关于几类系统混沌性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌学是近四十年发展起来的一个跨学科的学术分支,其本质在于研究确定的非线性系统中的不确定性,尤其关注的是不确定性中所蕴含的各种规律,从而达到对系统加以控制的目的。随着基础科学和应用科学的发展,混沌理论和应用研究已经成为非线性科学中的重要课题之一。
     本文在简述混沌理论发展的基础上,首先较系统地回顾了常见的混沌定义,然后在五个系统中集中讨论连续自映射的混沌性质,尤其是Li-Yorke混沌、Devaney混沌、spatio-temporal混沌、(F_1,F_2)-混沌、分布混沌、稠混沌、对初值的敏感依赖和Li-Yorke敏感的一些特征。获得如下六个方面的结果:
     1、在拓扑空间上证明了ω-混沌和四种Devaney混沌(DevC, EDevC, MDevC,WMDevC)在拓扑共轭下是保持的。从而在一般度量空间上这些混沌也在拓扑共轭下保持。通过举反例得出:在一般度量空间中拓扑共轭不保持Li-Yorke混沌。研究发现:“紧空间+拓扑共轭”或“一致共轭”的条件才能保持Li-Yorke混沌。此外,还证明了在一般度量空间上拓扑一致共轭保持Auslander-Yorke混沌、敏感性、分布混沌、序列分布混沌、稠混沌和稠δ-混沌。
     2、通过对线性序拓扑系统上连续自映射的周期点的研究,得出:如果马蹄存在,则周期点存在;如果奇周期点存在,则马蹄存在。通过对周期点的不稳定流形的研究,得出:相邻不动点构成的区间含于其中一个不动点的单侧不稳定流形之中;若周期点集有限,则不动点p的不稳定流形被p分成两个区间,分别是p的左、右侧不稳定流形。研究稠密轨道的性质,得出:若点轨道稠密,则拓扑传递;若偶次迭代点集稠密,则k (mod s)次迭代点集稠密。
     3、对与Belousov-Zhabotinsky振荡反应相关的一类耦合映象格子,在文中所定义的度量下,系统具有(F_1,F_2)-混沌性(或Li-Yorke混沌性、分布混沌性)的一个充分条件是原始映射具有该种混沌性。若将诱导映射限制在空间的对角线上,那么系统的稠混沌性、稠δ-混沌性、spatio-temporal混沌性、敏感性或Li-Yorke敏感性也有类似的充分条件。但如果改变空间度量,原始映射的混沌性不一定能保证耦合系统的混沌性。通过对系统拓扑熵的研究,得出:系统的拓扑熵不小于原始映射的拓扑熵;若原始映射的拓扑熵大于0,则系统是ω-混沌的。
     4、研究了一类权移位算子的分布混沌性,得到:权移位算子是分布ε-混沌的(ε取大于0小于空间直径的任意值),也是一致分布混沌的,并且这些性质在乘积运算下保持;然后计算出该权移位算子的准测度为1。
     5、在非自治系统中证明了映射序列f_1,∞的混沌性与fn,∞的混沌性之间是充要条件的关系。还证明了如果映射序列f_1,∞具有P-混沌性质,那么乘积映射f[m]
     1,∞(m为一个正整数)也具有P-混沌性质。其中P-混沌是指Li-Yorke混沌,分布混沌,敏感, Li-Yorke敏感,或稠Li-Yorke敏感。并且,当映射序列f_1,∞一致收敛时,逆命题也成立。
     6、研究了双寡头博弈系统中的Cournot映射,得到: Cournot映射在全空间上的Li-Yorke混沌性(或分布混沌性,序列分布混沌性)和限制在MPE-集上的Li-Yorke混沌性(或分布混沌性,序列分布混沌性)等价。并举例说明了对敏感性和Li-Yorke敏感性而言,这个结论不成立。
     最后,本文对所做工作进行了系统的总结,对所研究课题中还需要深入研究的地方进行了展望,为将来的研究奠定了一定的基础。
Chaos is an interdisciplinary academic branch which is developed for nearly fourdecades. Its essence is to study the uncertainty in nonlinear system, especially theregularities inherent in the uncertainty. These properties can be used to control thesystems. With the development of basic science and applied science, the research onchaos theory and applied has become one of the main topics of nonlinear science.
     On the basis of the discussion about the development of chaos, this dissertationfirst reviews the common definitions of chaos. Then the dissertation focus on thechaotic properties of continuous self-maps in five systems, especially the characteristicsof Li-Yorke chaos, Devaney chaos, spatio-temporal chaos,(F_1,F_2)-chaos, distributionalchaos, dense chaotic, sensitivity, and Li-Yorke sensitivity. The following six aspects ofresults are obtained:
     1. On topological spaces, ω-chaos and four Devaney chaos (DevC, EDevC,MDevC, WMDevC) are preserved under topological conjugation. So as in generalmetric spaces. While, on general metric spaces, topological conjugate do not keepLi-Yorke chaos. It needs conditions ‘compact space+topological conjugate’ or‘uniformly conjugation’. Additionally, it is proved that, on general metric spaces, theAuslander-Yorke chaos, sensitivity, distributional chaos, distributional chaos in asequence, dense chaos, and dense δ-chaos are all maintained under uniformlyconjugation.
     2. Considering of periodic points of continuous self-maps on linear orderedtopological system, it is pointed that there exist periodic points if horseshoes existed,and odd periodic points imply the existence of horseshoes. According to the study of theunstable manifolds, we prove that the interval with endpoints of two adjacent fixedpoints is contained in the unilateral unstable manifold of one of the endpoints. If thecontinuous self-map has finitely many periodic points, then the unstable manifold of afixed point p is divided into two zones, namely, the left and right unilateral unstablemanifolds of p. Through the research of dense orbits, we point that dense orbits implytopological transitivity. And if the set of even iterate points is dense, then the set ofk (mod s)iterate points is dense too.
     3. On a class of coupled map lattice related to the Belousov-Zhabotinsky oscillating reaction, with the metric defined in the fourth chapter, a sufficient conditionfor the system is(F_1, F_2)-Chaos (Li-Yorke chaos, or distributional chaos) is obtained.If the induced mapping is limited on the diagonal of the space, a similar sufficientcondition will be obtained for the system is dense chaos, dense δ-chaos,spatio-temporal chaos, sensitivity, or Li-Yorke sensitivity. However, these sufficientconditions do not always established if the metric changes. Chaotic original maps cannot guarantee the chaoticity of the system. The dissertation also points out that thetopological entropy of the system is not less than topological entropy of the originalmapping. If the topological entropy of original mapping is greater than0, then thesystem is ω-chaotic.
     4. According to study distributional chaotic of a weighted shifts operator. Weproved that the weighted shifts operator is distributional ε-chaos and uniformlydistributional chaos (where ε is any value greater than0and less than diameter of thespace). And these chaotic properties are preserved under product operation. Then, it isproved that the principal measure of this weighted shifts operator is1.
     5. In non-autonomous system, it is proved that the chaotic off_1,∞is a necessaryand sufficient condition for the chaotic offn,∞. If the map sequencef_1,∞is P-chaos,then the product mapping sequencef[m]
     1,∞(m is a positive integer) is P-chaos too.There P-chaos denote Li-Yorke chaos, distributional chaos, sensitivity, Li-Yorkesensitivity, or Li-Yorke sensitivity. And iff_1,∞converges uniformly, then the converseof the above conclusion is true.
     6. The Li-Yorke chaotic (distributional chaotic, or distributional chaotic in asequence) on the whole space of Cournot mapping is equivalent to the one limited onMPE-set. And an example is illustrated to show that this conclusion does not hold forsensitivity or Li-Yorke sensitivity.
     Finally, the dissertation summarized the work, prospected the work which isrequired in-depth study. Thus, the dissertation laid some foundation for the futureresearch.
引文
[1] A. N. Kolmogorov, A. N. Shiryayev. Selected Works of A. N. Kolmogorov (I, II, III)[M].Kluwer Academic Publishers,1985
    [2] V. I. Arnold.动力系统4(分歧理论和突变理论)[M].科学出版社,2009
    [3] E. N. Lorenz. Deterministic Nonperiodic Floe[J]. J. Atoms. Sci.,1963,20(1):130-141
    [4]普利高津,斯唐热.从混沌到有序[M].上海:上海译文出版社,1987
    [5] M. Henon, C. Heiles. A Two-dimentional Mapping with a Strange Attractor[J]. Astron. J.,1964,50(1):69-71
    [6] D. Ruelle, F. Takens. On the Nature of Turbulence[J]. Commum. Math. Phys.,1971,20(1):167-192
    [7] T. Li, J. A. Yorke. Period Three Implies Chaos[J]. Amer. Math. Mon.,1975,82(10):985-992
    [8] R. May. Simple Mathematical Models with Very Complicated Dynamics[J]. Nature,1976,261(459):86-93
    [9] M. J. Feigenbaum. Quantitative Universality for a Class of Nonlinear Transformations[J]. J. Stat.Phys.,1978,19(1):25-52
    [10] M. J. Feigenbaum. The Universal Metric Properties of Nonlinear Transformations[J]. J. Stat.Phys.,1979,21(6):669-706
    [11] P. Grassberger. Generalized Dimension of Strange Attractors[J]. Phys. Lett.,1983,97(6):227-230
    [12] M. Misirurewicz. Chaos Almost Everywhere[J]. Lect. Notes Math.,1985,1163(1):125-130
    [13] H. Kato. Chaotic Continua of Expansive Homeomorphism and Chaos in the Sense ofLi-Yorke[J]. Fund. Math.,1994,145(3):261-279
    [14] J. Mai. Continuous Maps with the Whole Space Being a Scrambled Set[J]. Chinese Sci. Bull.,1997,42(19):1494-1497
    [15] W. Huang, X. Ye. Homeomorphisms with the Whole Compacta Being Scrambled Sets[J].Ergod. Th. Dynam. Sys.,2001,21(1):77-91
    [16] K. Kuratowski, S. Ulam. Quelques Proprietes Topologiques Du Produit Combinatoire[J], Fund.Math.,1932,19(5):247-251
    [17] K. Kuratowski. Topology[M]. Academic Press, Warszawa,1966
    [18] W. Huang, X. Ye. Devaney’s Chaos and2-scattering Imply Li-Yorke’s Chaos[J]. TopologyAppl.,2002,117(3):259-272
    [19] E. Akin, S. Kolyada. Li-Yorke Sensitivity[J]. Nonlinearity,2003,16(4):1421-1433
    [20]李健,谭枫.关于Li-Yorke-D混沌与按序列分布-D混沌的等价性[J].华东师范大学学报(自然科学版),2010,3(1):34-38
    [21] J. Xiong, J. Lu, F. Tan. Furstenberg Family and Chaos[J]. Science in China (Ser. A),2007,50(9):1325-1333
    [22] F. Tan, J. Xiong. Chaos Via Furstenberg Family Couple[J]. Topology Appl.,2009,156(3):525-532
    [23] R. Devaney. An Introduction to Chaotic Dynamcal Systems[M]. Addivon-Weslay,1989
    [24] J. Banks, J. Brooks, G. Cairns, etal. On Devaney’s Definition of Chaos[J]. Amer. Math. Mon.,1992,99(4):332-334
    [25] M. Vellekoop, R. Berglund. On Intervals, Transtivity=Chaos[J]. Amer. Math. Mon.,1994,101(4):353-354
    [26] E. Akin, E. Glasner. Residual Properties and Almost Equicontinuity[J]. J. Anal. Math.,2002,84(1):243-286
    [27] J. Mycielski. Independent Sets in Topological Algebras[J]. Fund. Math.,1964,55(4):139-147
    [28] C. Shannon. A Mathematical Theory of Communication[J]. Bell Sys. Tech. J.,1948,27(3):379-423
    [29] A. N. Kolmogorov. A New Metric Invariant of Reansient Dynamical Systems andAutomorphisms of Lebesgue Spaces[J]. Dokl. Akad. Sci. SSSR.,1958,119(2):861-864
    [30] R. L. Adler, A. G. Konheim, M. H. McAndrew.Topological Entropy[J]. Trans. Amer. Math.Soc.,1965,114(2):309-319
    [31] F. Blanchard, B. Host, A. Maass. Topological Complexity[J]. Ergod. Th. Dynam. Sys.,2000,20(3):641-662
    [32] E. Akin, J. Auslander, E. Glasner. The Topological Dynamics of Ellis Actions[M]. AmericanMathematical Society,2001
    [33] W. Huang, X. Ye. An Explicit Scattering, Non-weakly Mixing Example and WeakDisjointness[J]. Nonlinearity,2002,15(3):849-862
    [34] F. Blanchard, B. Host, S. Ruettes. Asymptotic Pairs in Positive-entropy Systems[J]. Ergod. Th.Dynam. Sys.,2002,22(3):671-686
    [35] J. Xiong, Z. Yang. Chaos Caused by a Topologically Mixing Map[J]. World Sci. Adv. Ser. Dyn.Sys.,1990,9(1):550-572
    [36] P. Oprocha. Relations between Distributional and Devaney Chaos[J]. Chaos,2006,16(3):033112
    [37] D. Kwietnitak, M. Misiurewica. Exact Devaney Chaos and Entropy[J]. Qualit. Th. Dyn. Sys.,2005,6(1):169-179
    [38] G. Liao, Z. Chu, Q. Fan. Relations between Mixing and Distributional Chaos[J]. Chaos, Soliton.Fract.,2009,41(4):1994-2000
    [39]杨润生.按序列分布混沌与拓扑混合[J].数学学报,2002,45(4):753-758
    [40]廖公夫,王立东,张玉成.一类集值映射的传递性、混合性与混沌[J].2005,35(10):1155-1161
    [41] S. Li.ω-chaosand Topological Entropy[J]. Trans.Amer. Math.Soc.,1993,339(1):243-249
    [42] B. Schweizer, J. Smital. Measures of Chaos and a Spectral Decomposition of DynamicalSystems on the Interval[J]. Trans. Amer. Math. Soc.,1994,344(1):737-754
    [43] F. Balibrea, J. Smital, M. Stefankova. The Three Versions of Distributional Chaos[J]. Chaos,Soliton. Fract.,2005,23(5):1581-1583
    [44] G. Liao, Q. Fan. Minimal Subshifts Which Display Schweizer-Smital Chaos and Have ZeroTopological Entropy[J]. Sci. China Ser.,1998,41(1):33-38
    [45] P. Oprocha, Pawel Wilczynski. A Study of Chaos for Processes under Small Perturbations II:Rigorous Proof of Chaos[J]. Opuscula Math.,2010,30(1):5-35
    [46]汪火云,熊金城.拓扑遍历映射的一些性质[J].数学学报,2004,47(5):859-866
    [47]熊金城.拓扑传递系统中的混沌[J].中国科学(A辑),2005,35(3):302-311
    [48]尹建东,周作领.混沌与拓扑传递属性[J].中山大学学报(自然科学版),2006,45(5):5-8
    [49]尹建东,周作领.拟弱几乎周期点的等价定义与系统的混沌性[J].系统科学与数学,2010,30(8):1156-1162
    [50] L. Snoha. Generic Chaos[J]. Math. Univ. Carolinae.,1990,31(4):793-810
    [51] L. Snoha. Dense Chaos[J]. Math. Univ. Carolinae.,1992,33(4):747-752
    [52] B. Schweizer, J. Smital. Measures of Chaos and a Spectral Decomposition of DynamicalSystems on the Interval[J]. Tran. Amer. Math. Soc.,1994,344(2):737-754
    [53] M. Lampart. Two Kinds of Chaos and Relations between Them[J]. Acta. Math. Univ.,2003,33(1):119-127
    [54] S. F. Kolyada. Li-Yorke Sensitivity and Other Concepts of Chaos[J]. Ukr. Math. J.,2004,56(8):1242-1256
    [55] S. Ruette. Dense Chaos for Continuous Interval Maps[J]. Nonlinearity,2005,18(4):1691-1698
    [56] N. Degirmenci, S. Kocak. Chaos in Product Maps[J]. Turk J. math.,2009,34(1):1-8
    [57] M. Ciklova-Mlichova. Li-Yorke Sensitive Minimal Maps II[J]. Nonlinearity,2009,22(7):1569-1573
    [58] C. H. Hsieh, A. David. Chaos and Nonlinear Dynamics: Application to Financial Markets[J]. J.Financ.,1991,46(5):1839-1877
    [59] H. Sabbagh. Control of Chaotic Solutions of the Hindmarsh-Rose Equation[J]. Chaos, Solition.Fract.,2000,11(8):1213-1218
    [60] M. Dhamala, V. K. Jirsa, M. Ding. Enhancement of Neural Synchrony by Time Delay[J]. Phys.Rev. Lett.,2004,92(7):74104-1-4
    [61] H. B. Fotsin, P. Woafo. Adaptive Synchronization of a Modified and Uncertain Chaotic VanderPol-Duffing Oscillator Based on Parameter Identification[J]. Chaos, Solition. Fract.,2005,24(5):1363-1371
    [62] L. Huang, R. Feng, M. Wang. Synchronization of Uncertain Chaotic Systems with PerturbationBased on Variable Atructure Control[J]. Phys. Lett. A,2006,350(3/4):197-200
    [63] L. M. Pecora, T. L. Carroll. Nonlinear Dynamics in Circuits[M]. World Scientific Publishing,1995
    [64] K. Li, P. Gao, T. Su. The Schwabe and Gleissberg Periods in the Wolf Sunspot Numbers andthe Group Sunspot Numbers[J]. Solar. Phys.,2005,229(1):181-198
    [65] F. Blanchard, E. Glasner, S. Kolyada, etal. On Li-Yorke Pairs[J]. J. Reine. Angew. Math.,2002,26(1):51-68
    [66] E. Akin. Recurrence in Topological Dynamics: Furstenberg and Ellis Action[M]. New York:Plenum Press,1997
    [67]叶向东,黄文,邵松.拓扑动力系统概论[M].北京:科学出版社,2008
    [68] C. Tian, G. Chen. Chaos in the Sence of Li-Yorke in Coupled Map Lattices[J]. Physica A,2007,376(15):246-252
    [69]吴新星,朱培勇.由双Furstenberg族诱导的混沌[J].数学学报(中文版),2012,55(6):1039-1054
    [70]吴新星,朱培勇.关于连续区间映射的敏感依赖性[J].系统科学与数学,2012,32(2):215-225
    [71] Y. T. Liu, H. Liu. Space-time Chaos and Li-Yorke Sensitivity[J]. J. Dalian Nationalities Uni.,2008,10(5):435-436
    [72] L. Wang, G. Huang, S. Huan. Distributional Chaos in a Sequence[J]. Nonlinear Anal.,2007,67(7):2131-2136
    [73]李占红,汪火云,熊金城.(F1, F2)-攀援集的一些注记[J].数学学报(中文版),2010,53(4):727-732
    [74] J. Auslander, J. A. Yorke. Interval Maps, Factors of Maps and Chaos[J]. Tohoku math. J.,1980,32(1):177-188
    [75] G. Zhang. Relativization of Complexity and Sensitivity[J]. Ergod. Theor. Dyn. Sys.,2007,27(4):1349-1371
    [76] A. Bielecki. Topological Conjugacy of Discrete Time-map and Euler Discrete DynamicalSystems Generated by a Gradient Flow on a Two-dimensional Compact Manifold[J]. NonlinearAnal.: Theor., Meth.&Appl.,2002,51(1):1293–1317
    [77] M. S. Shea. Topological Conjugacy on the Complement of the Periodic Points[J]. Indagat.Math.,2012,23(3):300–310
    [78] N. H. Kuiper. Topological Conjugacy of Real Projective Transformations[J]. Topology,1976,15(1):13–22
    [79] L. Block. Continuous Maps of the Interval with Finite Nonwandering set[J]. Trans. Amer. Math.Soc.,1978,240(3):221-230
    [80] J. Xiong. Continuous Self-maps of the Closed Interval Whose Periodic Point from a CloseSet[J]. J. China Uni. Sci. Tech.,1981,11(4):14-23
    [81] J. Xiong. The Periods of Periodic Points of Continuous Self-maps of the Interval WhoseRecurrent form a Closed Set[J]. J. China Uni. Sci. Tech.,1983,13(1):134-135
    [82]熊金城.对于线段连续自映射f, Ω (f\Ω (f))=P (f)[J].科学通报,1982,9(1):513-514
    [83]熊金城.线段连续自映射的非游荡集[J].科学通报,1984,9(1):518-520
    [84]熊金城.关于线段连续自映射链回归点的一个注记[J].中国科学技术大学学报,1985,15(4):385-389
    [85] Z. Zhou. A Necessary and Sufficient Condition for Finiteness of Nonwandering Sets ofMappings of the Interval[J]. Chinese Ann. Math.,1982,3(1):121-130
    [86]周作领.线段自映射有异状点的一个充要条件[J].数学进展,1982,11(1):68-73
    [87]周作领.无异状点的线段自映射[J].数学学报,1982,25(5):633-640
    [88]周作领.线段自映射非游荡集有限的一个充要条件[J].数学年刊,1982,3(1):121-130
    [89]周作领.线段连续自映射非游荡集有限的一个充要条件[J].数学年刊,1982,3(1):121-130
    [90]周作领.无异状点的线段自映射(Ⅱ)[J].数学年刊,1983,4(6):731-736
    [91]周作领.线段自映射的非游荡集等于周期点集的一个充要条件[J].科学通报,1984,23(1):1409-1410
    [92] C. Arteaga. Unique Ergodicity of Continuous Self-maps of the Circle[J]. J. Math. Anal. Appl.,1992,163(2):536-540
    [93] H. Wang, J. Xiong. The Hausdorff Dimension of Chaotic Sets for Interval Self-maps[J]. Topol.Appl.,2006,153(12):2096-2103
    [94] G. Zhang. Relativization of Complexity and Sensitivity[J], Ergod. Theor. Dyn. Sys.,2007,27(4):1349-1371
    [95] J. R. Munkres著,熊金城等译.拓扑学[M].北京:机械工业出版社,2006
    [96] J. Nagatal. Modern General Topology[M]. North-Holland, Amsterdam,1985
    [97] S. Todorcevic. Trees and Linearly Ordered Set[M]. North Holland, Amsterdam,1984
    [98]朱培勇,雷银彬.拓扑学导论[M].北京:科学出版社,2009
    [99] L. Block. Mappings of the Interval with Finitely Many Periodic Points Have Zero Entropy[J]. P.Am. Math. Soc.,1977,67(2):357-361
    [100] L. Block, W. Cappel. Stratification of Continuous Maps of an Interval[J]. Trans. Am. Math.Soc.,1986,297(1):587-604
    [101]卢天秀,朱培勇. CDOLOTS上连续自映射的周期点[J].四川师范大学学报(自然科学版),2010,33(5):598-600
    [102]卢天秀,朱培勇.完备稠序线性序拓扑空间上的奇周期轨序关系[J].纯粹数学与应用数学,2010,26(6):915-923
    [103] L. Block. Homoclinic Points of Mappings of the Interval[J]. P. Am. Math. Soc.,1978,72(3):576-580
    [104] K. Kaneko. Theory and Application of Coupled Map Lattices[M]. Ann Arbor: John Wiley andSons,1983
    [105] K. Kaneko. Towards Thermodynamics of Spatiotemporal Chaos[J]. Prog. Theor. Phys. Suppl.,1989,99(1):263-287
    [106] H. Shibata. KS Entropy and Mean Lyapunov Exponent for Coupled Map Lattices[J]. PhysicaA,2001,292(1-4):182-192
    [107] H. Lu, S. Wang, X. Li, etal. A New Spatiotemporally Chaotic Cryptosystem and its Securityand Performance Analysis[J]. Chaos,2004,617(14):617-629
    [108] G. Hu, Z. Qu. Controlling Spatiotemporal Chaos in Coupled Map Lattice Systems[J]. Phys.Rev. Lett.,1994,72(1):68-71
    [109] G. Hu, J. Xiao, J. Yang, etal. Synchronization of Spatiotemporal Chaos and its Applications[J].Phys. Rev. E.,1997,56(3):2738-2746
    [110] F. H. Willeboordse. The Spatial Logistic Map as a Simple Prototype for SpatiotemporalChaos[J]. Chaos,2003,13(2):533-540
    [111] F. Khellat, A. Ghaderi, N. Vasegh. Li-Yorke Chaos and Synchronous Chaos in a GloballyNonlocal Coupled Map Lattice[J]. Chaos, Solition. Fract.,2011,44(11):934-939
    [112] G. Chen, S. Liu. On Generalized Synchronization of Spatial Chaos[J]. Chaos, Solition. Fract.,2003,15(2):311-318
    [113] G. Chen, C. Tian, Y. Shi. Stability and Chaos in2-D Discrete Systems[J]. Chaos, Solition.Fract.,2005,25(3):637-647
    [114] R. Bowen. Entropy for Group Endomorphisms and Homogeneous Spaces[J]. Trans. Amer.Math. Soc.,1971,153(1):401-414
    [115] J. L. Garcia Guirao, M. Lampart. Positive Entropy of a Coupled Lattice System Related withBelusov-Zhabotinskii Reaction[J]. J. Math. Chem.,2010,48(1):66-71
    [116] J. L. Guirao, M. Lampart. Chaos of a Coupled Lattice System Related with Belusov-Zhabotinskii Reaction[J]. J. Math. Chem.,2010,48(1):159-164
    [117] X. Wu, P. Zhu. Li-Yorke Chaos in a Coupled Lattice System Related with Belusov-Zhabotinskii Reaction[J]. J. Math. Chem.,2012,50(5):1304-1308
    [118] X. Wu, P. Zhu. The Principal Measure and Distributional (p, q)-chaos of a Coupled LatticeSystem Related with Belusov-Zhabotinskii Reaction[J]. J. Math. Chem.,2012,50(1):2439-2445
    [119] R. Li, F. Huang, Y. Zhao, etal. The Principal Measure and Distributional (p, q)-chaos of aCoupled Lattice System with Coupling Constant ε=1Related with Belusov-ZhabotinskiiReaction[J]. J. Math. Chem.,2012,50(4):2306-2312
    [120] P. Oprocha. Invariant Scrambled Sets and Distributional Chaos[J], Dyn. Sys.,2009,24(1):31-43
    [121] P. Oprocha, P. Wilczyński. Shift Spaces and Distributional Chaos[J]. Chaos, Soliton. Fract.,2007,31(2):347-355
    [122] F. Bayart, E. Matheron. Dynamics of Linear Operators[M]. Cambridge University Press,Cambridge,2009
    [123] P. Oprocha. A Quantum Harmonic Oscillator and Strong Chaos[J]. J. Phys. A: Math. Gen.,2006,39(47):14559-14565
    [124] B. Hou, P. Cui, Y. Cao. Chaos for Cowen-Douglas Operators[J]. Proc. Amer. Math. Soc.,2010,138(1):929-936
    [125] F. Martinez-Gimenez, P. Oprocha, A. Peris. Distributional Chaos for Backward Shifts[J]. J.Math. Anal. Appl.,2009,351(2):3007-3010
    [126] B. Du. On the Invariance of Li-Yorke Chaos of Interval Maps[J]. J. Differ. Equ. Appl.,2005,11(9):823-828
    [127] X. Wu, P. Zhu. Invariant Scrambled Set and Maximal Distributional Chaos[J]. Ann. Polon.Math.,2013,12(6):271-278.
    [128] B. Schweizer, A. Sklar, J. Smítal. Distributional (and other) Chaos and its Measurement[J].Real Anal. Exch.,2000,26(2):495-524
    [129] X. Wu, P. Zhu. The Principal Measure of a Quantum Harmonic Oscillator[J]. J. Phys. A: Math.Theor.,2011,44(2):505101(6pp)
    [130] X. Fu, Y. You. Chaotic Sets of Shift and Weighted Shift Maps[J]. Nonlinear Anal.,2009,71(1):2141-2152
    [131] L. wang, S. huan, G. huang. A Note on Schweizer-Smital Chaos[J]. Nonlinear Anal.,2008,68(6):1682-1686
    [132] X. Wu, P. Zhu. Chaos in a Class of Non-constantly Weighted Shift Operators[J]. Int. J. Bifur.Chaos,2013,26(8):1421-1429
    [133] F. Bayart, S. Grivaux. Frequently Hypercyclic Operators[J]. Trans. Amer. Math. Soc.,2006,358(11):5083-5117
    [134] J. Bès, A. Peris. Disjointness in Hypercyclicity[J]. J. Math. Anal. Appl.,2007,336(1):297-315
    [135] T. Bermúdez, A. Bonilla, F. Martínez-Giménez, etal. Li-Yorke and Distributionally ChaoticOperators[J]. J. Math. Anal. Appl.,2011,373(1):83-93
    [136] M. Belhadj, J. J. Betancor. Hankel Convolution Operators on Entire Functions andDistributions [J]. J. Math. Anal. Appl.,2002,276(1):40-63
    [137] K. G. Grosse-Erdmann, A. Peris. Frequently Dense Orbits[J]. C. R. Math. Acad. Sci. Paris,2005,341(2):123-128
    [138] F. Martínez-Giménez. Chaos for Power Series of Backward Shift Operators[J]. Proc. Amer.Math. Soc.,2007,135(6):1741-1752
    [139] X. Wu, P. Zhu. On the Equivalence of Four Chaotic Operators[J]. Appl. Math. Lett.,2012,25(3):545-549
    [140] S. Kolyada, L. Snoha. Topological Entroy of Nonautonomous Dynamical Systems[J]. RandomComp. Dyn.,1996,49(4):205-233
    [141] S. Kolyada, M. Misiurewicz, L. Snoha. Topological Entroy of Nonautonomous PiecewiseMonotone Dynamical Systems on the Interval[J]. Fund. Math.,1999,160(1):161-181
    [142] S. Kolyada, L. Snoha, S. Trofimchuk. On Minimality of Nonautonomous DynamicalSystems[J]. Nonlinear Oscillations,2004,7(1):83-89
    [143] J. S. Ca′novas. Some Results on (X, f, A)Nonautonomous Systems[J]. Grazer Math. Ber.,2004,346(1):53-60
    [144] J. S. Ca′novas. Onω-limit Sets of Non-autonomous Discrete Systems[J]. J. Differ. Equ.Appl.,2006,12(2):95-100
    [145] J. S. Ca′novas. Li–Yorke Chaos in a Class of Nonautonomous Discrete Systems[J]. J. Differ.Equ. Appl.,2011,17(4):479-486
    [146] J. Dvorakova. Chaos in Nonautonomous Discrete Systems[J]. C. Nonlinear Sci. Numer. Sim.,2012,17(12):4649-4652
    [147] L. Pieniaek, K. Wojcik. Complicated Dynamics in Nonautonomous ODEs[J]. Univ. Iagel. ActaMath.,2003,41(1):163-179
    [148] S. N. Elaydi. Nonautonomous Difference Equations: Open Problems and Onjectures[J]. FieldsInst. Commun.,2004,42(1):423-428
    [149] S. N. Elaydi, R.J. Sacker. Nonautonomous Beverton-Holt Equations and the Cushing-HensonConjectures[J]. J. Differ. Equ. Appl.,2005,11(7):337-346
    [150] P. Oprocha, P. Wilczynski. Chaos in Nonautonomous Dynamical Systems[J]. An. St. Univ.Ovidius Constanta.,2009,17(3):209-221
    [151] H. N. Agiza, A. A. Elsadany. Nonlinear Dynamics in the Cournot Duopoly Game withHeterogeneous Players[J]. Physica A,2003,320(1):512-524
    [152] H. N. Agiza, A. S. Hegazi, A. A. Elsadany. The Dynamics of Bowley’s Model with BoundedRationality[J]. Chaos, Soliton. Fract.,2001,12(9):1705-1717
    [153] H. N. Agiza, A. S. Hegazi, A. A. Elsadany. Complex Dynamics and Synchronization of aDuopoly Game with Bounded Rationality[J]. Math. Comput. Simul.,2002,58(2):133-146
    [154] E. Ahmed, H. N. Agiza, S. Z. Hassan. On Modifications of Puu’s Dynamical Duopoly[J].Chaos, Soliton. Fract.,2000,11(7):1025-1028
    [155] T. Puu, A. Norin. Cournot Duopoly When the Competitors Operate under CapacityConstraints[J]. Chaos, Soliton. Fract.,2003,18(3):577-592
    [156] A. K. Naimzada, S. Lucia. Oligopoly Games with Nonlinear Demand and Cost Functions: TwoBoundedly Rational Adjustment Processes[J]. Chaos, Soliton. Fract.,2006,29(1):707-722
    [157] A. Anna. Homoclinic Connections and Subcritical Neimark Bifurcation in a Duopoly Modelwith Adaptively Adjusted Productions[J]. Chaos, Soliton. Fract.,2006,29(3):739-755
    [158] M. F. Elettreby, S. Z. Hassan. Dynamical Multi-team Cournot Game[J]. Chaos, Soliton. Fract.,2006,27(3):666-672
    [159] J. Du, T. Huang. New Results on Stable Region of Nash Equilibrium of Output GameModel[J]. Appl. Math. Comput.,2007,192(1):12-21
    [160] T. Puu, I. Sushko. Oligopoly Dynamics: Models and Tools[M]. New York: Springer,2002
    [161] R. A. Dana, L. Montrucchio. Dynamic Complexity in Duopoly Games[J]. J. Econ. Theory,1986,40(1):40-56
    [162] J. S. Cánovas, M. R. Marín. Chaos on MPE-sets of Duopoly Games[J]. Chaos, Soliton. Fract.,2004,19(1):179-183
    [163] J. Smítal, M. Stefánková. Distributional Chaos for Triangular Maps[J]. Chaos, Soliton. Fract.,2004,21(5):1125-1128
    [164] R. Pikula. On Some Notions of Chaos in Dimension Zer[J]. Colloq. Math.,2007,107(2):167-177
    [165] M. Kuchta, J. Smítal. Two-point Scrambled Set Implies Chaos[C]. In European Conference onIteration Theory, Caldes de Malavella,1987. Teaneck, NJ World Sci Publishing,1989:427-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700