非线性奇异微分方程边值问题的正解及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性泛函分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向.它以数学和自然科学各个领域中出现的非线性问题为背景,建立处理许多非线性问题的若干一般性理论和方法.它的研究成果可以广泛应用于各种非线性微分方程、积分方程和其他各种类型的方程,以及计算数学、控制理论、最优化理论、动力系统、经济数学等许多领域.目前非线性泛函分析主要内容包括拓扑度理论、临界点理论、半序方法、解析方法和单调型映射理论等.
     非线性整数阶微分方程边值问题是微分方程理论中的一个重要课题.由于其重要的理论价值和实际背景,一直被许多研究者所关注,并取得丰富的研究成果.近几年,分数阶微分方程在扩散和运输理论、混沌与湍流、粘弹性力学及非牛顿流体力学等诸多领域得以广泛应用.已经引起国内外数学及自然科学界的高度重视,取得了一系列研究成果,成为国际热点研究方向之一
     本文主要利用非线性泛函分析的锥理论、不动点理论、不动点指数理论、Krasnosel-skii不动点定理、单调迭代方法等研究了整数阶和分数阶上几类微分方程奇异和半正边值问题(组)解得存在性、多解性等情况,同时我们研究了非线性二阶脉冲微分方程正解的存在性和多解性.通过深入的研究,在较弱的条件下获得了一些新的深刻有趣的结果.这些结果大都已经发表在国外重要的学术期刊上,如荷兰的《Commun. Non-linear Sci. Numer. Simul.》(SCI)、美国的《Abstr. Appl. Anal.》(SCI)、《Discrete Dyn. Nat. Soc.》(SCI)、《Adv. Difference Equ.》(SCI)、马来西亚的《Bull. Malays. Math. Sci. Soc.》(SCI)和匈牙利的《Electron. J. Qual. Theory Differ. Equ.》等.
     本文共分六章.第一章简要介绍了非线性泛函分析的历史背景与一些基本概念和定理.第二章研究两类整数阶微分方程组非局部边值问题正解的存在性.§2.2考察了一类带有耦合边值的二阶微分方程组对称正解的存在性、多解性.§2.3我们讨论了带有积分边界条件的p-Laplacian四阶微分系统正解的存在性结果.第三章我们讨论了两类整数阶半正边值问题正解的存在性.§3.2建立一类奇异积分边值问题一个正解和两个正解的存在性.§3.3我们得到了非线性项关于两个变元均奇异的积分边值问题正解的存在性结果.第四章讨论了一类二阶脉冲微分方程积分边值问题一个正解和三个正解的存在性结果.第五章我们研究了两类高阶分数微分方程正解的存在性、多解性.§5.2我们建立了一类带有参数项的m点边值问题正解的存在唯一性定理,并讨论了正解的某些性质.§5.3我们得到了一类分数阶奇异微分方程正解的唯一性、存在性及多解性结果.第六章,我们把注意力放在两类半正分数阶方程组的研究上.§6.2,我们探讨了具有变号非线性项的奇异分数阶积分边值问题正解的存在性.§6.3研究了带有耦合边界条件的奇异分数阶方程组正解的存在性定理.
Nonlinear functional analysis is a research field of mathematics with profoundtheories and extensive applications. It constructs many general theories and methodsto deal with nonlinear problems on the basis of the study of the nonlinear problemswhich appeared in mathematics and the natural sciences. Its rich theories and ad-vanced methods are widely used in studies of solving many kinds of nonlinear difer-ential equations, nonlinear integral equations and some other types of equations, andhandling many nonlinear problems in computational mathematics, cybernetics, opti-mized theory, dynamic system, economical mathematics, etc. At present, nonlinearfunctional analysis mainly covers topology degree theory, critical point theory, partialorder method, analysis method, monotone mapping theory, and so on.
     The boundary value problems of nonlinear integer diferential equations are im-portant subjects in the theory of diferential equations. Owing to the importance inboth theory and application, boundary value problems for integer diferential equa-tions have attracted many researchers’ attention, and a large number of results havebeen obtained. In recent years, fractional diferential equations have been widely usedin difusion and transport theory, chaos and turbulence, viscoelastic mechanics, non-newtonian fluid mechanics etc. As one of the hottest issues in the international researchfield, it has received highly attention of the domestic and foreign mathematics and nat-ural science field.
     The theory and method of nonlinear functional analysis has been employed inthe present paper, such as cone theory, fixed point theory, fixed point index theory,Krasnoselskii fixed point theorem and monotone iterative technique, to investigate theexistence, multiplicity of positive solutions to several kinds of (singular) boundary valueproblems of nonlinear integer (fractional) diferential equations (system). Besides, theexistence of solutions and multiple solutions for nonlinear second order impulsive difer-ential equation has been investigated. Having studied thoroughly, some new interestingresults under weaker conditions have been obtained, most of which have been publishedin Commun. Nonlinear Sci. Numer. Simul.(SCI), Abstr. Appl. Anal.(SCI),Discrete Dyn. Nat. Soc.(SCI), Adv. Diference Equ.(SCI), Bull. Malays.Math. Sci. Soc.(SCI) and Electron. J. Qual. Theory Difer. Equ.(SCI), ect.
     The dissertation is divided into six chapters. In Chapter I, the background ofnonlinear functional analysis and some basic concepts and theorems have been intro-duced. In Chapter II, the existence results for positive solutions are derived to twokinds of nonlocal boundary value problem of integer diferential systems. In§2.2, theexistence and multiplicity of symmetric positive solutions for a class of singular second-order diferential system with coupled boundary condition is established. In§2.3, theexistence results for positive solutions are considered as a class of singular p-Laplacianfourth-order diferential systems with integral boundary conditions. In Chapter III, theexistence of positive solutions for two kinds of semipositone boundary value problemsof singular integer diferential equation has been studied.§3.2, the existence of at leastone or two positive solutions for a class of singular integral boundary value problemhas been discussed. In§3.3, the existence results for positive solutions to a class ofintegral boundary value problem have been obtained, where the nonlinear term areboth singular at two variables. In Chapter IV, the existence of at least one, or threepositive solutions for a class of singular second order impulsive diferential equationwith integral boundary condition has been dealt with. In Chapter V, the existence andmultiplicity results for positive solutions have been studied to two kinds of higher orderfractional diferential equations. In§5.2, we established the uniqueness of positive so-lution and the dependence of solution on the parameter to a kind of m-point boundaryvalue problem, and the properties of positive solution are given. In§5.3, we obtain theuniqueness, the existence and multiplicity of positive solutions for singular fractionaldiferential equation. In Chapter VI, the study of two kinds of semipositone fractionaldiferential systems has been focused on. In§6.2, the existence of positive solutionsfor singular fractional diferential system has been discussed in a sign-changing nonlin-ear term and integral boundary condition. In§6.3, the existence of positive solutionsto a singular fractional diferential system with coupled boundary condition has beeninvestigated.
引文
[1] R. P. Agarwal, S.R. Grace, D. O’Regan. Existence of positive solutions to semi-positone Fredholm integral equations[J]. Funkcial. Ekvac.,2002,45:223-235.
    [2] R. P. Agarwal, D. O’Regan. A note on existence of nonnegative solutions tosingular semi-positone problems[J]. Nonlinear Anal.,1999,36:615-622.
    [3] R. P. Agarwal, D. O’Regan. Multiple nonnegative solutions for second order im-pulsive diferential equations[J]. Appl. Math. Comput.,2000,114:51-59.
    [4] R. P. Agarwal, D. O’Regan. A multiplicity result for second order impulsive dif-ferential equations via the Leggett Williams fixed point theorem[J]. Appl. Math.Comput.,2005,161:433-439.
    [5] R.P. Agarwal, D. O’Regan, S. Stanˇek. Positive solutions for Dirichlet problems ofsingular nonlinear fractional diferential equations[J]. J. Math. Anal. Appl.,2010,371:57-68.
    [6] S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions ofelliptic partial diferential equations satisfying general boundary conditions II[J].Comm. Pure Appl. Math.,1964,17:35-92.
    [7] B. Ahmad, A. Alsaedi. Existence of approximate solutions of the forced Dufngequation with discontinuous type integral boundary conditions[J]. Nonlinear Anal.Real World Appl.,2009,10:358-367.
    [8] B. Ahmad, A. Alsaedi. Existence and uniqueness of solutions for coupled systemsof higher-order nonlinear fractional diferential equations[J]. Fixed Point TheoryAppl.,2010, Article ID364560,17pp.
    [9] B. Ahmad, et al., Analytic approximation of solutions of the forced Dufng equa-tion with integral boundary conditions[J]. Nonlinear Anal. Real World Appl.,2008,9:1727-1740.
    [10] B. Ahmad, J.R. Graef. Coupled systems of nonlinear fractional diferential equa-tions with nonlocal boundary conditions[J]. Panamer. Math. J.,2009,19:29-39.
    [11] B. Ahmad, J. Nieto. Existence of solutions for nonlocal boundary value problemsof higher-order nonlinear fractional diferential equations[J]. Abstr. Appl. Anal.,2009, Article ID494720,9pp.
    [12] B. Ahmad, J.J. Nieto. Existence results for a coupled system of nonlinear fractionaldiferential equations with three-point boundary conditions[J]. Comput. Math.Appl.,2009,58:1838-1843.
    [13] B. Ahmad, S.K. Ntouyas. A study of higher-order nonlinear ordinary diferentialequations with four-point nonlocal integral boundary conditions[J]. J. Appl. Math.Comput.,2012,39:97-108.
    [14] H. Amann. Fixed point equations and nonlinear eigenvalue problems in orderedBanach space[J]. SIAM Rev.,1976,18:620-729.
    [15] H. Amann. Parabolic evolution equations and nonlinear boundary conditions[J].J. Diferential Equations,1988,72:201-269.
    [16] V. Anuradha, D.D. Hai, R. Shivaji. Existence results for superlinear semipositoneBVP’s[J]. Proc. Amer. Math. Soc.,1994,120:743-748.
    [17] R. Aris. Introduction to the Analysis of Chemical Reactors[M]. New Jersey: Pren-tice Hall,1965.
    [18] D.G. Aronson. A comparison method for stability analysis of nonlinear parabolicproblems[J]. SIAM Rev.,1978,20:245-264.
    [19] N.A. Asif, R.A. Khan. Positive solutions to singular system with four-point coupledboundary conditions[J]. J. Math. Anal. Appl.,2012,386:848-861.
    [20] R.I. Avery, J. Henderson. Three symmetric positive solutions for a second orderboundary value problem[J]. Appl. Math. Lett.,2000,13:1-7.
    [21] C. Bai. Positive solutions for second-order three-point eigenvalue problems[J].Abstr. Appl. Anal.,2010, Article ID236826,8pp.
    [22] C. Bai, J. Fang. The existence of a positive solution for a singular coupled systemof nonlinear fractional diferential equations[J]. Appl. Math. Comput.,2004,150:611-621.
    [23] Z. Bai. On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal.,2010,72:916-924.
    [24] Z. Bai. Existence and multiplicity of positive for a fourth-order p-Laplacian equa-tion[J]. Appl. Math. Mech.,2001,22:1476-1480.
    [25] Z. Bai, B. Huang, W. Ge. The iterative solutions for some fourth-order p-Laplaceequation boundary value problems[J]. Appl. Math. Lett.,2006,19:8-14.
    [26] Z. Bai, H. Lu¨. Positive solutions for boundary value problem of nonlinear fractionaldiferential equation[J]. J. Math. Anal. Appl.,2005,311:495-505.
    [27] Z. Bai, T. Qiu. Existence of positive solution for singular fractional diferentialequation[J]. Appl. Math. Comput.,2009,215:2761-2767.
    [28] Z. Bai, H. Wang. On the positive solutions of some nonlinear fourth-order beamequations[J]. J. Math. Anal. Appl.,2002,270:357-368.
    [29] D.D. Bainov, P.S. Simeonov. Systems with Impulse Efect[M]. Chichister: EllisHorwood,1989.
    [30] D. Ba leanu, K. Diethelm, E. Scalas, J.J. Trujillo. Fractional Calculus Models andNumerical Methods (Series on Complexity, Nonlinearity and Chaos)[M]. WorldScientific,2012.
    [31] F. Bernis. Compactness of the support in convex and non-convex fourth orderelasticity problem[J]. Nonlinear Anal.,1982,6:1221-1243.
    [32] A. Boucherif. Second-order boundary value problems with integral boundary con-ditions[J]. Nonlinear Anal.,2009,70:364-371.
    [33] M. Benchohra, S. Hamani, S.K. Ntouyas. Boundary value problems for diferentialequations with fractional order and nonlocal conditions[J]. Nonlinear Anal.,2009,71:2391-2396.
    [34] J. Caballero, J. Harjani, K. Sadarangani. On existence and uniqueness of positivesolutions to a class of fractional boundary value problems[J]. Bound. Value Probl.2011,2011:25. doi:10.1186/1687-2770-2011-25.
    [35] S. Cardanobile, D. Mugnolo. Parabolic systems with coupled boundary condi-tions[J]. J. Diferential Equations,2009,247:1229-1248.
    [36] Z. Cheng, J. Ren. Periodic solutions for a fourth-order Rayleigh type p-Laplaciandelay equation[J]. Nonlinear Anal.,2009,70:516-523.
    [37] R.V. Culshaw, S. Ruan. A delay-diferential equation model of HIV infection ofCD4+T-cells[J]. Math. Biosci.,2000,165:27-39.
    [38] K. Deimling. Nonlinear Functional Analysis[M]. Berlin: Springer,1985.
    [39] M. Delgado, C. Morales-Rodrigo, A. Sua′rez, J.I. Tello. On a parabolic-ellipticchemotactic model with coupled boundary conditions[J]. Nonlinear Anal. RealWorld Appl.,2010,11:3884-3902.
    [40] Z. Du, W. Ge, M. Zhou. Singular perturbations for third-order nonlinear multi-point boundary value problem[J]. J. Diferential Equations,2005,218:69-90.
    [41] E. Dul cska. Soil settlement efects on building, in: Developments in Geotech-nical Engineering[M]. Amsterdam: Elsevier,1992, vol.69.
    [42] M. El-Shahed, J. J. Nieto. Nontrivial solutions for a nonlinear multi-point bound-ary value problem of fractional order[J]. Comput. Math. Appl.,2010,59:3438-3443.
    [43] M. El-Shahed. Positive solutions for boundary value problems of nonlinear frac-tional diferential equation[J]. Abstr. Appl. Anal.,2007, Art. ID10368,8pp.
    [44]H. Feng, D. Bai. Existence of positive solutions for semipositone multi-point boundary value problems[J]. Math. Comput. Modelling,2011,54:2287-2292.
    [45]H. Feng, W. Ge. Triple symmetric positive solutions for multipoint boundary-value problem with one-dimensional p-Laplacian[J]. Math. Comput. Modelling,2008,47:186-195.
    [46]M. Feng. Multiple positive solutions of fourth-order impulsive differential equations with integral boundary conditions and one-dimensional p-Laplacian[J]. Bound. Value Probl.,2011, Article ID654871,26pp.
    [47]M. Feng, D. Xie. Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations[J]. J. Comput. Appl. Math.,2009,223:438-448.
    [48]W. Feng, S. Sun, Z. Han, Y. Zhao. Existence of solutions for a singular system of nonlinear fractional differential equations [J]. Comput. Math. Appl.,2011,62:1370-1378.
    [49]R. Ferreira, A. Pablo, F. Quiros, J.D. Rossi. Non-simultaneous quenching in a system of heat equations coupled at the boundary[J]. Z. Angew. Math. Phys.,2006,57:586-594.
    [50]J.R. Graef, L. Kong. Necessary and sufficient conditions for the existence of sym-metric positive solutions of singular boundary value problems[J]. J. Math. Anal. Appl.,2007,331:1467-1484.
    [51]J.R. Graef, L. Kong. Necessary and sufficient conditions for the existence of sym-metric positive solutions of multi-point boundary value problems [J]. Nonlinear Anal.,2008,68:1529-1552.
    [52]J.R. Graef, L. Kong. Solutions of second order multi-point boundary value prob-lems[J]. Math. Proc. Cambridge Philos. Soc.,2008,145:489-510.
    [53]J.R. Graef, L. Kong, Q. Kong. Symmetric positive solutions of nonlinear boundary value problems[J]. J. Math. Anal. Appl.,2007,326:1310-1327.
    [54]J.R. Graef, C. Qian, B. Yang. A three point boundary value problem for nonlinear fourth order differential equations [J]. J. Math. Anal. Appl.,2003,287:217-233.
    [55]郭大钧,非线性泛函分析[M],济南:山东科学技术出版社,2000.
    [56]D. Guo, V. Lakshmikantham. Nonlinear Problems in Abstract Cone[M]. New York: Academic Press, Inc.,1988.
    [57]郭大钧,孙经先,刘兆理.非线性常微分方程的泛函方法[M].济南:山东科技出版社,1995.
    [58] Z. Guo, J. Yin, Y. Ke. Multiplicity of positive solutions for a fourth-order quasilin-ear singular diferential equation[J]. Electron. J. Qual. Theory Difer. Equ.,2010,No.27,15pp.
    [59] C.S. Goodrich. Existence of a positive solution to systems of diferential equationsof fractional order[J]. Comput. Math. Appl.,2011,62:1251-1268.
    [60] C.S. Goodrich. Existence of a positive solution to a class of fractional diferentialequations[J]. Appl. Math. Lett.,2010,23:1050-1055.
    [61] C.S. Goodrich. Existence and uniqueness of solutions to a fractional diferenceequation with nonlocal conditions[J]. Comput. Math. Appl.,2011,61:191-202.
    [62] D. Halpern, O.E. Jensen, J.B. Grotberg. A theoretic study of surfactant and liquiddelivery into the lungs[J]. J. Appl. Physiol.,1998,85:333-352.
    [63] X. Hao, L. Liu, Y. Wu. Positive solutions for second order impulsive diferentialequations with integral boundary conditions[J]. Commun. Nonlinear Sci. Numer.Simul.,2011,16:101-111.
    [64] J. Henderson, R. Luca. Positive solutions for a system of second-order multi-pointboundary value problems[J]. Appl. Math. Comput.,2012,218:6083-6094.
    [65] J. Henderson, H.B. Thompson. Multiple symmetric positive solutions for a secondorder boundary value problem[J]. Proc. Amer. Math. Soc.,2000,128:2373-2379.
    [66] M. Hofer, H. Pottmann. Energy-minimizing splines in manifolds[M]. CM Trans.Graph.(2004).
    [67] L. Hu, L. liu, Y. Wu. Positive solutions of nonlinear singular two-point boundaryvalue problems for second-order impulsive diferential equations[J]. Appl. Math.Comput.,2008,196:550-562.
    [68] G. Infante, P. Pietramala. Existence and multiplicity of non-negative solutions forsystems of perturbed Hammerstein integral equations[J]. Nonlinear Anal.,2009,71:1301-1310.
    [69] G. Infante, P. Pietramala. Eigenvalues and non-negative solutions of a system withnonlocal BCs[J]. Nonlinear Stud.,2009,16:187-196.
    [70] T. Jankowski. Positive solutions to second order four-point boundary value prob-lems for impulsive diferential equations[J]. Appl. Math. Comput.,2008,202:550-561.
    [71]] T. Jankowski. Positive solutions for second order impulsive diferential equationsinvolving Stieltjes integral conditions[J]. Nonlinear Anal.,2011,74:3775-3785.
    [72] D. Ji, H. Feng, W. Ge. The existence of symmetric positive solutions for somenonlinear equation systems[J]. Appl. Math. Comput.,2008,197:51-59.
    [73] D. Jiang, C. Yuan. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional diferential equations and itsapplication[J]. Nonlinear Anal.,2010,72:710-719.
    [74] J. Jiang, L. Liu, Y. Wu. Second-order nonlinear singular Sturm-Liouville problemswith integral boundary conditions[J]. Appl. Math. Comput.,2009,215:1573-1582.
    [75] W. Jiang. Solvability for a coupled system of fractional diferential equations atresonance[J]. Nonlinear Anal. Real World Appl.,2012,13:2285-2292.
    [76] W. Jiang. The existence of solutions to boundary value problems of fractionaldiferential equations at resonance[J]. Nonlinear Analysis.,2011,74:1987-1994.
    [77] S. Jin, S. Lu. Periodic solutions for a fourth-order p-Laplacian diferential equationwith a deviating argument[J]. Nonlinear Anal.,2008,69:1710-1718.
    [78] Rahmat Ali Khan. Positive solutions of four-point singular boundary value prob-lems[J]. Appl. Math. Comput.,2008,201:762-773.
    [79] Rahmat Ali Khan, Mujeeb ur Rehman. Existence of multiple positive solutions fora general system of fractional diferential equations[J]. Comm. Appl. NonlinearAnal.,2011,18:25-35.
    [80] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of FractionalDiferential Equations[M]. Amsterdam: Elsevier,2006.
    [81] L. Kong. Second order singular boundary value problems with integral boundaryconditions[J]. Nonlinear Anal.,2010,72:2628-2638.
    [82] N. Kosmatov. Semipositone m-point boundary-value problems[J]. Electron. J.Diferential Equations,2004, No.119,7pp.
    [83] N. Kosmatov. Symmetric solutions of a multi-point boundary value problem[J]. J.Math. Anal. Appl.,2005,309:25-36.
    [84] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. Theory of Impulsive DiferentialEquations[M]. Singapore: World Scientific,1989.
    [85] K. Lan. Eigenvalues of semi-positone Hammerstein integral equations and appli-cations to boundary value problems[J]. Nonlinear Anal.,2009,71:5979-5993.
    [86] K. Lan. Multiple positive solutions of semi-positone Sturm-Liouville boundaryvalue problems[J]. Bull. London Math. Soc.,2006,38:283-293.
    [87] K. Lan. Nonzero positive solutions of systems of elliptic boundary value prob-lems[J]. Proc. Amer. Math. Soc.,2011,139:4343-4349.
    [88] K. Lan. Positive solutions of semi-positone Hammerstein integral equations andapplications[J]. Commun. Pure Appl. Anal.,2007,6:441-451.
    [89] K. Lan, W. Lin. Multiple positive solutions of systems of Hammerstein integralequations with applications to fractional diferential equations[J]. J. Lond. Math.Soc.,2011,83:449-469.
    [90] E.K. Lee, Y.H. Lee. Multiple positive solutions of singular two point boundaryvalue problems for second order impulsive diferential equations[J]. Appl. Math.Comput.,2004,158:745-759.
    [91] R.W. Leggett, L.R. Williams. Multiple positive fixed points of nonlinear operatorson ordered Banach space[J]. Indiana Univ. Math. J.,1979,28:673-688.
    [92] A. Leung. A semilinear reaction-difusion prey-predator system with nonlinearcoupled boundary conditions: Equilibrium and stability[J]. Indiana Univ. Math.J.,1982,31:223-241.
    [93] C. Li, X. Luo, Y. Zhou. Existence of positive solutions of the boundary valueproblem for nonlinear fractional diferential equations[J]. Comput. Math. Appl.,2010,59:1363-1375.
    [94] F. Li, Y. Zhang. Multiple symmetric nonnegative solutions of second order ordi-nary diferential equations[J]. Appl. Math. Lett.,2004,17:261-267.
    [95] J. Li, J. Shen. Multiple positive solutions for a second-order three-point boundaryvalue problem[J]. Appl. Math. Comput.,2006,182:258-268.
    [96] S. Liang, J. Zhang. Positive solutions for boundary value problems of fractionaldiferential equation[J]. Nonlinear Anal.,2009,71:5545-5550.
    [97] X. Lin, D. Jiang. Multiple positive solutions of Dirichlet boundary value problemsfor second order impulsive diferential equations[J]. J. Math. Anal. Appl.,2006,321:501-514.
    [98] B. Liu. Positive solutions of a nonlinear three-point boundary value problem[J].Appl. Math. Comput.,2002,132:11-28.
    [99] B. Liu, L. Liu, Y. Wu. Positive solutions for singular systems of three-point bound-ary value problems[J]. Comput. Math. Appl.,2007,53:1429-1438.
    [100] B. Liu, L. Liu, Y. Wu. Positive solutions for singular second order three-pointboundary value problems[J]. Nonlinear Anal.,2007,66:2756-2766.
    [101] B. Liu, L. Liu, Y. Wu. Positive solutions for a singular second-order three-pointboundary value problem[J]. Appl. Math. Comput.,2008,196:532-541.
    [102] Y. Liu. Twin solutions to singular semipositone problems[J]. J. Math. Anal.Appl.,2003,286:248-260.
    [103] S. Lu, S. Jin. Existence of periodic solutions for a fourth-order p-Laplacian equa-tion with a deviating argument[J]. J. Comput. Appl. Math.,2009,230:513-520.
    [104] Y. Luo, Z. Luo. Symmetric positive solutions for nonlinear boundary value prob-lems with p-Laplacian operator[J]. Appl. Math. Lett.,2010,23:657-664.
    [105] R. Ma. Existence of positive solutions for superlinear semipositone m-point bound-ary value problems[J]. Proc. Edinburgh Math. Soc.,2003,46:279-292.
    [106] R. Ma, Q. Ma. Positive solutions for semipositone m-point boundary-value prob-lems[J]. Acta Math. Sin.(Engl. Ser.),2004,20:273-282.
    [107] R. Ma, Y. An. Global structure of positive solutions for nonlocal boundary valueproblems involving integral conditions[J]. Nonlinear Anal.,2009,71:4364-4376.
    [108] R. Ma, L. Ren. Positive solutions for nonlinear m-point boundary value problemsof Dirichlet type via fixed-point index theory[J]. Appl. Math. Lett.,2003,16:863-869.
    [109] R. Ma, H. Wang. Positive solutions of nonlinear three-point boundary-value prob-lems[J]. J. Math. Anal. Appl.,2003,279:216-227.
    [110] F.A. McRae. Monotone iterative technique and existence results for fractionaldiferential equations[J]. Nonlinear Anal.,2009,71:6093-6096.
    [111] F.A. Mehmeti. Nonlinear Waves in Networks, Math. Res.[M]. Berlin: Akademie-Verlag,1994, vol.80.
    [112] F.A. Mehmeti, S. Nicaise. Nonlinear interaction problems[J]. Nonlinear Anal.,1993,20:27-61.
    [113] F. Mem′eli, G. Sapiro, P. Thompson. Implicit brain imaging[J]. Human BrainMap.,2004,23:179-188.
    [114] M. Merdan, V.T. Khaniyev. Homotopy perturbation method for solving viraldynamical model[J]. C.U¨. Fen-Edebiyat Faku¨ltesi, Fen Bilimleri Dergisi,2010,31:65-77.
    [115] M.D. Mikhailov. General solutions of the difusion equations coupled at boundaryconditions[J]. Int. J. Heat Mass Tran.,1973,16:2155-2164.
    [116] K. Miller, B. Ross. An Introduction to the Fractional Calculus and FractionalDiferential Equations[M]. New York: Wiley,1993.
    [117] T.G. Myers, J.P.F. Charpin. A mathematical model for atmospheric ice accretionand water flow on a cold surface[J]. Int. J. Heat Mass Tranf.,2004,47:5483-5500.
    [118] T.G. Myers, J.P.F. Charpin, S.J. Chapman. The flow and solidification of thinfluid film on an arbitrary three-dimensional surface[J]. Phys. Fluids,2002,12:2788-2803.
    [119] G.M. N’Gu′er′ekata. A Cauchy problem for some fractional abstract diferentialequations with fractional order with nonlocal conditions[J]. Nonlinear Anal.,2009,70:1873-1876.
    [120] P.W. Nelson, A.S. Perelson. Mathematical analysis of delay diferential equationmodels of HIV-1infection[J]. Math. Biosci.,2002,179:73-94.
    [121] C.V. Pao. Finite diference reaction-difusion systems with coupled boundaryconditions and time delays[J]. J. Math. Anal. Appl.,2002,272:407-434.
    [122] A.S. Perelson. Modeling the interaction of the immune system with HIV[A]. InMathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes inBiomathematics[C]. Springer, New York Edited by: Castillo-Chavez C,83(1989)350.
    [123] A.S. Perelson, D.E. Kirschner, R.D. Boer. Dynamics of HIV infection of CD4+Tcells[J]. Math. Biosci.,1993,114:81-125.
    [124] L.M. Petrovic, D.T. Spasic, T.M. Atanackovic. On a mathematical model of ahuman root dentin[J]. Dental Materials,2005,21:125-128.
    [125] I. Podlubny. Fractional Diferential Equations, in: Mathematics in Science andEngineering[M]. New York, London, Toronto: Academic Press,1999.
    [126] I. Podlubny. Fractional Diferential Equations[M]. San Diego: Academic Press,1999.
    [127] M. ur Rehman, R.A. Khan. A note on boundary value problems for a coupledsystem of fractional diferential equations[J]. Comput. Math. Appl.,2011,61:2630-2637.
    [128] M. ur Rehman, R.A. Khan. Existence and uniqueness of solutions for multi-pointboundary value problems for fractional diferential equations[J]. Appl. Math. Lett.,2010,23:1038-1044.
    [129] J.D. Rossi. The blow-up rate for a system of heat equations with non-trivialcoupling at the boundary[J]. Math. Methods Appl. Sci.,1997,20:1-11.
    [130] H.A.H. Salem. On the existence of continuous solutions for a singular system ofnon-linear fractional diferential equations[J]. Appl. Math. Comput.,2008,198:445-452.
    [131] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integral And Derivatives(Theory and Applications)[M]. Switzerland: Gordon and Breach,1993.
    [132] G. Shi, X. Meng. Monotone iterative for fourth-order p-Laplacian boundary valueproblems with impulsive efects[J]. Appl. Math. Comput.,2006,181:1243-1248.
    [133] W. Soedel. Vibrations of Shells and Plates[M]. New York: Dekker,1993.
    [134] W. Song, W. Gao. Positive solutions for a second-order system with integralboundary conditions[J]. Electron. J. Diferential Equations,2011, No.13,9pp.
    [135] X. Su. Boundary value problem for a coupled system of nonlinear fractional dif-ferential equations[J]. Appl. Math. Lett.,2009,22:64-69.
    [136] H. Sun, Y. Shi. Eigenvalues of second-order diference equations with coupledboundary conditions[J]. Linear Algebra Appl.,2006,414:361-372.
    [137] J. Sun, W. Li, Y. Zhao. Three positive solutions of a nonlinear three-point bound-ary value problem[J]. J. Math. Anal. Appl.,2003,288:708-716.
    [138] Y. Sun. Existence and multiplicity of symmetric positive solutions for three-pointboundary value problem[J]. J. Math. Anal. Appl.,2007,329:998-1009.
    [139] Y. Sun. Optimal existence criteria for symmetric positive solutions to a three-point boundary value problem[J]. Nonlinear Anal.,2007,66:1051-1063.
    [140] S.P. Timoshenko. Theory of Elastic Stability[M]. New York: McGraw-Hill,1961.
    [141] A. Toga. Brain Warping, Academic Press[M]. New York:1998.
    [142] H.C. Tuckwell, F.Y.M. Wan. On the behavior of solutions in viral dynamicalmodels[J]. Biosystems,2004,73:157-161.
    [143] A. Wang, J. Sun, A. Zettl. The classification of self-adjoint boundary conditions:Separated, coupled, and mixed[J]. J. Funct. Anal.,2008,255:1554-1573.
    [144] G. Wang, S. Ntouyas, L. Zhang. Positive solutions of the three-point boundaryvalue problem for fractional-order diferential equations with an advanced argu-ment[J]. Adv. Diference Equ.,2011,2011:2. doi:10.1186/1687-1847-2011-2.
    [145] J. Wang, H. Xiang, Z. Liu. Positive solution to nonzero boundary values problemfor a coupled system of nonlinear fractional diferential equations[J]. Internat. J.Difer. Equ.,2010(2010)12. Article ID186928.
    [146] L. Wang, M. Li. Mathematical analysis of the global dynamics of a model for HIVinfection of CD4+T cells[J]. Math. Biosci.,2006,200:44-57.
    [147] S. Wang. Doubly nonlinear degenerate parabolic systems with coupled nonlinearboundary conditions[J]. J. Diferential Equations,2002,182:431-469.
    [148] S. Wang, C. Xie, M. Wang. The blow-up rate for a system of heat equationscompletely coupled in the boundary conditions[J]. Nonlinear Anal.,1999,35:389-398.
    [149] S. Wang, H. Sun. Optimal existence criteria for symmetric positive solutions to asingular three-point boundary value problem[J]. Nonlinear Anal.,2008,69:4266-4276.
    [150] Y. Wang, L. Liu, Y. Wu. Positive solutions for a nonlocal fractional diferentialequation[J]. Nonlinear Anal.,2011,74:3599-3605.
    [151] Z. Wang, L. Qian, S. Lu. On the existence of periodic solutions to a fourth-orderp-Laplacian diferential equation with a deviating argument[J]. Nonlinear Anal.:Real World Appl.,2010,11:1660-1669.
    [152] J.R.L. Webb. Positive solutions of some three point boundary value problems viafixed point index theory[J]. Nonlinear Anal.,2001,47:4319-4332.
    [153] J.R.L. Webb, G. Infante. Non-local boundary value problems of arbitrary order[J].J. Lond. Math. Soc.,2009,79(2):238-258.
    [154] J.R.L. Webb, G. Infante. Positive solutions of nonlocal boundary value problems:a unified approach[J]. J. London Math. Soc.,2006,74:673-693.
    [155] J.R.L. Webb, G. Infante. Positive solutions of nonlocal boundary value problemsinvolving integral conditions[J]. NoDEA Nonlinear Diferential Equations Appl.,2008,15:45-67.
    [156] J.R.L. Webb, G. Infante. Semi-positone nonlocal boundary value problems ofarbitrary order[J]. Commun. Pure Appl. Anal.,2010,9:563-581.
    [157] J.R.L. Webb, M. Zima. Multiple positive solutions of resonant and non-resonantnonlocal boundary value problems[J]. Nonlinear Anal.,2009,71:1369-1378.
    [158] F. Xu, X. Guan. Twin positive solutions of second-order m-point boundary valueproblem with sign changing nonlinearities[J]. Bull. Malays. Math. Sci. Soc.(2).Accepted.
    [159] J. Xu, Z. Wei, W. Dong. Uniqueness of positive solutions for a class of fractionalboundary value problems[J]. Appl. Math. Lett.,2012,25:590-593.
    [160] J. Xu, Z. Yang. Positive solutions for a fourth order p-Laplacian boundary valueproblem[J]. Nonlinear Anal.,2011,74:2612-2623.
    [161] X. Xu, D. Jiang, C. Yuan. Multiple positive solutions for the boundary valueproblem of a nonlinear fractional diferential equation[J]. Nonlinear Anal.,2009,71:4676-4688.
    [162] X. Xu, X. Fei. The positive properties of Green’s function for three point boundaryvalue problems of nonlinear fractional diferential equations and its applications[J].Commun. Nonlinear Sci. Numer. Simul.,2012,17:1555-1565.
    [163] J. Yang, Z. Wei. Existence of positive solutions for fourth-order m-point boundaryvalue problems with a one-dimensional p-Laplacian operator[J]. Nonlinear Anal.,2009,71:2985-2996.
    [164] J. Yang, Z. Wei. On existence of positive solutions of Sturm-Liouville bound-ary value problems for a nonlinear singular diferential system[J]. Appl. Math.Comput.,2011,217:6097-6104.
    [165] J. Yang, Z. Wei, K. Liu. Existence of symmetric positive solutions for a classof Sturm-Liouville-like boundary value problems[J]. Appl. Math. Comput.,2009,214:424-432.
    [166] W. Yang. Positive solutions for a coupled system of nonlinear fractional diferentialequations with integral boundary conditions[J]. Comput. Math. Appl.,2012,63:288-297.
    [167] Z. Yang. Existence of nontrivial solutions for a nonlinear Sturm-Liouville problemwith integral boundary conditions[J]. Nonlinear Anal.,2008,68:216-225.
    [168] Z. Yang. Positive solutions to a system of second-order nonlocal boundary valueproblems[J]. Nonlinear Anal.,2005,62:1251-1265.
    [169] Q. Yao. Existence and iteration of n symmetric positive solutions for a singulartwo-point boundary value problem[J]. Comput. Math. Appl.,2004,47:1195-1200.
    [170] Q. Yao. An existence theorem of a positive solution to a semipositone Sturm-Liouville boundary value problem[J]. Appl. Math. Lett.,2010,23:1401-1406.
    [171] C. Yuan. Multiple positive solutions for (n1,1)-type semipositone conjugateboundary value problems for coupled systems of nonlinear fractional diferentialequations[J]. Electron. J. Qual. Theory Difer. Equ.,2011, No.13,12pp.
    [172] C. Yuan. Two positive solutions for (n1,1)-type semipositone integral boundaryvalue problems for coupled systems of nonlinear fractional diferential equations[J].Commun. Nonlinear Sci. Numer. Simul.,2012,17:930-942.
    [173] C. Yuan, D. Jiang, D. O’Regan, R.P. Agarwal. Multiple positive solutions tosystems of nonlinear semipositone fractional diferential equations with coupledboundary conditions[J]. Electron. J. Qual. Theory Difer. Equ.,2012, No.13,17pp.
    [174] A. Zettl. Sturm-Liouville Theory, Math. Surveys Monogr.[M]. vol.121, Amer.Math. Soc., Providence, RI,2005.
    [175] C. Zhai, C. Yang, C. Guo. Positive solutions of operator equation on orderedBanach spaces and applications[J]. Comput. Math. Appl.,2008,56:3150-3156.
    [176] S. Zhang. Positive solutions to singular boundary value problem for nonlinearfractional diferential equation[J]. Comput. Math. Appl.,2010,59:1300-1309.
    [177] S. Zhang. The existence of a positive solution for a nonlinear fractional diferentialequation[J]. J. Math. Anal. Appl.,2000,252:804-812.
    [178] J. Zhang, G. Shi. Positive solutions for fourth-order singular p-Laplacian boundaryvalue problems[J]. Appl. Anal.,2006,85:1373-1382.
    [179] X. Zhang, Y. Han. Existence and uniqueness of positive solutions for higher ordernonlocal fractional diferential equations[J]. Appl. Math. Lett.,2012,25:555-560.
    [180] X. Zhang, L. Liu. A necessary and sufcient condition for positive solutions forfourth-order multi-point boundary value problems with p-Laplacian[J]. NonlinearAnal.,2008,68:3127-3137.
    [181] X. Zhang, L. Liu. Positive solutions of fourth-order four-point boundary valueproblems with p-Laplacian operator[J]. J. Math. Anal. Appl.,2007,336:1414-1423.
    [182] X. Zhang, L. Liu, Y. Wu. Multiple positive solutions of a singular fractionaldiferential equation with negatively perturbed term[J]. Math. Comput. Modelling,2012,55:1263-1274.
    [183] X. Zhang, L. Liu, Y. Wu. The eigenvalue problem for a singular higher order frac-tional diferential equation involving fractional derivatives[J]. Appl. Math. Com-put.,2012,218:8526-8536.
    [184] X. Zhang. Positive solutions for fourth order singular p-Laplacian diferentialequations with integral boundary conditions[J]. Bound. Value Probl.,2010, ArticleID862079,23pp.
    [185] X. Zhang, M. Feng, W. Ge. Existence results for nonlinear boundary-value prob-lems with integral boundary conditions in Banach spaces[J]. Nonlinear Anal.,2008,69:3310-3321.
    [186] X. Zhang, M. Feng, W. Ge. Symmetric positive solutions for p-Laplacian fourth-order diferential equations with integral boundary conditions[J]. J. Comput. Appl.Math.,2008,222:561-573.
    [187] X. Zhang, W. Ge. Positive solutions for a class of boundary-value problems withintegral boundary conditions[J]. Comput. Math. Appl.,2009,58:203-215.
    [188] Y. Zhang, Z. Bai, T. Feng. Existence results for a coupled system of nonlinearfractional three-point boundary value problems at resonance[J]. Comput. Math.Appl.,2011,61:1032-1047.
    [189] Y. Zhao, S. Sun, Z. Han, Q. Li. The existence of multiple positive solutions forboundary value problems of nonlinear fractional diferential equations[J]. Commun.Nonlinear Sci. Numer. Simul.,2011,16:2086-2097.
    [190] W. Zhong, W. Lin. Nonlocal and multiple-point boundary value problem forfractional diferential equations[J]. Comput. Math. Appl.,2010,59:1345-1351.
    [191] W. Zhou, J. Peng, Y. Chu. Multiple positive solutions for nonlinear semipositonefractional diferential equations[J]. Discrete Dyn. Nat. Soc.,2012(2012)(ArticleID850871,10pages).
    [192] D.G. Zill, M.R. Cullen. Diferential Equations with Boundary-Value Problems[M].fifth ed., Brooks/Cole,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700