夏茜,陈文斌,刘建国,关于薄膜外延生长模型隐式全离散格式的误差分析[J].34(2012),30-51.
    [129]Zhou Jianwei, Yang Danping, An improved a posteriori error estimate for the Galerkin spectral method in one dimension [J]. Comput. Math. Appl.,61(2011),334-340.
    [130]冯立新,马富明,解一类具有周期系数的Helmholtz方程的Galerkin谱方法[J].吉林大学学报(理学版),41(2003),253-258.
    [131]Zhang Fa-yong, Lii Shu-juan, Long-time behavior of finite difference solutions of a nonlinear Schrodinger equation with weakly damped [J]. J. Comput. Math.,19(2001),393-406.
    [132]Xiong Xiang-Tuan, Fu Chu-Li, Cheng Jin, Spectral regularization methods for solving a sideways parabolic equation within the framework of regularization the-ory [J]. Math. Comput. Simulation,79(2009),1668-1678.
    [133]Chai S., Zou Y, Gong C., Spectral method for a class of Cahn-Hilliard equation with nonconstant mobility [J]. Commun. Math. Res.,25(2009),9-18.
    [134]梁宗旗,一类KS型方程大时间问题的Fourier逆谱逼近[J].高等学校计算数学学报,27(2005),114-118.
    [135]梁宗旗,Kolmogorov-Spieqel-Siveshinky方程大时间问题的Fourier逆谱逼近[J].数学物理学报,28A(2008),886-896.
    [136]Canuto C., Hussaini M. Y, Quarteroni A., Zang T. A., Spectral methods in fluid dynamics [M]. Springer-Verlag, New York,1988.
    [137]向新民,谱方法的数值分析[M].北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700