油藏数值模拟自适应网格法中若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油生产工业中,经常通过注入水或其他流体,驱替地层中的原油,从而达到产油和提高采收率的目的。为了准确预报产量和尽可能提高采收效率,数值分析工具必不可少。因此长期以来,对多孔介质中多相渗流驱替问题的数值研究也一直受到广泛关注。
     对于含有相变的多相渗流的数值模拟,通常存在着一个明显的两相区与三相区的分界面,界面附近的物理量变化非常剧烈。自适应网格法就是一种处理带有急剧变化锋面的数值算法。在物理量变化剧烈的区域采用细网格,而在物理量变化缓慢的区域采用粗网格。
     本文使用自适应网格法模拟二维均质蒸汽辅助重力驱油过程,并将计算结果与国际上通用的油藏数值模拟软件CMG-STARS的计算结果进行详细的对比。对比结果表明,自适应网格法与CMG-STARS在计算精度上基本一致,而计算效率则明显优于CMG-STARS软件。自适应网格法在计算效率上的优越性,使得对大样本参数条件进行反复计算的周期大大缩短,从而能快速发现油藏开采中的问题,并给出优化策略。因而,自适应网格法在油藏数值模拟中具有巨大的工程实际意义。本文对自适应网格法中存在的若干难点问题进行了全面而深入的研究。
     首先,自适应网格法中的网格系统由细到粗分为若干层,我们需要由最精细网格的渗透率计算出各层粗网格的等效渗透率。对于空间无关联的均匀油藏内的流动,每个精细网格内的渗透率都是相同的或是相差不大的,网格变量的粗化可以通过算术平均或调和平均即可达到较高的精度要求。然而对于带有空间关联性的非均匀油藏,算术平均和调和平均在大部分情况下不再有效,如何快速有效地计算粗网格的等效渗透率,是发展复杂地层蒸汽热采稠油自适应网格法的重要科学问题之一。重整化方法就是计算等效渗透率的一种重要方法。对于带有空间关联性的多孔介质,重整化渗透率的概率分布,渗透率方差的标度特性,以及重整化之后的渗透率不动点的变化规律都是我们研究的重点。
     我们用相关长度来衡量多孔介质的空间关联性。与空间无关联多孔介质不同的是,带有空间关联性的多孔介质的渗透率方差的对数与重整化次数之间的比值不再是一条直线。在重整化过程中,当相关长度大于重整化尺度时,渗透率的方差将缓慢减少,并且当相关长度远远大于重整化尺度时,标度指数将趋于0。随着重整化次数的逐渐增加,当重整化尺度远远大于相关长度时,标度指数将趋于-1n4,与空间无关联多孔介质重整化过程的统计特性一致。同时,我们还研究了带有相关长度的多孔介质重整化之后的渗透率不动点。如果不同方向的相关长度相等,则不同方向的渗透率不动点完全相同,并与空间无关联多孔介质的渗透率不动点保持一致,即与相关长度的大小无关。当不同方向的相关长度不相等时,无论是理论结果还是数值模拟结果都说明,某一方向的相关长度的数值较大,则对应的渗透率不动点的数值也较大。
     为了能够准确快速的计算出三维空间自适应网格法中多层网格的等效渗透率,我们还在二维空间重整化方法(King,1987; Noetinger,1997)的基础上,给出了三维空间中标量形式以及张量形式的等效渗透率的重整化方法。数值计算的结果也表明了这两种重整化方法的计算结果都接近于作为参考值的有限差分的计算结果,特别是张量等效渗透率的计算结果比起标量的更加准确。
     其次,我们尝试利用自适应网格法来模拟分布有多种具有不同物理性质(包括骨架性质和孔隙性质)的储层岩石的复杂油藏问题。不同的储层岩石具有不同的相对渗透率曲线和表面张力曲线,各相流体的相饱和度在不同储层岩石的交界面处将发生空间间断,如果继续用各相饱和度作为网格系统的划分依据的话,将导致精细网格的数量大幅增加,影响计算的效率。在文中,我们从网格的各界面流量守恒性出发,并作如下假定:忽略毛管力;各相流量在粗网格中的变化是相当小的;同一个粗网格内同种岩石的各相饱和度是一致的。在这些假定的前提下,给出了二维空间多种岩石自适应网格法的粗网格细化以及细网格粗化的新准则,并取得了不错的数值模拟结果。
     最后,我们对基础的油水两相等温渗流的数值算法进行了初步的探讨。描述饱和度变化的连续方程,在数学上对应非线性双曲型方程,为了避免中心差分算法带来的物理上不真实的振荡,在通常的数值模拟中我们都采用了迎风格式。然而迎风方法只有一阶精度,会导致较明显的数值耗散。同时控制方程的离散,均采用五点差分格式,这在高维空间中的某些情况下将会导致严重的网格取向效应。虽然可以通过采用九点差分格式、PEBI网格等来减少网格取向效应,但是尚没有统一的数值算法可以有效避免各种情况下出现的网格取向效应。为了尽量减少数值耗散,降低网格取向效应,我们对基础的油水两相等温渗流的数值算法进行了初步的探讨,通过利用特征线方法分析Buckley-Leverett方程,提出了活塞式驱替和非活塞式驱替的严格数学划分条件。由于非活塞式驱替的饱和度在全场连续,本文建议对网格界面处相对渗透率的离散值不采用常用的在迎风方向取值的做法,而直接取相邻网格的算术平均值。数值计算结果表明,对非活塞式驱替而言,该算法不仅可以提高计算精度,而且可以减小网格取向效应。
     综上,本文的工作是从自适应网格法的计算结果出发,对自适应网格法中存在的若干难点问题进行研究,为后期的复杂油藏的数值模拟打好坚实的理论基础。相应的数值算例也验证了我们的理论。我们期望通过对油藏数值模拟中自适应网格法的基础问题的研究,能够给以后的工作带来实际的帮助。
In the oil production industry, the crude oil was displacement by water or other fluids which injected into the underground, in order to improve the recovery percent. Numerical analysis tools are essential for forecasting the oil production and improving the recovery percent. Oil-water displacement is an important problem often encountered in the oil field development.
     The difficulty for the numerical simulations of multi-phase flow in porous media is the existence of very sharp temperature and saturation fronts around the phase change regions. Adaptive mesh refinement technique is a kind of numerical algorithm dealing with jumpy frontal surface, which is capable of using fine grids in the area with steep gradients but coarse grids where the variations of variables are slower, to track the moving fronts inside the calculation domain. The fine grids use short time step, and the coarse grids use long time step.
     In this paper, we applied adaptive mesh refinement(AMR) technique into two-dimensional homogeneous steam assisted gravity flooding(SAGD) process, and compared the results with STARS software, which was widely used in the oil department. The numerical results show that, the accuracy of AMR technique is the same as STARS software, but AMR technique takes less calculation time than STARS software. Therefore, it enables us to implement large amount of simulations rapidly with different parameters. It is of help to find out problems and make better decisions for petroleum recovery. In this paper, we researched on some problems of AMR for reservoir numerical simulation.
     First of all, in the AMR technique, we need to calculate the equivalent permeability of the multi-grid. In the isotropy porous media, the equivalent permeability can be calculated easily by arithmetic mean or harmonic mean. But in the anisotropy porous media, arithmetic mean and harmonic mean may no longer be valid, and we must find a new numerical algorithm to calculate the equivalent permeability. Renormalization is a simple and fast method for calculating the equivalent permeability.
     The statistical properties for the renormalized permeability obtained from the renormalization of the correlated permeability field are investigated. In contrast to the uncorrelated porous media, scaling behavior of the variance of the renormalized permeability exhibits a crossover behavior. When the correlation lengths are larger compared with the domain scale covered by the renormalization procedure, the variance of the renormalized permeability will decrease slowly and the scaling exponent will be close to zero. As the renormalization number increases, the covered domain scale will eventually become larger than the correlation lengths, and the scaling property will transit to be the same as the uncorrelated case. The convergent values of the renormalized permeability for isotropic and anisotropic correlated media are also investigated. Both the theoretical analysis and the simulation results show that larger correlation length in one direction will lead to a larger convergent value in the corresponding direction. For the log-normal permeability field, numerical simulations show that the crossover scaling and the convergent value for the renormalized permeability can be fitted very well by simple mathematical functions.
     Based on renormalization methods under two dimensions, two upscaling methods, one obtaining scalar equivalent permeability and the other leading to tensorial equivalent permeability, are generalized to three dimensions. The numerical results indicate that both methods are close to the solutions from finite difference method, while the tensorial one is suggested to be more accurate compared with the scalar one.
     Secondly, Adaptive mesh refinement technique was also applied to the non-isothermal multiphase flow in the complex reservoir containing different types of rocks. The reservoir has rocks with different relative permeability curves, and the saturation is disconnected at the interface across different types of rocks. In order to apply AMR technique, we make the following assumptions:the capillary force can be ignored; the change of flows for each phase in coarse grid is very small; each phase saturation with the same rock type in coarse grid is the same. Under these assumptions, we have a new coarsening criterion and a new refining method in the AMR process which has solved the complex reservoir containing different types of rocks and achieved very good numerical simulation results.
     At last, we investigate the numerical algorithm of two-phase isothermal flow. The continuity equation is corresponding to the hyperbolic equation, and we usually use upwind scheme in the numerical algorithm for the purpose of avoiding unrealistic physical oscillation. But the first-order accuracy of upwind scheme may result in significant numerical dissipation. And five-point scheme may bring serious grid orientation effect in high-dimensional space. In order to reduce the numerical dissipation and decrease the grid orientation effect, we investigate the numerical algorithm of two-phase isothermal flow. Based upon the analysis of Buckley-Leverett equation by the characteristic line method, a mathematical judging condition is proposed to distinguish between the piston-like displacement and the non-piston-like displacement. Due to that the spatial distributions of the phase saturations keep the continuity, for the non-piston-like displacement, it is suggested that the internodal transmissibility be evaluated by the arithmetic average of the transmissibilities on its neighbor grids rather than by the upstream value. Numerical examples show that the proposed algorithm for the non-piston-like displacement can not only improve the numerical accuracy but also decrease the grid orientation effect.
     In summary, several basic problems of AMR technique have been discussed in this paper. The numerical results indicate a good proving for the theory. We expect the research to have a practical help to the reservoir simulation in the future.
引文
韩大匡,陈钦雷,阎存章.1993.油藏数值模拟基础[M].北京:石油工业出版社.
    黄世军,程林松.2004.复杂结构井变质量管流与地层渗流藕合模型[J].中国科学技术大学学报,34:19-26.
    杭旭登,刘兴平,宋杰.2004.黑油模型新解法器的研制[J].数值计算与计算机应用,1:60-64.
    孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社.
    凌建军,曹萍,张锐,何中.1998.稠油热采双区数学模型及典型曲线分析[J].油气井测试,7(2):17-22.
    李中锋,何顺利,门成全.2005.黑油模型的预处理正交极小化解法[J].新疆石油地质,26(6):695-697.
    罗海山,王晓宏,施安峰.2009.裂缝-孔隙油藏SAGD过程的自适应网格数值计算[J].中国石油大学学报(自然科学版).
    罗海山,王晓宏,施安峰.2009.非均匀裂缝性油藏蒸汽驱的自适应网格计算[J].辽宁工程技术大学学报,28.
    刘建军,熊俊,何翔.降雨条件下岩土饱和-非饱和渗流分析[J].岩土力学,25:559-563.
    戚志林,杜志敏,汤勇,舒秋贵,王玮.2006.蛇曲井生产井段压降预测方法[J].西南石油学院学报,28(5):44-46.
    施安峰,王晓宏,罗海山.2009.三维蒸汽辅助重力驱油过程的自适应网格法[J].辽宁工程技术大学学报,28.
    石济民,林振宝.1994.三维三相黑油模型的MILU-CG方法及数值计算结果[J].石油勘探与开发,21(6):46-52.
    苏庆申,陈月明.1995.油藏——井筒系统数值计算模型及应用[J].石油大学学报(自然科学版),19(2):41-47.
    谭未一,刘福平,李瑞忠,杨长春,孙建孟.2004.渗流方程的渗透率自适应权重网格粗化算法[J].石油大学学报(自然科学版),28(4):47-50.
    王建华,殷宗泽,赵维炳.1995.多重网格法在岩石力学中的应用[J].岩石力学与工程学报,14(4):336-345.
    王弥康.1994.注蒸汽井井筒热传递的定量计算[J].石油大学学报(自然科学版),18(4):77-82.
    王晓宏.2006.蒸汽热采稠油数值模拟的自适应网格法[C].中国工程热物理学会多相流学术会议.
    王晓宏,施安峰,罗海山.2004.蒸汽辅助重力驱油的流场数值模拟自适应网格法的研究[C].资源高技术论坛,长沙.
    谢海滨,恒冠仁,郭尚平,尹定.1999PEBI网格二维两相流数值模拟[J].石油学报,20(2):57-61.
    熊俊,刘建,刘建军,黄小兰.2007.基于Buckley-Leverett方程的水气两相渗流理论[J].辽宁工程技术大学学报,26(2):213-215.
    徐小双,廖锐全,关治洪.2003.蒸汽吞吐井采出过程的压力温度场数值模拟[J].应用基础与工程科学学报,11(4):378-383.
    杨权一,刘福平,杨长春,刘立峰,卓磊.2003.三维非均匀不稳定渗流方程的自适应网格粗化算法[J].计算物理,20(3):193-198.
    杨小平.1998.精确计算相对渗透率的方法[J].石油勘探与开发,25(6):63-69.
    姚军,李亚军,黄朝琴.2009.考虑渗透率张量的空间关联油藏有限元数值模拟方法[J].武汉工业学院学院,28(3).
    于晓丹,李明忠,李俊亮.2008.垂直井筒两相流温度场的模拟计算[J].齐齐哈尔大学学报,24(5):40-44.
    周英芳,刘志军,茆春锦,王晓冬,张博.2008.多层油藏水驱驱替效率计算新方法[J].特种油气藏,15(3):72-75.
    Aavatsmark I.2001. An introduction to multipoint flux approximations for quadrilateral grids [J]. Computational Geosciences,6:405-432.
    Aavatsmark I, Reiso E, Teigland R.2001. Control-volume discretization method for quadrilateral grids with faults and local refinements [J]. Computational Geosciences,5:1-23.
    Albright N, Concus P, Proskurowski W.1979. Numerical solution of the multidimensional Buckley-Leverett equation by a sampling method [A]. Society of Petroleum Engineers 5th Symposium on Reservoir Simulation, Denver, Colorado.
    Allen A M B, Ewing R E, Koebbe J V.1985. Mixed finite-element methods for computing groundwater velocities [J]. Numerical Methods for Partial Differential Equations,1(3): 195-207.
    Ahmadi A, Quintard M.1996. Large-Scale Properties for Two-Phase Flow in Random Porous Media [J]. J. Hydrol.,183:69-99.
    Akgun F.2004. A finite element model for analyzing horizontal well BHA behavior [J]. Journal of Petroleum Science and Engineering,42:121-132
    Araujo A D, Moreira A A, Costa R N, Andrade J S.2003. Statistics of the critical percolation backbone with spatial long-range correlations [J]. Phys. Rev. E,67 027102.
    Araujo A D, Moreira A A, Makse H A, Stanley H E, Andrade J S.2002. Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations [J]. Phys. Rev. E,66 046304.
    Arbogast T.2002. Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow [J]. Computational Geosciences,6:453-481.
    Arijit G, Robert W R Jr.2008. Studying the effect of correlation and finite-domain size on spatial continuity of permeable sediments [J]. Geophysical Research Letters,35.
    Artus V, Noetinger B.2004. Up-scaling Two-phase Flow in Heterogeneous Reservoirs:Current Trends [J]. Oil & Gas Science and Technology-Rev. IFP,59(2):185-195.
    Audigane P, Blunt M J.2004. Dual Mesh Method for Upscaling in Waterflood Simulation [J]. Transport in Porous Media,55:71-89.
    Ayodele O R, Bentsen R G. 2004. Numerical simulation of interfacial coupling phenomena in two-phase flow through porous media [J]. Computational Mechanics,33:389-405.
    Aziz A K, Settari A.1979. Petroleum reservoir simulation[M]. Applied Science Publishers.
    Bastian P, Helmig R.1999. Efficient fully-coupled solution techniques for two phase flow in porous media [J]. Advances Water Resources,23:199-216.
    Bauer D, Talon L, Ehrlacher A.2008. Computation of the equivalent macroscopic permeability tensor of discrete networks with keterogenous segment length [J]. J. Hydr. Engrg.,134: 784-793.
    Berg D W, Bergmo P E S.2002. A New Exact Upscaling Formula and Investigations of Numerical Errors in Simulation of Single-and Two-Phase Darcy Flow in Barrier Geometries [J]. Transport in Porous Media,46:233-249.
    Berger M J, Oliger J.1984. Adaptive mesh refinement for hyperbolic partial differential equations [J]. J. Comp. Phys.,53:484-512.
    Bertiger W I, Padmanabhan L.1983. Finite difference solutions to grid orientation problems using IMPES [A]. SPE Reservoir Simulation Symposium, San Francisco, California.
    Bourgeat A.1984. Homogenized Behavior of Two-Phase Flows in Naturally Fractured Reservoirs with Uniform Fractures Distribution [J]. Comp. Meth. Applied Mech. Eng.,47:205-216.
    Brandt A.1977. Multi-level adaptive solution to boundary-value problems. Math [J]. Comput.,31: 333-396.
    Brand C W, Heinemann Z E, Aziz K.1991. The grid orientation effect in reservoir simulation [A]. SPE Symposium on Reservoir Simulation, Anaheim, California.
    Cardwell W T.1959. The meaning of the triple value in noncapillary Buckley-Leverett theory [J]. Trans. AIME,216:271-276.
    Cardwell W, Parsons R.1945. Average permeabilities of heterogeneous oil sands [J]. Trans. Am. Inst. Min. Metall. Pet. Eng.,160:34-42.
    Chen W H, Durlofsky L J.1993. Minimization of grid orientation effects through use of higher order finite difference methods [J]. SPE Advanced Technology Series,1(2):43-52.
    Chen Y, Durlofsky L J, Gerritsen M, Wen X H.2003. A Coupled Local-Global Upscaling Approach for Simulating Flow in Highly Heterogeneous Formations [J]. Advances in Water Resources,26:1041-1060.
    Chorin A J.1976. Random choice solution of hyperbolic systems [J]. Journal of Comptational Physics,22(4):517-533.
    Christopher P Green, Lincoln Paterson.2007. Analytical three-dimensional renormalization for calculating effective permeabilities [J]. Transport in Porous Media,68(2):237-248.
    Coats K H, Modine A D.1983. A consistent method for calculating transmissibilities in nine-point difference equations [A]. SPE Reservoir Simulation Symposium, San Francisco, California.
    Coats K H, Ramesh A B.1982. Effect of grid type and difference scheme on pattern steamflood results [A]. AIME Society of Petroleum Engineers annual technical conference and exhibition, New Orleans, LA, USA.
    Cordazzo J, Maliska C R, da Silva A F C.2002. Interblock Transmissibility Calculation Analysis for Petroleum Reservoir Simulation [C].2nd Meeting on Reservoir Simulation, Buenos Aires.
    Craster R V, Obnosov Y V.2001. Four-checkerboard composites [J]. SIAM. J. APPL. MATH., 61(6):1839-1856.
    Dagan G.1989. Flow and Transport in Porous Formations [M]. Springer-Verlag, New York.
    Dendy J E, McCormick S F, Ruge J W, Russell T F, Schaffer S.1989. Multigrid methods for three-dimensional petroleum reservoir simulation[J]. SPE 18409.
    Deutsch C V, Journel A G 1992. Geostatistical Software Library and User's Guide [M]. Oxford University Press, Oxford.
    Durlofsky L J.1991. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media [J]. Water Resour. Res.,27:699-708.
    Durlofsky L J.1992. Representation for Grid Block Permeability in Coarse Scale Models of Randomly Heterogeneous Porous Media [J]. Water Resources Research,28(7):1791-1800.
    Dykhne A M.1971. Conductivity of a two-dimensional two-phase system [J]. Soviet Physics JETP, 32(1):63-65.
    Edwards M G 2002. Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids [J]. Computational Geosciences,6:433-452.
    Edwards M G, Rogers C F.1998. Finite volume discretization with imposed flux continuity for the general tensor pressure equation [J]. Computation Geosciences,2:259-290.
    Evazi M, Mahani H.2009. Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations [J]. Transport in Porous Media,83(3):541-572.
    Ewing R E, Lin Y P.2001. A mathematical analysis for numerical well models for non-Darcy flows [J]. Applied Numerical Mathematics,39:17-30.
    Fulton S R.1997. A Comparison of Multilevel Adaptive Methods for Hurricane Track Prediction [J]. Electronic Trans. on Numer. Anal.,6:120-132.
    Gautier Y, Blunt M, Christie M.1999. Nested gridding and streamline-based simulation for fast reservoir performance prediction [J]. Comput. Geosci.,3:295-320.
    Gautier Y, Noetinger B.1997. Preferential Flow-Paths Detection for Heterogeneous Reservoirs Using a New Renormalization Technique [J]. Transport in Porous Media,26:1-23.
    Gerritsen M G, Durlofsky L J.2005. Modeling Fluid Flow in Oil Reservoirs [J]. Annual Review of Fluid Mechanics,37:211-238.
    Godunov S K.1959. A difference method for numerical calculation of discontinuous solutions of the equation of hydrodynamics [J]. Mat. Sb.,47(89):271-306.
    Harten A.1983. High resolution schemes for hyperbolic conservation laws [J]. J. Comput. Phys., 49(3):357-393.
    Hastings J J, Muggeridge A H.2001. Upscaling Uncertain Permeability Using Small Cell Renormalization [J]. Mathematical Geology,33(4):491-505.
    Haugse V.1996. Identification of mobilities for the Buckley-Leverett equation by front tracking [J]. ECMI.
    He C P, Edwards M G, Durlofsky L J.2002. Numerical calculation of equivalent cell permeability tensors for general quadrilateral control volumes [J]. Computational Geosciences,6:29-47.
    Heinemann Z E.1991. Modeling reservoir geometry with irregular grid [J]. SPE Reservoir Engineering,6(2):225-232.
    Holmes J A, Barkve T, Lund Q.1998. Application of a Multisegment Well Model to Simulate Flow in Advanced Wells [J]. SPE,50646.
    Hornung R D, Trangenstein J A.1997. Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media [J]. J. Comp. Phys.,136:522-545.
    Howes F A, Whitaker S.1985. The spatial averaging theorem revisited [J]. Chem. Eng. Sci.,40: 1387-1392.
    Huber R, Helmig R.1999. Multiphase flow in heterogeneous porous media:A classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach [J]. International Journal for Numerical Methods in Fluids,29(8):899-920.
    Kaasschieter E F.1997. Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium [J]. Computational Geosciences.
    Karim M R, Krabbenhoft K.2010. New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media [J]. Transport in Porous Media,85:677-690.
    King P R.1987. The use of field theoretic methods for the study of flow in a heterogeneous porous medium [J]. J. Phys. A.20,3935(1987).
    King P R.1989. The Use of Renormalization for Calculating Effective Permeability [J]. Transport in Porous Media,4:37-58.
    King P R.1996. Upscaling Permeability:Error Analysis for Renormalization [J]. Transport in Porous Media,23:337-354.
    Kurganov A, Lin C T.2007. On the Reduction of Numerical Dissipation in Central-Upwind Schemes [J]. Commun. Comput. Phys.
    Kyllingstad A.1995. Buckling of tubular strings in curved wells [J]. Journal of Petroleum Science and Engineering,12:209-218.
    Lambers J, Gerritsen M, Mallison B.2008. Accurate Local Upscaling with Compact Multi-Point Transmissibility Calculations [J]. Computational Geosciences, Special Issue on Multiscale Methods for Flow and Transport in Heterogeneous Porous Media,12(3):399-416.
    Langtangen H P, Tveito A.1992. Instability of Buckley-Leverett Flow in a Heterogeneous Medium [J]. Transport in Porous Media,9:165-185.
    Le Loc'h G.1987. Etude de la composition des permeabilit6s par des methodes variationnelles [D]. Pairs, Paris School of Mines.
    Leer B V.2006. Upwind and high-resolution methods for compressible flow:from donor cell to residual-distribution schemes [J]. Communications in Computational Physics,1(2):192-206.
    Li D, Becker B, Kumar A.1999. A new efficient averaging technique for Scaleup of Multimillion-Cell Geologic Models [J]. SPE,56554.
    Lian P Q, Tong D K.2009. New method to solve flow equation using total variation diminishing schemes with third and fourth order accuracy [J]. Chinese Quarterly of Mechcanics,30(4): 562-568.
    Luo H S, Wang X H, Quintard M.2008. Adaptive Mesh Refinement for One Dimensional Three-Phase Flows in Heterogeneous Fractured Porous Media [J]. Numerical Heat Transfer B, Fundamentals,54(6):476-498.
    Luo H S, Wang X H.2009. Oil Displacement for One-Dimensional Three-Phase Flow with Phase Change in Fracture Media [J]. Transport in Porous Media, DOI10.1007/s22353-008-9325-6.
    Luo H S, Wang X H, Shi A F.2009. The AMR Technique For SAGD Process in Highly Heterogeneous Fractured Reservoirs[C]. Proceedings of 6th ICCHMT, May 18-21, Guangzhou, China.
    Makse H A, Andrade J S and Stanley H E.2000. Tracer dispersion in a percolation network with spatial correlations [J]. Phys. Rev. E 61:583-587.
    Makse H A, Havlin S, Schwartz M, Stanley H E.1996. Method for Generating Long-Range Correlations for Large Systems [J]. Phys. Rev. E.,53:5445.
    Mantoglou A, Wilson J L.1982. The Turning Bands Method for Simulation Random Fields Using Line Generation by a Spectral Method [J]. Water Resources Research,18(5):1379-1394.
    Marcu G I, Cretu I.2004. SIMULATION OF MULTI-PHASE FLOW THROUGH POROUS MEDIA USING CVFE(CONTROL VOLUME FINITE ELEMENT) [C]. The 6th International Conference on Hydraulic Machinery and Hydrodynamics Timisoara, Romania.
    Matheron G.1967. Elements pour un theorie des milieux poreux [M]. Paris:Masson.
    Nachtigal N M, Reddy S C, Trefethen L N.1992. How fast are nonsymmetric matrix iterations [J]. SIAM J. MATRIX ANAL. APPL.,13(3):778-795.
    Nielsen B F, Tveito A.1998. An upscaling method for one-phase flow in heterogeneous reservoirs: A weighted output least squares (WOLS) approach [J]. Computational Geoscience,2:93-123.
    Noaman A F, King S U.2001. The Application of Buckley-Leverett Displacement to Waterflooding in Non-Communicating Stratified Reservoirs [J]. SPE,68076.
    Noetinger B, Zargar G.2004. Multiscale Description and Upscaling of Fluid Flow in Subsurface Reservoirs [J]. Oil&Gas Science and Technology-Rev.IFP,59(2):119-139.
    Paredes R, Alvarado V.1998. Scaling of heterogeneous distribution of conductances: Renormalization Versus Exact results [J]. Physic Review E,58(1):771-778.
    Pal M, Edwards M G, Lamb A R.2006. Convergence study of a family of flux-continuous, finite-colume schemes foe the general tensor pressure equation [J]. Int. J. Numer. Meth. Fluids, 51:1177-1203.
    Peaceman D W.1978. Interpretation of well-block pressures in numerical reservoir simulation [J].SPE.
    Peaceman D W.1982. Interpretation of well-block pressures in numerical reservoir simulation with nonesquare grid blocks and anisotropic permeability [J]. SPE,10528.
    Pickup G E, Hern C Y.2002. The Development of Appropriate Upscaling Procedures [J]. Transport in Porous Media,46:119-138.
    Portella R C M, Hewett T A.1999. Fast 3D Reservoir Simulation and Scale Up Using Streamtubes [J]. Mathematical Geology,31(7):841-856.
    Prakash S, Havlin S, Schwartz M and Stanley H E.1992. Structural and Dynamical Properties of Long-Range Correlated Percolation [J]. Phys. Rev. A 46:R1724-R1727.
    Quintard M, Whitaker S.1987. Ecoulements monophasiques en milieu poreux:effect des heterogeneites locales [J]. J. Meca. Theo. Appl.,6:691-726.
    Quintard M, Whitaker S.1994. Convection, dispersion, and interfacial transport of contaminants:
    Homogeneous media [J]. Adv. Water Resour.,17:221-239.
    Quintard M, Whitaker S.1996. Transport in Chemically and Mechanically Heterogeneous Porous Media I:Theoretical Development of Region Averaged Equations for Slightly Compressible Single-Phase Flow [J]. Adv. Water Resour.,19:29-47.
    Rameu R K, Noetinger B.1995. Calculation of internodal transmissivities in finite difference medels of flow in heterogeneous porous media [J]. Water Resour. Res.,31:943-959.
    Renard P, de Marsily G 1997. Calculating Equivalent Permeability:A Review [J]. Advances in Water Resources,20:253-278.
    Renard P, Le Loc'h G, Ledoux E, de Marsily G, Mackay R.2000. A fast algorithm for the estimation of equivalent hydrraulic conductivity of heterogeneous media [J]. Water Resources Research,36(12):3567-3580.
    Sanchez-Palencia E.1980. Non Homogeneous Media and Vibration Theory [M]. Lecture Notes in Physics, Berlin:Springer-Verlag.
    Schulgasser K.1992. A reciprocal theorem in two-dimensional heat transfer and its implications [J]. INT. COMM. HEAT MASS TRANSFER,19:639-649.
    Shi A F, Jia J T, Wang X H, Luo H S.2009. Adaptive mesh refinement for 2D and 3D numerical simulations of steam-assisted gravity drainage process [C]. Sixth International Conference on Computation Heat and Mass Transfer, Guangzhou, China.
    Shiralkar G S, Gautam S, Stephenson R E.1991. A general formulation for simulating physical dispersion and a new nine-point scheme [J]. SPE Reservoir Engineering,6(1):115-120.
    Starikovicius V, Ciegis R, Jakusev A.2006. Analysis of upwind and high-resolution schemes for solving convection dominated problems in porous media [J]. Mathematical Modeling and Analysis,11(4):451-474.
    Stavropoulou M, Exadaktylos G, Saratsis G. 2007. A Combined Three-Dimensional Geological-Geostatistical-Numerical Model of Underground Excavations in Rock [J]. Rock Mech. Rock Engng.,40(3):213-243.
    Stone T W, Edmunds N R.1989. A Comprehensive Wellbore/Reservoir Simulator [J]. SPE,18419.
    Tilmann G 1999. The correlation bias for two-dimensional simulations by turning bands [J]. Mathematical Geology,31 (2):195-211.
    Trangenstein J A.2002. Multi-Scale Iterative Techniques and Adaptive Mesh Refinement for Flow in Porous Media [J]. Adv. Water Resour.,25:1175-1213.
    Tregoures N, Fichot F, Duval F, Repetto G, Quintard M.2003. Multi-dimensional Numerical Study of Core Debris Bed Reflooding under Severe Accident Conditions [C]. Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics, October, Seoul, Korea.
    Van der vorst H A.1992. BI-CGSTAB:a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric liner systems [J]. SIAM J. SCI. STAT. COMPUT.,13(2):631-644.
    Wagner C, Kinzelbach W, Wittum G.1997. Schur-complement multigrid:A robust method for groundwater flow and transport problems [J]. Numer. Math.,75:523-545.
    Wang X H, Luo H S, Quintard M. Multi-level grids for flow in heterogeneous porous media: equivalent permeability calculation using various upscaling methods [J].
    Wang X H, Quintard M, Darche G.2006. Adaptive Mesh Refinement for One-Dimensional Three-Phase Flow with Phase Change in Porous Media [J]. Num. Heat Trans. B.,50:231-268.
    Wang X H, Shi A F, Wu B.2010. Upscaling permeability for multi-level grids in numerical simulations of steam-assisted gravity drainage process [C]. Proceedings of 3nd International Conference on Porous Media, Montecatini, Italy.
    Wen X H, Gomez-Hernandez J J.1996. Upscaling hydraulic conductivities in heterogeneous media:an overview [J]. J. Hydrol.,183:ix-xxxii.
    Wu B, Luo H S, Wang X H, Shi A F.2009. Renormalization methods for upscaling three-dimensional permeability [C]. Fourth International Conference on Applications of Porous Media, Istanbul, Turkey.
    Todd M R, O'dell P M, Hirasaki G J.1972. Methods for increased accuracy in numerical reservoir simulators [J]. SPE Journal,12(6):515-530.
    Yanosik J L, McCracken T A.1979. A nine-point, finite-difference reservoir simulator for realistic prediction of adverse mobility ratio displacements [J]. SPE Journal,19(4):253-262.
    Yeo I W, Zimmerman R W.2001. Accuracy of the Renormalization Method for Computing Effective Conductivities of Heterogeneous Media [J]. Transport in Porous Media,45:129-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700