几类时滞动力系统的分支分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时滞动力系统的动力学性质的研究是一个具有丰富实际背景与广泛应用的领域。在自然科学中,很多过程均可以用时滞系统加以描述与刻画,因此时滞系统动力学性质的研究是一个非常具有实际意义的课题。分支分析是了解动力系统动力学性质的重要途径之一,所谓分支是指当参数变化时流的拓扑结构产生质的改变。其主要包括局部分支,半局部分支和全局分支。Hopf分支是一种常见而重要的分支,它主要研究当参数变化时,系统平衡点的稳定性发生变化,从而在平衡点附近产生小振幅周期解的现象。所以Hopf分支分析也是证明周期解存在性的强有力方法。众所周知,时滞动力系统的相空间一般是无穷维的,其分支的研究既需要经典的动力系统理论,同时也涉及到拓扑、代数、泛函等其它方向的数学知识,也就是说它是一个交叉性很强的领域。
     本文主要研究几类具有较强实际背景的时滞动力系统的Hopf分支问题,主要工作如下:
     1.研究了具时滞的“食物有限”种群模型的动力学性质。
     首先考虑空间齐性的情形。通过分析相应特征方程根的分布情况,得到了关于系统正平衡点的稳定性和Hopf分支存在性的定理。进而运用吴建宏的全局Hopf分支定理,给出了该系统存在全局Hopf分支的条件。其次考虑空间非齐性(带有扩散项)的情形,确切地说,一个具Dirichlet边值的偏泛函微分方程,基于相平面分析思想确定了正稳态解分支的存在性,进而证明了该系统在正稳态解处Hopf分支的存在性,并得到了确定Hopf分支周期解稳定性和分支方向的公式。最后讨论了扩散项对稳定性的影响。
     2.研究了一类造血干细胞模型的稳定性和Hopf分支问题。
     运用Beretta和Kuang的几何准则,我们首先通过研究一个系数依赖时滞的指数多项式方程根的分布情况,发现系统随时滞变化而出现稳定开关及Hopf分支现象。进而,利用规范型理论和中心流形定理,给出了确定Hopf分支方向和分支周期解稳定性的方法。最后,我们讨论出由Hopf分支产生的非常数周期解在参数于较大范围内变化时仍然存在。
     3.研究了具多时滞耦合的Mackey-Glass模型的动力学性质。
     由于多时滞的引入,从而特征方程根的分布变得复杂。首先我们通过确定单个时滞的稳定区间,进而讨论其他时滞对特征方程根的分布影响,得到了系统的稳定性随时滞变化而变化情况,并发现了系统在不动点处由于Hopf分支产生而发生“失稳”现象。最后我们给出判断Hopf分支的分支方向和分支周期解稳定性的公式。
     4.研究了某个遗传调节系统的动力学性质。
     选取τ作为分支参数。首先得到具有现实意义的正平衡点的存在性和唯一性。进而讨论出随着参数变化,该不动点的稳定性情况以及给出于此不动点处发生Hopf分支的充分条件,最后讨论了Hopf分支的属性。
     5.研究了位于两个相同区域的单种群年龄结构模型。
     由于系统在正齐性不动点处对应的特征方程是一个系数依赖于滞量的特征方程,而具有此类特征方程的系统常常表现出丰富的动力学行为。我们引入Beretta和Kuang的几何准则对其进行讨论,从而得到不动点存在稳定性开关和产生Hopf分支的现象。最后利用Hassard和Kazarinoff等人的理论,导出了关于分支方向、分支周期解稳定性及周期解的振幅和周期变化情况的计算公式。
Delayed dynamical systems have attracted much attention in the past few decadessince many process in natural science can be described by such systems. So it’s of greatsignificance to study the dynamics of delayed dynamical systems. Bifurcation analysis isan important and effective way to obtain dynamics of delayed systems. By bifurcation,we mean that the topological structure of a flow with parameters is changed as parame-ters is cross a critical value. Generally speaking, bifurcations consists of local, semi-localand global bifurcations. Hopf bifurcation is a common and important local bifurcation.It studies the change of stability of equilibria and the consequent occurrence of periodicsolutions with small amplitude near equilibria. Therefore, Hopf bifurcation is an effectiveway to find periodic solutions. As we know, the phase space of delayed systems is usuallyof infinite dimension, and the bifurcation analysis for such systems needs not only classi-cal theory of dynamical systems, but also knowledge of other mathematics branches, suchas topology, algebra and functional analysis. In other words, delayed dynamical systemsis an interdiscipline. In this thesis, we mainly consider several kinds of delayed dynamicalsystems with strongly practical background. The organization is as follows:
     1. Dynamics of a food-limited population model.
     For the spatially homogeneous case, we first establish a theorem on the stabilityof the positive equilibrium and the existence of Hopf bifurcation via analyzing the dis-tribution of roots to the corresponding characteristic equation. Then we get a sufficientcondition for global Hopf bifurcation to exist by Wu’s global Hopf bifurcation theorem.For the spatially inhomogeneous case (more precisely, a partial functional differentialequation with Dirichlet boundary condition), we obtain the existence for bifurcation ofpositive steady states employed the idea of phase plane analysis, and further prove theexistence of Hopf bifurcation at positive steady states as well as the formula for deter-mining the stability of bifurcated periodic solutions and the direction of Hopf bifurcation.Finally, we present a discussion on the effect of diffusion on stability.
     2. Hopf bifurcation of a haematopoietic stem cell model with a single delay.
     We first study the distribution of roots to the characteristic equation, which is a expo- nential polynomial equation with delay-dependent coefficients. Consequently, we obtainthe stability threshold and the existence of Hopf bifurcation. Then we derive an explicitformula for determining the stability and direction of periodic solutions bifurcated fromHopf bifurcations using the normal form theory combined with center manifold argu-ments. The persistence of periodic solution induced by Hopf bifurcation as parametersvary in a large range is confirmed.
     3. Dynamics of a coupled Mackey-Glass electronic circuits model with multipledelays.
     The distribution of roots to the characteristic equation is complicated because ofmultiple delays. To analyze it, we first figure out the stability interval of one delay, andthen discuss the effects of other delays. Consequently, we find a sequence of Hopf bifur-cation points and derive an explicit algorithm for determining the direction and stability ofbifurcated periodic solutions by appealing to the normal form theory and center manifoldargument.
     4. Hopf bifurcation in a genetic regulatory model with delay.
     The existence and uniqueness of positive equilibrium are established. Choosing timedelay τ as the parameter, we obtain a sufficient condition for Hopf bifurcation to happen.
     5. Dynamics of an age-structured population model of a single species living in twoidentical patches.
     This is a delayed system arose in population biology. It has rich dynamical behavior,which is still largely opened. We here perform some bifurcation to this model. Someproperties of Hopf bifurcation are obtained by the normal form theory coupled with thecenter manifold theorem.
引文
1张筑生.微分动力系统原理[M].科学出版社,1997.
    2F. E. Smith. Population Dynamics in Daphnia Magna[J]. Ecology,1963,44:651~663.
    3K. Gopalsamy, M. Kulenovic, G. Ladas. Time Lags in a “Food-limited” PopulationModel[J]. Appl. Anal.,1988,31:225~237.
    4F. D. Chen, D. X. Sun, J. L. Shi. Periodicity in a Food-limited Population Modelwith Toxicants and State Dependent Delays[J]. J. Math. Anal. Appl.,2003,288:136~146.
    5K. Gopalsamy, M. Kulenovic, G. Ladas. Environmental Periodicity and Time Delayin a “Food-limited” Population Model[J]. J. Math. Anal. Appl.,1990,147:545~555.
    6S. A. Gourley, J. Wu. Delayed Non-local Diffusive Systems in Biological Invasionand Disease Spread[J]. Fields Institute Communications,2006,48:137~200.
    7Y. Song, J. Wei, M. Han. Local and Global Hopf Bifurcation in a DelayedHematopoliesis Model[J]. Int. J. Bifur. and Chaos,2004,14:3909~3919.
    8J. J. Wang, J. R. Yan. On Oscillation of a Food-limited Population Model withImpulse and Delay[J]. J. Math. Anal. Appl.,2007,334:349~357.
    9F. A. Davidson, S. A. Gourley. The Effects of Temporal Delays in a Model for aFood-limited Diffusing Population[J]. J. Math. Anal. Appl.,2001,261:633~648.
    10S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].Springer-Verlag, New York,1990:253~383.
    11S. Chow, J. Hale. Methods of Bifurcation Theory[M]. Springer-Verlag. New York,1982:161~198.
    12张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论[M].科学出版社,1997:1~44.
    13张锦炎,冯贝叶.常微分方程几何理论与分支理论[M].北京大学出版社,2000:206~348.
    14韩茂安.动力系统的周期解与分支理论[M].科学出版社,2002:166~242.
    15J. Hale. Theory of Functional Differential Equations[M]. Springer-Verlag. NewYork,1977:245~247.
    16J. Hale, S. Lunel. Introduction to Functional Differential Equations[M]. Springer-Verlag. New York,1993:331~360.
    17B. Hassard, N. Kazarinoff, Y. Wan. Theory and Applications of Hopf Bifurca-tion[M]. Cambridge Univ. Press. Cambridge,1981.
    18E. M. Wright. Stability Criteria and the Real Roots of a Transcendental Equation[J].J. Soc. Indust. Appl. Math,1961,9:136~148.
    19E. Beretta, Y. Kuang. Geometric Stability Switch Criteria in Delay Differential Sys-tems with Delay Dependant Parameters[J]. SIAM. J. Math. Anal.,2002,33:1144~1165.
    20E. Beretta, Y. Tang. Extension of a Geometric Stability Switch Criterion[J]. Funk-cialaj Ekvacioj,2003,46:337~361.
    21S. Ruan, J. Wei. On the Zeros of a Third Degree Exponential Polynomial withApplications to a Delayed Model for the Control of Testosterone Secretion[J]. IMAJ. Math. Appl. Med. Biol.,2001,18:41~52.
    22S. Ruan, J. Wei. On the Zeros of Transcendental Functions with Applications toStability of Delay Differential Equations with Two Delays[J]. Dyn. ContinuousDiscrete Impulsive Syst. Set. A: Math. Anal.,2003,10:863~874.
    23J. Wei, S. Ruan. Stability and Global Hopf Bifurcation for Neutral DifferentialEquations[J]. Acta Mathematica Sinica.,2002,45:93~104.
    24J. Dieudonne′. Foundations of Modern Analysis[J]. Academic Press, New York,1960:112~178.
    25S. N. Chow, J. Mallet-Paret. Integral Avaraging and Bifurcation[J]. J. Diff. Eqns.,1977,26:112~159.
    26N. Kazarinoff, Y. H. Wan, P. V. Driessche. Hopf Bifurcation and Stability of Pe-riodic Solutions of Differential-difference and Integro-differential Equations[J]. J.Inst. Math. Appl.,1978,21:461~477.
    27H. W. Stech. Hopf Bifurcation Calculations for Functional-differential Equa-tions[J]. J. Math. Anal. Appl.,1985,109:472~491.
    28J. Wu. Symmetric Functional Differential Equations and Neural Networks withMemory[J]. Trans. Amer. Math. Soc.,1998,350:4799~4838.
    29J. Wei, M. Y. Li. Hopf Bifurcation Analysis in a Delayed Nicholson BlowfliesEquation[J]. Nonlin. Anal.,2005,60:1351~67.
    30M. Y. Li, J. S. Muldowney. On Bendixson’s Criterion[J]. J. Diff. Eqns.,1994,106:27~39.
    31M. C. Memory. Stable and Unstable Menifolds for Partial Functional DifferentialEquations[J]. Nonlin. Anal.: TMA,1991,16(2):131~142.
    32X. Lin, J.W.-H. So and J. Wu. Centre Manifolds for Partial Differential Equationswith Delays[J]. Proc. Roy. Soc. Edinburgh A,1992,122:237~254.
    33T. Faria. Normal Forms and Hopf Bifurcation for Partial Differential Equationswith Delays[J]. Trans. Amer. Math. Soc.,2000,352:2217~2238.
    34T. Faria, L. T. Magalha es. Normal Form for Retarded Functional Differential Equa-tions and Applications to Bogdanov-takens Singularity[J]. J. Diff. Eqns.,1995,122:201~224.
    35T. Faria, L. T. Magalha es. Normal Form for Retarded Functional Differential Equa-tions with Parameters and Applications to Hopf Bifurcation[J]. J. Diff. Eqns.,1995,122:181~200.
    36S. Chow, C. Li, D. Wang. Normal Forms and Bifurcation of Planar Vector Fields[J].Cambridge University Press, New York,,1994:114~145.
    37魏俊杰,吴建宏,邹幸福.分布在非齐次空间中捕食-被捕食系统的锁相振动[J].数学学报,1996,39:566~673.
    38D. Xiao, S. Ruan. Global Dynamics of a Ratio-dependent Predator-prey System[J].J. Math. Biol.,2001,43:268~290.
    39D. Xiao, W. Li. Stability and Bifurcation in a Delayed Ratio-dependent Predator-prey System[J]. Proc. Edin. Math. Soci,2003,(45):205~220.
    40T. Faria. Stability and Bifurcation for a Delayed Predator-prey Model and the Effectof Diffusion[J]. J. Math. Anal. Appl.,2001,254:433~463.
    41A. Martin, S. Ruan. Predator-prey Models with Delay and Prey Harvesting[J]. J.Math. Biol.,2001,43:247~267.
    42Z. Liu, R. Yuan. Stability and Bifurcation in a Delayed Predator-prey System withBeddington-deangelis Functional Response[J]. J. Math. Anal. Appl.,2004,296:521~537.
    43Z. Liu, R. Yuan. Bifurcation in Predator-prey Systems with Nonmonotonic Founc-tional Response[J]. Nonlin. Anal.: RWA,2005,6:187~205.
    44Y. Fan, W. Li, L. Wang. Periodic Solutions of Delayed Ratio-dependent Predator-prey Models with Monotonic Or Nonmonotonic Functional Responses[J]. Nonlin.Anal.: RWA,2004,5:247~263.
    45Y. Fan, W. Li. Permanence for a Delayed Discrete Ratio-dependent Predator-preySystem with Holling Type Functional Response[J]. J. Math. Anal. Appl.,2004,299:357~374.
    46Y. Song, J. Wei. Local Hopf Bifurcation and Global Periodic Solutions in a DelayedPredator-prey System[J]. J. Math. Anal. Appl.,2005,301(1):1~21.
    47潘家齐,岳锡亭.二阶具有限时滞lienard方程的hopf分支公式[J].数学年刊,1991,12A(1):50~56.
    48魏俊杰,黄启昌.以滞量为参数的向日葵方程的hopf分支[J].科学通报,1995,40(30):198~200.
    49魏俊杰.向日葵方程的hopf分支[J].应用数学学报,1996,19(1):73~79.
    50X. Li, S. Ruan, J. Wei. Stability and Bifurcation in Delay-differential Equationswith Two Delays[J]. J. Math. Anal. Appl.,1999,236(2):254~280.
    51D. Jiang, J. Wei. Existence of Positive Periodic Solutions for Volterra Intergo-differential Equations[J].数学物理学报(英文版),2001,21B:453~560.
    52R. Zhang, J. Wei, J. Wu. Subharmonic Solutions of Systems of Difference Equa-tions with Periodic Perturbations Part1: Existence[J]. J. Math. Anal. Appl.,2002,275(2):495~511.
    53R. Zhang, J. Wei, J. Wu. On Subharmonic Solutions of Systems of DifferenceEquations with Periodic Perturbations Part2: Multiplicity and Stability[J]. J. Math.Anal. Appl.,2002,276(2):477~496.
    54S. Ruan, J. Wei, J. Wu. Bifurcation from a Homoclinic Orbit in Partial FunctionalDifferential Equations[J]. Discrete and Continuous Dynamical Systems,2003,9(5):1293~1322.
    55J. Wei, C. Zhang. Stability Analysis in a First-order Complex Differential Equationswith Delay[J]. Nonlin. Anal.,2004,59:657~671.
    56Y. Song, J. Wei. Bifurcation Analysis for Chen’s System with Delayed Feedbackand its Application to Control of Chaos[J]. Chaos, Solitons and Fractals,2004,22:75~91.
    57X. Meng, J. Wei. Stability and Bifurcation of Mutual System with Time Delay[J].Chaos, Solitons and Fractals,2004,21(3):729~740.
    58C. Zhang, J. Wei. Stability and Bifurcation Analysis in a Kind of Business CycleModel with Delay[J]. Chaos, Solitons and Fractals,2004,22(4):883~896.
    59J. Wei, Y. Li. Hopf Bifurcation Analysis in a Delayed Nicholson Blowflies Equa-tion[J]. Nonlin. Anal.,2005,60(7):1351~1367.
    60H. Wang, J. Liu. Stability and Bifurcation Analysis in Amagnetic Bearing Systemwith Time Delays[J]. Chaos, Solitons and Fractals,2005,26:813~825.
    61Z. Liu, R. Yuan. Stability and Bifurcation in a Harmomic Oscillator with Delays[J].Chaos, Solitons and Fractals,2005,23:551~562.
    62蒋卫华.时滞微分方程的分支分析[M].哈尔滨工业大学博士学位论文,2005:1~50.
    63Y. Song, J. Wei. Bifurcations for a Predator-prey System with Two Delays[J]. J.Math. Anal. Appl,2008,337:466~479.
    64Z. Jiang, J. Wei. Stability and Bifurcation Analysis in a Delayed Sir Model[J].Chaos, Solitons and Fractals,2008,35:609~619.
    65J. Wei, C. Zhang. Bifurcation Analysis of a Class of Neural Networks with De-lays[J]. Nonlin. Anal.: RWA,2008,9:2234~2252.
    66范德军.几类时滞微分方程的分支分析[M].哈尔滨工业大学博士学位论文,2008:1~49.
    67A. Verdugo, R. Rand. Hopf Bifurcation in a Dde Model of Gene Expression[J].Communications in Nonlinear Science and Numerical Simulation,2008,13:235~242.
    68J. Wu. Theory and Applications of Partial Functional-differential Equations[M].Springer. New York,1996.
    69K. Engelborghs, T. Luzyanina, and D. Roose. Numerical Bifurcation Analysisof Delay Differential Equations Using Dde-biftool[J]. ACM Trans. Math. Softw.,2002,28(1):1~21.
    70K. Engelborghs, T. Luzyanina, G. Samaey. Dde-biftool V.2.00: A Matlab Packagefor Bifurcation Analysis of Delay Differential Equations[M]. Technical ReportTW-330, Department of Computer Science. K.U.Leuven, Leuven, Belgium,2001.
    71J. W.-H. So, J. Wu and X. Zou. Structured Population on Two Patches: ModelingDispersal and Delay[J]. J. Math. Biol.,2001,43:37~51.
    72C. C. Travis, G. F. Webb. Existence and Stability for Partial Functional DifferentialEquations[J]. Trans. Amer. Math. Soc.,1974,200:395~418.
    73W. Feng, X. Lu. On Diffusive Population Models with Toxicants and Time De-lays[J]. J. Math. Anal. Appl.,1999,233:373~386.
    74Z. C. Wang, W. T. Li. Monotone Travelling Fronts of a Food-limited PopulationModel with Nonlocal Delay[J]. Nonlin. Analy.: RWA.,2007,8:699~712.
    75Y. Su, J. Wei and J. P. Shi. Hopf Bifurcation in a Diffusion Population Model withDelay Effect[J]. J. Diff. Eqns.,2009, doi:10.1016/j.jde.2009.04.017:~.
    76S. A. Gourley. Wave Front Solution of a Diffusive Delay Model for Populations ofDaphnia Magna[J]. Computers and Mathematics with Applications,2001,42:1421~1430.
    77S. A. Gourley and M. A. J. Chaplain. Travelling Fronts in a Food-limited PopulationModel with Time Delay[J]. Proc. Roy. Soc. Edinburgh A,2002,132:75~89.
    78J. L. Wang, L. Zhou and Y. B. Tang. Asymptotic Periodicity of a Food-limitedDiffusive Population Model with Time-delay[J]. J. Math. Appl.,2006,313:382~399.
    79J. C. Robinson. Infinite-dimensional Dynamical Systems-an Introduction to Dissi-pative Parabolic Pdes and Theory of Global Attractors[M]. Cambridge UniversityPress. Cambridge,2001.
    80J. Wei, X. Zou. J. Bifurcation Analysis of a Population Model and the Resulting SisEpidemic Model with Delay[J]. Computational and Applied Mathematics,2006,197:169~187.
    81J. W.-H. So and J. S. Yu. On the Uniform Stability for a “Food-limited” PopulationModel with Time Delay[J]. Proc. Roy. Soc. Edinburgh A,1995,125:991~1002.
    82W. G. Aiello, H. I. Freedman. A Time-delay Model of Single-species Growth withStage Structure[J]. Math. Biosci.,1990,101:139~153.
    83W. G. Aiello, H. I. Freedman and J. Wu. Analysis of a Model Representing Stage-structured Population Growth with State-dependant Time Delay[J]. SIAM J. Appl.Math.,1992,52:855~869.
    84H. T. Alaoui and R. Yafia. Stability and Hopf Bifurcation in an ApproachableHaematopoietic Stem Model[J]. Math. Biosci.,2007,206(2):176~184.
    85L. K. Andersen and M. C. Mackey. Resonance in Periodic Chemotherapy: A CaseStudy of Acute Myelogenous Leukemia[J]. J. Theor. Biol.,2001,209:113~130.
    86J. Wei and X. Zou. Bifurcation Analysis of a Population Model and the ResultingSis Epidemic Model with Delay[J]. Journal Computational and Applied Mathemat-ics,2006,197:169~187.
    87M. C. Mackey. Unified Hypothesis of the Origin of Aplastic Anaemia and PeriodicHematopoiesis[J]. Blood,1978,51:941~956.
    88L. Pujo-Menjouet and M. C. Mackey. Contribution to the Study of Periodic ChronicMyelogenous Leukemia[J]. C. R. Biologies,2004,327:235~244.
    89F. Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood CellProduction Model.[J]. Mathematical Biosciences and Engineering,2006,2(3):325~346.
    90S. Sano, A. Uchida, S. Yoshimori and R. Roy. Dual Synchronization of Chaos inMackey-glass Electronic Circuits with Time-delayed Feedback[J]. Phys. Rev. E,2007,75:0162071~0162076.
    91A. Uchida, M. Kawano and S. Yoshimori. Dual Synchronization of Chaos in Col-pitts Electronic Oscillators and its Applications for Communications[J]. Phys. Rev.E,2003,68:0562071~056207.
    92K. Yoshimura. Multichannel Digital Communications by the Synchronization ofGlobally Coupled Chaotic Systems[J]. Phys. Rev. E,1999,60:1648.
    93M. Y. Kim, C. Sramek, A. Uchida, and R. Roy. Synchronization of Unidirec-tionally Coupled Mackey-glass Analog Circuits with Frequency Bandwidth Limi-tations[J]. Phys. Rev. E,2006,74:016211.
    94M. C. Mackey, L. Glass. Oscillation and Chaos in Physiological Control System[J].Science,1977,197:287~289.
    95A. Namajnas, K. Pyragas and A. Tamaeviius. An Electronic Analog of the Mackey-glass System[J]. Physics Letters A,1995,201(1):42~46.
    96X. Li, S. Ruan and J. Wei. Stability and Bifurcation in Delay-differential Equationswith Two Delays[J]. J. Math. Anal. Appl.,1999,236:254~280.
    97J. Wei, Y. Yuan. Synchronized Hopf Bifurcation Analysis in a Neural NetworkModel with Delays[J]. J. Math. Anal. Appl.,2005,312:205~29.
    98M. Kuraya, A. Uchida, S. Sano, S. Yoshimori, and K. Umeno. Independent Compo-nent Analysis of Mixed Chaos in Electronic Circuits[J]. Electronics Letters,2008,44(3):248~250.
    99P. Smolen, D. A. Baxter and J. H. Byrne. Frequency Selectivity, Multistability,and Oscillations Emerge from Models of Genetic Regulatory Systems[J]. Am. J.Physiol.,1998,277:C777~C790.
    100P. Smolen, D. A. Baxter and J. H. Byrne. Modeling Transcriptional Control inGene Networks-methods Recent Results, and Future[J]. Bulletin of MathematicalBiology,2000,62:247~292.
    101L. P. Shayer, S. A. Campbell. Stability, Bifurcation and Multistability in a Systemof Two Coupled Neurons with Multiple Delays[J]. SIAM J. Appl. Math.,2000,61:673~700.
    102H. Ye, A. N. Michel, K. Wang. Global Stability and Local Stability of HopfieldNeural Networks with Delays[J]. Phys. Rev. E,1994,50:4202~4213.
    103S. Ruan, J. Wei. Periodic Solutions of Planar Systems with Two Delays[J]. Proc.R. Soc. Edinburgh A,1999,129:1017~1032.
    104Y. Song, J. Wei. Local Hopf Bifurcation and Global Existence of Periodic Solutionsin a Delayed Predatorprey System[J]. J. Math. Anal. Appl.,2005,301:1~21.
    105Y. Song, J. Wei and Y. Yuan. Bifurcation Analysis on a Survival Red Blood CellsModel[J]. J. Math. Anal. Appl.,2006,316:458~71.
    106J. Wei. Bifurcation Analysis in a Scalar Delay Differential Equation[J]. Nonlin-earity,2007,20:2483~2498.
    107J. Wei, D. Fan. Hopf Bifurcation Analysis in a Mackey-glass System[J]. Int. J.Bifur. Chaos,2007,17:2149~57.
    108J. Wei, Michael Y. Li. Global Existence of Periodic Solutions in a Tri-neuronNetwork Model with Delays[J]. Physica D: Nonlin. Phenom,2004,198:106~19.
    109J. Wei, M. G. Velarde. Bifurcation Analysis and Existence of Periodic Solutions ina Simple Neural Network with Delays[J]. CHAOS,2004,14(3):940~953.
    110X. Wen, Z. Wang. The Existence of Periodic Solutions for some Model withDelay[J]. Nonlin. Anal.: RWA,2002,3:567~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700