两类种群模型行波解的存在性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先建立了三个反应扩散方程模型:霍乱模型,营养-细菌模型及具有治疗的流感模型.然后用打靶法及Schauder不动点定理研究了这三个模型行波解的存在性及不存在性,得到了模型的最小波速,从而为传染病控制及细菌种群控制提供了理论依据.下面分章介绍.
     第一章是引言部分,主要介绍了问题研究的背景,所用的数学方法及不同方法的比较.
     第二章建立了具有污染物扩散的霍乱传播模型.首先忽略因病死亡率,考虑霍乱传播的两种方式(人与环境之间的传播及人与人之间的传播).把原系统行波解的存在性问题转化为极限系统行波解的存在性问题,然后通过打靶法得到了模型行波解存在的充要条件,给出了最小波速的计算公式.接着考察因病死亡率对霍乱传播的影响,但是忽略人的自然出生与死亡过程.通过常数变易法把原系统降维,转化为具有分布时滞的反应扩散系统,然后构造一对有界的上下解,从而得到了一个正锥.对这个正锥用Schauder不动点定理得到行波解的存在性.我们用双边Laplace变换方法来排除行波解的存在性,为了应用双边Laplace变换就首先要说明行波解至少是指数衰减的,受到稳定流形定理证明过程的启发,结合行波解的平移不变性,提出了一种新的证明指数衰减性的方法.
     第三章基于Mimura的营养-细菌模型,建立了一个简化的反应扩散模型.通过常数变易法把原系统转化为一个具有分布时滞的发展系统.首先考虑线性化特征值问题,通过把两个高次多项式与同一个一次多项式进行比较得到了最小波速的计算公式.为了证明行波解的存在性,进一步构造一个辅助系统.对辅助系统构造一对上下解,使用Schauder不动点定理得到辅助系统行波解的存在性,这样就得到一列行波解,通过Arzela-Ascoli定理就证明了辅助系统行波解序列的极限就是原系统的行波解.为了证明行波解的不存在性,我们定义了”负向单边Laplace变换”,通过”负向单边Laplace变换”证明行波解的不存在性.
     第四章建立了具有治疗的流感扩散模型.通过分析线性化特征值问题得到最小波速的计算方法.类似于第三章的方法,首先构造一个辅助系统,通过Schauder不动点定理得到辅助系统行波解的存在性,进一步使用Arzela-Ascoli定理就证明了原系统的行波解的存在性.行波解不存在性的证明与第二章的第二个模型的方法类似.
     本段给出论文的创新点.创新点分为两个方面:模型对现实问题的解释及行波解证明方法上的创新.本文通过反应扩散方程模型的行波解揭示了传染病传播及细菌扩散的内在机理,得到了最小波速,为霍乱与流感的控制提供了理论基础,有助于分析细菌的扩散模式.证明方法上的创新点如下:
     1.第一个创新点就是线性化问题特征方程的分析.第三章的特征值问题是一个三次多项式方程,为了得到最小波速c*的计算,我们把两个高次多项式与一个共同的一次多项式相比较得出了c*的存在性,这样的方法对三次多项式方程具有较大的适用性,目前没有见到有文献这样用过.
     2.第二个创新点是”负向单边Laplace变换”概念的引入.为了证明行波解的不存在性,Wang和Wu(2010)使用了双边Laplace变换,我们引入的负向单边Laplace变换使证明变得更加简洁明了.
     3.第三个创新点在于我们引入了辅助系统,构造的上下解是有界的,从而所得到的正锥也是有界的,这与Wang和Wu(2010)的无界上解有根本的区别.对非合作系统来说,利用所构造的有界上下解来得到最小波速是很不容易的.
     4.第四个创新点就是提出了一个证明行波解指数衰减性的新的方法.Wang和Wu(2010)是使用分析的方法证明行波解的指数衰减性的,但是Wang和Wu的线性化方程只有一个,而本论文第四章中模型的线性化方程却有两个,故使用分析的方法就行不通了.受到稳定流形定理证明过程的启发,我们提出了一个证明指数衰减性的新方法,这种方法不受方程个数的限制,所以具有更广泛的适用性.
In this paper, three diffusion-reaction models are established, which are cholera model, nutrient-bacteria model and influenza model with treatment. By shooting method and Schauder's fixed point theorem, the existence and non-existence of traveling wave solutions are proved and the minimal wave speed is obtained. These results provide a theoretical basis for the control of diseases and bacteria.
     The first chapter devoted into the introduction on the background of models, mathematical methods and the comparison of different methods.
     In Chapter2, a cholera model with contaminants diffusive is established. Firstly, we study the case with man-man and man-environment transmissions considered and mortality due to illness ignored. The existence of traveling wave solutions are proved by changing the original system into its limit one and, furthermore, using shooting method. At the same time, the minimal wave speed is obtained. In the second case, the influence of illness death on cholera is considered with natural birth and death pro-cess ignored. By constant variation method, original system is transformed reaction-diffusion system with distributed delay. The existence of traveling wave solutions are get by constructing upper and lower solutions and using Schauder's fixed point the-orem. To prove the non-existence of traveling wave solutions by two-sided Laplace transform, it is necessary to show the exponential decay of traveling wave solutions and a new method is proposed for this aim.
     In Chapter3, based on Mimura's nutrient-bacteria model, s simple model is pro-posed. Similar to the second chapter, original system is transformed reaction-diffusion one with distributed delay. The formula for minimal wave speed is deduced by com-paring two high-order polynomials with a linear function. An auxiliary system is con-structed and the existence of a sequence of traveling wave solutions for the auxiliary system is proved by Schauder's fixed point theorem. The limit of the sequence of trav-eling wave solutions for the auxiliary system is shown to be the traveling wave solution of original system. The non-existence of traveling wave solutions is proved be defining a negative one-sided Laplace transform.
     In Chapter4, a diffusive influenza model with treatment is established. Firstly, we construct an auxiliary system and prove the existence of traveling wave solutions by the methods similar to that of Chapter3. However, it is more technical since the dimension of this system can not be reduced.
     The innovation consists of two aspects:interpretation of the real world and the methods for traveling wave solutions. The results of this paper reveal the internal mechanism of the spread of infectious diseases and the spread of bacteria and provide a theoretical basis for the control of cholera, influenza and bacteria. The innovation on mathematical methods are as follows.
     1. The first innovation is the analysis of linearization. The formula for minimal wave speed is deduced by comparing two high-order polynomials with a linear function. This method can be applied to most of cubic polynomials
     2. The definition of "negative one-sided Laplace transform" is the second innovation which is motivated by Wang and Wu(2010) and makes proofs simpler.
     3. The third innovation lies in the introduction of an auxiliary system and the bound-edness of upper and lower solutions, which is different from that of Wang and Wu (2010). It is difficult to get the minimal wave speed by constructing bounded upper and lower solutions for non-cooperative systems.
     4. The fourth innovation lies in the new method to prove the exponential decay for traveling wave solutions. The method used by Wang and Wu (2010) is applicable for one equation and not for a system. However, our method can be applied to general systems.
引文
[1]A. Alam, R. C. Larocque, J. B. Harris, et al., Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse, Infection and Immunity,73(2005)6674-6679.
    [2]M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel, B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst.,3 (2004) 503-524.
    [3]M. E. Alexander, C. S. Bowman, Z. Feng, M. Gardam, S. M. Moghadas, G. Rost, J. Wu, P. Yan, Emergence of drug resistance:implications for antiviral control of pandemic influenza, Proc. R. Soc. B,274 (2007) 1675-684.
    [4]M. E. Alexander, S. M. Moghadas, G. Rost, J. Wu, A delay differential model for pandemic influenza with antiviral treatment, Bull. Math. Biol.,70 (2008) 382-937.
    [5]J. Arino, F. Brauer, P. V. D. Driessche, J. Watmough, J. Wu, A model for in-fluenza with vaccination and antiviral treatment, Journal of Theoretical Biology, 253(2008)118-130.
    [6]D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genet-ics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, J. A. Goldstein, ed., Lecture Notes in Mathematics Ser.,446. Springer-Verlag,1975,5-49.
    [7]D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion aris-ing in population dynamics, Adv. Math,30 (1978) 33-76.
    [8]M. Aubert, M. Badoual, C. Christov, B. Grammaticos, A model for glioma cell migration on collagen and astrocytes, J. R. Soc., Interface 5 (2008) 75-83.
    [9]M. Aubert, M. Badoual, S. Fereol, C. Christo, B. Grammaticos, A cellular au-tomaton model for the migration of glioma cells, Phys. Biol.,3 (2006) 93-100.
    [10]B. P. Ayati, A structured-population model of proteus mirabilis swarm-colony development, J. Math. Biol.,52 (2006) 93-114.
    [11]M. Badoual, P. Derbez, M. Aubert, B. Grammaticos, Simulating the migration and growth patterns of Bacillus subtilis, Physica A,388 (2009) 549-559.
    [12]E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, T. Vicsek, Generic modelling of cooperative growth patterns in bacterial colonies, Nature, 368 (1994) 46-49.
    [13]E. Bertuzzo, S. Azaele, A. Maritan, M. Gatto, I. Rodriguez-Iturbe, A. Rinaldo, On the space-time evolution of a cholera epidemic, Water Resour. Res.,44 (2008) W01424.
    [14]E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, A. Rinaldo, On spa-tially explicit models of cholera epidemics, J. R. Soc. Interface,7 (2010) 321-333.
    [15]E. Bertuzzo, L. Mari, L. Righetto, M. Gatto, R. Casagrandi, M. Blokesch, I. Rodriguez-Iturbe, A. Rinaldo, Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38(2011)L06403.
    [16]R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, Ltd., Chichester,2003.
    [17]V. Capasso, K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quart. Appl. Math.,46 (1988) 431-450.
    [18]V. Capasso, L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Bio.,13(1981)173-184.
    [19]V. Capasso, S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue dEpidemoligie et de Sante Publique,27 (1979) 121-132.
    [20]J. Carr, A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equa-tions, Proc. Amer. Math. Soc.,132 (2004) 2433-2439.
    [21]D. L. Chao, M. E. Halloran, I. M. Jr Longini, Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci. USA,108(2011)7081-7085.
    [22]陈兰荪,宋新宇,陆征一,数学生态学模型与研究方法,四川科学技术出版社,成都,2003.
    [23]X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations,2 (1997) 125-160.
    [24]G. Chowell, M. A. Miller, C. Viboud, Seasonal influenza in the United States, France, and Australia:transmission and prospects for control, Epidemiol. Infect. ,136 (2008) 852-864.
    [25]C. T. Codeco, Endemic and epidemic dynamics of cholera:the role of the aquatic reservoir, BMC Infectious Diseases,1 (2001) 1.
    [26]C. Conley, Isolated invariant sets and the morse indek, CBMS Regional Confer-ence Series in Applied Mathematcs, no.38, Amer. Math. Soc., Providence, R. I. ,1978.
    [27]A. Czirok, M. Matsushita, T. Vicsek, Theory of periodic swarming of bacteria: application to Proteus mirabilis, Phys. Rev. E,63 (2001) 031915.
    [28]O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol.,6 (1978) 109-130.
    [29]V. D. W. Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartment models of disease transmission, Math. Biosci.,180 (2002) 29-48.
    [30]S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol.,17(1983) 11-32.
    [31]S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations:a heteroclinic connection in R4, Trans. Amer. Math. Soc.,286 (1984) 557-594.
    [32]S. R. Dunbar, Traveling waves in diffusive predator-prey equations:periodic or-bits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math.,46 (1986) 1057-1078.
    [33]D. J. D. Earn, J. Dushoff, S. A. Levin, Ecology and evolution of the flu, Trends Ecol. Evol.,17 (2002) 334-340.
    [34]A. M. A. El-Sayed, S. Z. Rida, A. A. M. Arafa, On the solutions of the general-ized reaction-diffusion model for bacterial colony, Acta Appl. Math.,110 (2010) 1501-1511.
    [35]M. Emch, C. Feldacker, M. S. Islam, M. Ali, Global climate and infectious dis-ease:the cholera paradigm, Science,274 (1996) 2025-2031.
    [36]M. Emch, C. Feldacker, M. S. Islam, M. Ali, Seasonality of cholera from 1974 to 2005:a review of global patterns, Int. J. Health Geographies,7 (2008) 31-44.
    [37]M. Enserink, Haiti's outbreak is latest in cholera's new global assault, Science, 330 (2010) 738-739.
    [38]S. E. Esipov, J. A. Shapiro, Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol.,36 (1998) 249-268.
    [39]F. Family, T. Vicsek (Eds.), Dynamics of Fractal Surfaces, World Scientific, Sin-gapore,1991.
    [40]J. Fang, J. Wei, X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, J. Differential Equations,245 (2008) 2749-2770.
    [41]J. Fang, J. Wei, X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,466 (2010) 1919-1934.
    [42]S. Faruque, M. Islam, Q. Ahmad, A. S. G. Faruque, D. Sack, G. Nair, J. Mekalanos,Self-limiting nature of seasonal cholera epidemics:role of host-mediated amplification of phage, Proceedings of the National Academy of Sci-ences,102(2005)6119-6124.
    [43]P. Feng, Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Commun. Pure Appl. Anal.,6 (2007) 1145-1165.
    [44]N. M. Ferguson, S. Mallett, H. Jackson, N. Roberts, P. Ward, A population-dynamic model for evaluating the potential spread of drug-resistant in-fluenza virus infections during community-baseduse of antivirals, J. Antimicrob. Chemother.,51 (2003) 977-990.
    [45]R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics,7 (1937) 355-369.
    [46]P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal.,65 (1977) 335-361.
    [47]P. C. Fife, J. B. McLeod, A phase plane discussion of convergence to travelling fronts for nonlinear diffusion, Arch. Rational Mech. Anal.,75 (1980/81) 281-314.
    [48]H. Fujikawa, M. Matsushita, Fractal growth of Bacillus subtilis on agar plates, J. Phys. Soc. Japan,58 (1989) 3875-3878.
    [49]R. A. Gardner, Existence of travelling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math.,44 (1984) 56-79.
    [50]M. Gattoa, L. Maria, E. Bertuzzob, R. Casagrandia, L. Righettob, I. Rodriguez-Iturbec, A. Rinaldob, Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proc. Natl. Acad. Sci. USA,27 (2012) 19703-19708.
    [51]G. F. Gause, The struggle for existence, Williams and Wilkins, Baltimore, MD, 1935.
    [52]M. Ghosh, P. Chandra, P. Sinha, J. B. Shukla, Modeling the spread of carrierde-pendent infectious diseases with environmental effect, Applied Mathematics and Computation,152(2004)385-402.
    [53]K. Goh, S. Teo, S. Lam, M. Ling, Person-to-person transmission of cholera in a psychiatric hospital, Journal of Infection,20(1990) 193-200.
    [54]I. Golding, Y. Kozlovsky, I. Cohen, E. Ben-Jacob, Studies of bacterial branching growth using reaction-diffusion models for colonial development, Physica A,260 (1998)510-554.
    [55]B. Grammaticos, M. Badoual, M. Aubert, An (almost) solvable model for bacte-rial pattern formation, Physica D,234 (2007) 90-97.
    [56]Z. Guo, L. Huang, X. Zou, Impact of discontinuous treatments on disease dy-namics in an SIR epidemic model, Mathematical Biosciences and Engineering,9 (2011)97-110.
    [57]D. M. Hartley, J. G. Morris, D. L. Smith, Hyperinfectivity:a critical element in the ability of V. cholerae to cause epidemics? PLoS Medicine,3 (2006) 0063-0069.
    [58]W. M. Hirsch, H. Hanisch, J.-P. Gabriel, Differential equation models of some parasitic infections:Methods for the study of asymptotic behavior, Comm. Pure Appl. Math.,38 (1985) 733-753.
    [59]C.-H. Hsu, C.-R. Yang, T.-H. Yang, T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations,252 (2012) 3040-3075.
    [60]S.-B. Hsu, X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal.,40 (2008) 776-789.
    [61]J. Huang, G. Lu, S. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol.,46 (2003) 132-152.
    [62]W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations,24 (2012) 633-644.
    [63]C. B. Huffaker, Experimental studies on predation:dispersion factors and predator-prey oscillations, Hilgardia,27 (1958) 343-383.
    [64]G. E. Hutchinson, The paradox of the plankton, American Naturalist,95 (1961) 137-145.
    [65]H. Dceda, M. Mimura, Y. Nishiura, Global bifurcation phenomena of travelling wave solutions for some bistable reaction-diffusion systems, Nonlinear Anal.,13 (1989) 507-526.
    [66]R. S. Irving, Integers, polynomials, and rings, Springer, New York,2004,153-159.
    [67]M. Islam, S. Mahmuda, M. Morshed, H. Bakht, M. Khan, R. Sack, D. Sack, Role of cyanobacteria in the persistence of Vibrio cholerae 0139 in saline microcosms, Can. J. Microbiol.,50 (2004) 127-131.
    [68]M. Jensen, S. M. Faruque, J. J. Mekalanos, B. Levin, Modeling the role of bacteriophage in the control of cholera outbreaks, Proceedings of the National Academy of Sciences,103 (2006) 4652-4657.
    [69]K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, Modeling spatio-temporal patterns generated by Bacillus subtilis, J. Theoret. Biol.,188 (1997) 177-185.
    [70]D. A. Kessler, H. Levine,Fluctuation-induced diffusive instabilities, Nature,394 (1998) 556-558.
    [71]H. Kierstead, L. B. Slobodkin, The size of water masses containing plankton bloom, J. Marine Research,12 (1953) 141-147.
    [72]A. A. King, E. L. Lonides, M. Pascual, M. J. Bouma, Inapparent infections and cholera dynamics, Nature,454 (2008) 877-880.
    [73]S. Kitsunezaki, Interface Dynamics for Bacterial Colony Formation, J. Phys. Soc. Japan,66 (1997) 1544-1550.
    [74]R. Koenig, International groups battle cholera in Zimbabwe, Science,323 (2009) 860-861.
    [75]A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Etude del equation de la diffusion avec croissance de la quantite de matiere et son application a un prob-leme biologique, Bull. Univ. dEtat a Moscou, Ser. Intern. A.,1 (1937) 1-26.
    [76]A. Korobeinikov, Global properties of SIR and SEIR epidemic models with mul-tiple parallel infectious stages. Bull. Math. Biol.,71 (2009),75-83.
    [77]Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob, Lubricating bacteria model for branching growth of bacterial colonies, Phys. Rev. E,59 (1999) 7025-7035.
    [78]A. M. Lacasta, I. R. Cantalapiedra, C. E. Auguet, A. Penaranda, L. Ramirez-Piscina, Modelling of spatio-temporal patterns in bacterial colonies, Phys. Rev. E,59 (1999) 7036-7041.
    [79]Lamb, R. A.,1989. Genes and proteins of the influenza virus. In:Krug, R. M. , Fraenkel-Conrat, H.,Wagner, R. R. (Eds.), In The Influenza Viruses, pp.1-87. Plenum, New York.
    [80]S. Lee, C. Gerardo, C.-C, Carlos, Optimal control for pandemic influenza:the role of limited antiviral treatment and isolation, J. Theor. Biol.,265 (2010) 136-150.
    [81]J. Lega, T. Passot, Hydrodynamics of bacterial colonies:a model, Phys. Rev. E, 67 (2003) 1550-2376.
    [82]J. Lega, T. Passot, Hydrodynamics of bacterial colonies, Nonlinearity,20 (2007) C1-C16.
    [83]R. Levins, Some demographic and genetic consequences of environmental het-erogeneity for biological control, Bull. Entomological Soc. of America,15 (1969) 237-240.
    [84]X. Liang, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math.,60 (2007) 1-40.
    [85]B. Li, M. A. Lewis, H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol.,58 (2009) 323-338.
    [86]B. Li, H. F. Weinberger, M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci.,196 (2005) 82-98.
    [87]W.-T. Li, G. Lin, S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity,19 (2006) 1253-1273.
    [88]W.-T. Li, S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals,37 (2008) 476-486.
    [89]G. Lin, W. T. Li, M. G. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Cont. Dyn.-B,13 (2010) 393-414.
    [90]X. B. Lin, P. X. Weng, C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dyn. Diff. Eqns.,23 (2011) 903-921.
    [91]M. Lipsitch, T. Cohen, M. Muray, B. R. Levin, Antiviral resistance and the control of pandemic influenza, PLoS Med.,4 (2007) 0111-0120.
    [92]Y. Lou, T. Nagylaki, L. Su, An integro-PDE model from population genetics, J. Differential Equations,254 (2013) 2367-2392.
    [93]R. Lui, Biological growth and spread modeled by systems of recursions. Ⅰ. Math-ematical theory, Math. Biosci.,93 (1989) 269-295.
    [94]R. Lui, Biological growth and spread modeled by systems of recursions. Ⅱ. Bio-logical theory, Math. Biosci.,93 (1989) 297-312.
    [95]G. Lv, M. Wang, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model, Nonlinear Anal. Real World Appl.,11 (2010)2035-2043.
    [96]G. Lv, M. Wang, Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations, J. Math. Anal. Appl.,385 (2012) 1094-1106.
    [97]S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations,171(2001) 294-314.
    [98]马知恩,周义仓,王稳地,靳祯,传染病动力学的数学建模与研究,科学出版社,北京,2004.
    [99]R. H. MacArthur, E. O. Wilson, The theory of island biogeography, Princeton University Press, Princeton, NJ,1967.
    [100]R. H. MacArthur, Geographical ecology, Harper and Row, New York,1972.
    [101]M. B. A. Mansour, Traveling wave solutions of a reaction-diffusion model for bacterial growth, Physica A,383 (2007) 466-472.
    [102]M. B. A. Mansour, Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation, Applied Mathematical Mod-elling,32 (2008) 240-247.
    [103]M. B. A. Mansour, Analysis of propagating fronts in a nonlinear diffusion model with chemotaxis, Wave Motion,50 (2013) 11-17.
    [104]L. Mari, E. Bertuzzo, L. Righetto, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, A. Rinaldo, Modelling cholera epidemics:the role of waterways, human mobility and sanitation, J. R. Soc. Interface,9 (2012) 376-388.
    [105]M. Matsushita, H. Fujikawa, Diffusion-limited growth in bacterial colony for-mation, Physica A,168 (1990) 498-506.
    [106]M. Matsushita, F. Hiramatsu, N. Kobayashi.T. Ozawa, Y. Yamazaki, T. Mat-suyama, Colony formation in bacteria:experiments and modeling, Biofilms,1 (2004) 305-317.
    [107]T. Matsuyama, M. Matsushita, in:P. M. Iannaccone, M. Khokha (Eds.), Fractal Geometry in Biological Systems, CRC Press, Boca Raton, FL,1996,127-171.
    [108]J. M. McCaw, J. McVernon, Prophylaxis or treatment? Optimal use of an antivi-ral stockpile during an influenza pandemic, Math. Biosci.,209 (2007) 336-360.
    [109]J. M. McCaw, J. G. Wood, C. T. McCaw, J. McVernon, Impact of emerging antiviral drug resistance on influenza containment and spread:Influence of sub-clinical infection and strategic use of a stockpile containing one or two drugs, PLoS ONE 3 (2008), e2362. doi:10.1371/journal, pone.0002362.
    [110]D. S. Merrell, S. M. Butler, F. Qadri, et al., Host-induced epidemic spread of the cholera bacterium, Nature,417 (2002) 642-645.
    [111]M. Mimura; H. Sakaguchi, M. Matsushita,Reaction-diffusion modelling of bac-terial colony patterns, Physica A,282 (2000) 283-303.
    [112]Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, J. G. Jr. Morris, Es-timating the reproductive numbers for the 2008-2009 cholera outbreaks in Zim-babwe, Proc. Natl. Acad. Sci. USA,108 (2011) 8767-8772.
    [113]J. Muller, W. V. Saarloos, Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion, Phys. Rev. E,65 (2002) 061111.
    [114]Y. Muroya, Y. Enatsu, Y. Nakata, Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate, J. Math. Anal. Appl.,377 (2011) 1-14.
    [115]A. Mutreja, D. W. Kim, N. R. Thomson, etc, Evidence for several waves of global transmission in the seventh cholera pandemic, Nature,477 (2011) 462-466.
    [116]E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood, A. Camilli, Cholera transmission:the host, pathogen and bacteriophage dynamics, Nature Reviews: Microbiology,7 (2009) 693-702.
    [117]A. Nishiyama, T. Tokihiro, M. Badoual, B. Grammaticos, Modelling the mor-phology of migrating bacterial colonies, Phys. D,239 (2010) 1573-1580.
    [118]M. Nuno, Z. Feng, M. Martcheva, C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math.,65 (2005) 964-982.
    [119]M. Ohgiwari, M. Matsushita, T. Matsuyama, Morphological changes in growth phenomena of bacterial colony patterns, J. Phys. Soc. Japan,61 (1992) 816-822.
    [120]G.-P. PA, S. Lee, V. Leticia, C.-C, Carlos, A note on the use of optimal control on a discrete time model of influenza dynamics, Math. Biosci. Eng.,8 (2011) 183-197.
    [121]C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York,1992.
    [122]M. Pascual, M. J. Bouma, A. P. Dobson, Cholera and climate:revisiting the quantitative evidence, Microb. Infect.,4 (2002) 237-245.
    [123]M. Pascual, K. Koelle, A. P. Dobson, Hyperinfectivity in cholera:a new mech-anism for an old epidemiological model?, PLoS Medicine,3 (2006) 931-938.
    [124]M. Pascual, X. Rodo, S. P. Ellner, R. Colwell, M. J. Bouma, Cholera dynamics and El Nio-Southern oscillation, Science,289 (2000) 1766-1769.
    [125]L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York,2001.
    [126]Z. Qiu, Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bull. Math. Biol.,72 (2010) 1-33.
    [127]Z. Qiu, Z. Feng, The dynamics of an epidemic model with targeted antiviral prophylaxis, Journal of Biological Dynamics,4 (2010) 506-526.
    [128]I. Rahimov, Two-type branching processes with sub exponential life-spans and SIR epidemic models, Stoch. Anal. Appl.,26 (2008) 925-940.
    [129]R. R. Regoes, S. Bonhoeffer, Emergence of drug-resistant influenza virus:Pop-ulation dynamical considerations, Science,312 (2006) 389-391.
    [130]R. C. Reiner, A. A. King, M. Emch, M. Yunus, A. S. G. Faruque, M. Pascual ,Highly localized sensitivity to climate forcing drives endemic cholera in a megac-ity,109 (2012) 2033-2036.
    [131]Md. Samsuzzoha, M. Singh, D. Lucy, A numerical study on an influenza epi-demic model with vaccination and diffusion, Applied Mathematics and Compu-tation,219 (2012) 122-141.
    [132]R. P. Sanches, C. P. Ferreira, R. A. Kraenkel, The Role of Immunity and Sea-sonality in Cholera Epidemics, Bull Math Biol,73 (2011) 2916-2931.
    [133]R. A. Satnoianu, P. K. Maini, F. S. Garduno, and J. P. Armitage, Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst., Ser. B,1 (2001) 339-362.
    [134]K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc.,302 (1987) 587-615.
    [135]Schumacher, Travelling front solutions for integrodifferential equations Ⅱ, in: W. Jager, H. Rost, P. Tautu (Eds.), Biological Growth and Spread, Lecture Notes in Biomathematics, Vol.38, Springer,1980, pp.296-309.
    [136]Z. Shuai, P. V. D. Driessche, Global dynamics of cholera models with differen-tial infectivity, Mathematical Biosciences,234 (2011) 118-126.
    [137]Z. Shuai, J. H. Tien, P. V. V. Driessche, Cholera Models with Hyperinfectivity and Temporary Immunity, Bull Math Biol,74 (2012) 2423-2445.
    [138]H. L. Smith, X.-Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal.,31 (2000) 514-534.
    [139]P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular pertur-bation problems, J. Differential Equations,92 (1991) 252-281.
    [140]J. M. Tchuenche, S. A. Khamis, F. B. Agusto, S. C. Mpeshe, Optimal control and sensitivity analysis of an influenza model with treatment and vaccination, Acta Biotheoretica,59 (2011) 1-28.
    [141]H. R. Thieme, Asymptoticestimates of the solutions of nonlinear integral equa-tions and asymptotic speeds for the spread of populations, J. Reine Angew. Math. 306(1979)94-121.
    [142]H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol.,8 (1979) 173-187.
    [143]H. R. Thieme, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equa-tions,195 (2003) 430-470.
    [144]M. Torrisi, R. Tracina, Exact solutions of a reaction-diffusion systems for Pro-teus mirabilis bacterial colonies. Nonlinear Anal. Real World Appl.,12 (2011), 1865-1874.
    [145]A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn, J. Ma, D. N. Fisman, Cholera epidemic in Haiti,2010:using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med. 154(2011)593-601.
    [146]A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London. B,237 (1952) 37-72.
    [147]Q.-R. Wang, K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity, J. Comput. Appl. Math.,233 (2010) 2549-2562.
    [148]W. Wang, G. Mulone, Threshold of disease transmission on a patch environ-ment, J. Math. Anal. Appl.,285 (2003) 321-335.
    [149]W. Wang, Y. Takeuchi, Adaptation of prey and predators between patches, J. Theoret. Biol.,258 (2009) 603-613.
    [150]X.-S. Wang, H. Wang, J. Wu, Traveling waves of diffusive predator-prey sys-tems:disease outbreak propagation, Discrete Contin. Dyn. Syst.,32 (2012) 3303-3324.
    [151]Z. C. Wang, W. T. Li, S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Diff. Equat.,20 (2008) 573-607.
    [152]Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc. 361(2009) 2047-2084.
    [153]Z.-C. Wang, J. Wu, Travelling waves of a diffusive Kermack-McKendrick epi-demic model with non-local delayed transmission, Proc. R. Soc. A,466 (2010) 237-261.
    [154]J. Y. Wakano, A. Komoto, Y. Yamaguchi, Phase transition of traveling waves in bacterial colony pattern, Phys. Rev. E,69 (2004) 051904.
    [155]J. Wakita, H. Itoh, T. Matsuyama, M. Matsushita, Self-affinity for the growing interface of bacterial colonies, J. Phys. Soc. Japan,66 (1997) 67-72.
    [156]J. Wakita, H. Kuninaka, T. Matsuyama, M. Matsushita, Size distribution of bac-terial cells in homogeneously spreading disk-like colonies by Bacillus subtilis, J. Phys. Soc. Jpn.,79 (2010) 094002-094002-6.
    [157]J. Wakita, K. Komatsu, A. Nakahara, T. Matsuyama, M. Matsushita, Experi-mental investigation on the validity of population dynamics approach to bacterial colony formation, J. Phys. Soc. Japan,63 (1994) 1205-1211.
    [158]J. Wakita, I. Rafols, H. Itoh, T. Matsuyama, M. Matsushita, Experimental inves-tigation on the formation of dense-branching-morphology-like colonies in bacte-ria, J. Phys. Soc. Japan,67 (1998) 3630-3636.
    [159]A. A. Weil, A. I. Khan, F. Chowdhury, R. C. LaRocque, A. S. G. Faruque, E. T. Ryan, S. B. Calderwood, F. Qadri, J. B. Harris, Clinical outcomes of household contacts of patients with cholera in Bangladesh. Clin. Infect. Dis.,49 (2009) 1473-1479.
    [160]H. F. Weinberger, Long time behavior of a class of biological models, SIAM J. Math. Anal.,13 (1982) 353-396.
    [161]H. F. Weinberger, Asymptotic behavior of a model in population genetics, Non-linear Partial Differential Equations and Applications Lecture Notes in Mathe-matics,648 (1978) 47-96.
    [162]H. F. Weinberger, K. Kawasaki, N. Shigesada, Spreading speeds of spatially pe-riodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol.,57 (2008) 387-411.
    [163]H. F. Weinberger, M. A. Lewis, B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol.,45 (2002) 183-218.
    [164]P. Weng, Y. Tian, Asymptotic speed of propagation and traveling wave solutions for a lattice integral equation, Nonlinear Anal.,70 (2009) 159-175.
    [165]翁佩萱,徐志庭,某些发展方程的渐近波速和行波解研究简介,数学进展,39(2010)1-22.
    [166]Y. Huang, P. Weng, Traveling waves for a diffusive predator-prey system with general functional response, Nonlinear Analysis:Real World Applications,14 (2013) 940-959.
    [167]世界卫生组织网址,http://www. who. int/csr/don/archive/disease/cholera/zh/.
    [168]维基百科,流行性感冒,网址:http://zh.wikipedia.org/wiki/.
    [169]T. A. Witten, L. M. Sander, Diffusion-limited aggregation, a kinetic critical phe-nomenon, Phys. Rev. Lett.,47 (1981) 1400-1403.
    [170]C. Wu, P. Weng, Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B,15 (2011) 867-892.
    [171]J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynamics and Differential Equations,13 (2001) 651-687.
    [172]S. Wu, S. Liu, Traveling waves for delayed non-local diffusion equations with crossing-monostability, Appl. Math. Comput.,217 (2010) 1435-1444.
    [173]Y. Wu, Travelling waves for a class of cross-diffusion systems with small pa-rameters, J. Differential Equations,123 (1995) 1-34.
    [174]Y. Wu, X.-Q. Zhao, The existence and stability of travelling waves with transi-tion layers for some singular cross-diffusion systems, Phys. D,200 (2005) 325-358.
    [175]D. Xu, X.-Q. Zhao, Asymptotic speed of spread and traveling waves for a non-local epidemic model, Discr. Cont. Dynam. Systems (B),5 (2005) 1043-1056.
    [176]叶其孝,李正元,王明新,吴雅萍,反应扩散方程引论(第二版),科学出版社,北京,2011.
    [177]E. Zeilder, Nonlinear functional analysis and its applications Ⅰ,Springer, New York,1986.
    [178]L. Zhang, Positive steady states of an elliptic systemarising from biomathemat-ics, Nonlinear Analysis:RealWorld Applications,6 (2005) 83-110.
    [179]S. Zhang, L. Zhang, R. Liang, E. Zhang, Y. Liu, S. Zhao, Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation, Phys. Rev. E,72 (2005) 051913.
    [180]Y. Zhang, X.-Q. Zhao, Bistable travelling waves in competitive recursion sys-tems, J. Differential Equations,252 (2012) 2630-2647.
    [181]X.-Q. Zhao, Spatial dynamics of some evolution systems in biology. (English summary) Recent progress on reaction-diffusion systems and viscosity solutions, 332-363, World Sci. Publ., Hackensack, NJ,2009.
    [182]X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discr. Cont. Dynam. Systems (B),4 (2004) 1117-1128.
    [183]X. Zhou, J. Cui, Threshold dynamics for a cholera epidemic model with periodic transmission rate, Applied Mathematical Modelling,37 (2013) 3093-3101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700