边界层中展向波包型扰动转捩的数值模拟及用PSE方法的预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于空间模式,研究了不可压缩平板边界层和曲面边界层中扰动的演化和转捩问题首先针对平板边界层,研究了展向等幅值型和展向波包型两类扰动的演化全过程,分析了这两类扰动的转捩机理;使用改进的PSE研究了平板边界层扰动的演化并预测了转捩位置,和数值模拟结果进行比较;最后研究了典型曲面边界层中扰动演化及PSE的应用共得到以下结果:
     (1)展向等幅值扰动的演化特征:在上游,二维基本波占据主要地位,随着演化,二维基本波的幅值先增大后减小,减小的原因是三维基本波的快速增长,三维基本波的幅值将超过二维基本波占据主导地位三维基本的快速增长,使更多的高次谐波被激发出来,转捩因此发生
     (2)展向波包型扰动的演化特征:随着扰动的演化,波包型扰动从展向一个峰值分裂为两个峰值,波峰中间出现展向高波数的三维扰动,然后两个峰值会逐步消失;波包展向所占的范围也逐步展向拓宽;展向大尺度结构逐步破碎成小尺度结构;初期的低波数波演化出越来越多的高波数三维波;流动结构依次出现月牙形结构涡结构流向条纹结构,到最终无序的湍流结构
     (3)展向等幅值和展向波包型扰动的转捩机理为:在扰动演化的初期,不稳定区域较小,只有某些波能增长起来,随着演化,非线性作用将使平均流速度剖面快速变化,导致不稳定区域的扩大,这将使更多的高波数谐波快速增长针对不同的展向位置,一定幅值的展向波包型扰动都将引发转捩,不同的展向位置转捩位置不同,但转捩过程和特征是类似的
     (4)对于研究的各类边界层,在转捩开始之前PSE方法预测扰动演化的结果与数值模拟一致,PSE方法失效的位置与数值模拟得到的转捩开始发生的位置基本一致因此,可以用PSE方法的失效位置来预测转捩位置
     (5)用PSE方法研究了展向等幅值扰动的展向波数和幅值对转捩位置的影响存在使转捩位置最靠前的展向波数,当大于这个波数时转捩位置随波数的增大而靠后扰动幅值越大转捩位置越靠上游
     (6)对于等曲率的圆环管道流动,曲率的存在将抑制转捩的发生,曲率越大转捩位置越靠后;对于NACA0012翼型曲面边界层,给出了转捩位置和二维扰动波幅值频率的关系,并预测了转捩的位置
In this paper, the evolutions of disturbances in incompressible boundary layers onflat plates and curved surfaces were investigated based on the spatial model. Firstly,the evolutions of two types of disturbances were studied. The two types were identicalamplitude and wavepacket along the spanwise in flat plate boundary layers. Thetransition mechanisms of two types of disturances were studied too. Secondly, withthe improved PSE method, the evolution of disturbances and prediction of thetransition position were studied in flat plate boundary layers. The results werecompared with the numerical simulation. Lastly, the disturbances evolution and theapplication of PSE in curved boundary layers were researched. We obtained thefollowing conclusions:
     (1) The evolution characteristics of identical amplitude disturbances alongspanwise were showed. In the upstream, the two-dimensional basic wavedominated. With the disturbance evolution, the amplitude of the2-D basicwave increased firstly and then decreased. The decrease was induced by therapid growth of3-D basic waves. Then3-D basic waves would dominantwhen the amplitudes exceeded2-D wave. Because of the rapid growth of3-D waves, the high harmonic waves were stimulated and the spanwise sizebecame smaller, then the transition occurred.
     (2) The evolution characteristics of spanwise wavepacket disturbances wereshowed. With the evolution of disturbances, one peak splited to two peaks.Between peaks, the high wavenumber3-D waves appeared and then thepeaks would gradually vanish. The spanwise of wavepacket would expand.The large scale structures broken into small scale structures. The higherwavenumber3-D waves were simulated by low wavenumber waves. Theflow structures would be crescent,-vortex, streamwise streak andunordered turbulence structure successively.
     (3) For identical amplitude and wavepacket disturbances, the stabilities of localmean flow were analysed. The transition mechanism was obtained. In initialstage of evolution, the stable zone was small and only a few waves couldgrow. With the evolution, the mean flow velocity profile changed quickly due to the nonlinear effect. The instability zone enlarged and more andmore high harmonic waves were simulated rapidly and the transitionhappened. The analysis of different spanwise positions indicated that thetransiton was triggered by definite amplitude of spanwise wavepacketdisturbance. In different spanwise positions, the transition positions weredifferent, but the transition processes and characteristics were similar.
     (4) For all kinds of boundary layers that were discussed, the evolution ofdisturbances was consistent by PSE and numerical simulation beforetransition. The position of the PSE invalid and the beginning of transitionby numerical simulation were the same basically. Therefore, the PSEinvalid position could predict the transition position.
     (5) With PSE method, the influence of spanwise wavenumber and amplitude onthe transition position was studied for identical amplitude disturbances. Thespanwise wavenumber which made the transition position forefront existed.When the wavenumbers were larger than critical wavenumber, thetransition position would delay with the wavenumber increase. The largerwere the initial amplitudes, the fronter were the transition positions.
     (6) For the identical curvature circle pipeline, the transitions were restrainedbecause of the curvature. The transition positions would be delay with thelarger curvature. For the NACA0012wing boundary layer, the relations ofthe transition position and the amplitude and frequency of2-D wave weredisscussed. Besides, the transition positions were predicted.
引文
[1]张涵信,周恒.流体力学的基础研究.世界科技研究与发展,2001,23(1):15~18
    [2]周恒.新世纪对流体力学提出的要求.自然科学进展,2000,10(6):491~494
    [3]郑哲敏,周恒,张涵信等.21世纪初的力学发展趋势.力学进展,1995,25(4):433~441
    [4] Kachanov Y. S. Physical mechanisms of laminar-boundary-layer transition.Annual Review of Fluid Mechanics,1994,26:411~82
    [5] Janke E., Balakumar P. On the stability of three-dimensional boundary layers,Part1: Linear and nonlinear stability. NASA CR-1999-209330, ICASE ReportNo.99~116
    [6] Saric W. S., Carrillo R. B., Reibert M. S. Nonlinear stability and transition in3-D boundary layers. Meccanica,1998,33:469~487
    [7] Janke E., Balakumar P. On the stability of three-dimensional boundary layers,Part2: Secondary instability. NASA CR-1999-209341, ICASE Report No.99~119
    [8] Janke E., Balakumar P. On the secondary instability of three-dimensionalboundary layers. Theoretical and computational fluid dynamics,2000,14:167~194
    [9] Jacobs, R.G.., Durbin. Simulation of bypass transition. J. Fluid Mech.,2001,408:185~212
    [10] Alzin L B, Polyakov N F. Acoustic generation of Tollmien-Schlichting wavesover local unevenness of surface immersed in streams. Preprint17, Akad.Nauk USSR, Siberian Div, Inst. Theor. Appl. Mech., Novosibirsk,1979
    [11] Goldstein M E. Scattering of acoustic waves into Tollmien-Schlichtingwaves by small streamwise variations in surface geometry. J.Fluid Mech.,1985,154:509~529
    [12] Wiegel M, Wlezien R. Acoustic receptivity of laminar boundary layers overwavy walls. AIAA Paper, No.93~3280
    [13] Rogler H L, Reshotko E. Disturbances in a boundary layer introduced by alow intensity array of vortices. SIAM J. Appl. Maths,1975,28:431~462
    [14] Zavol skii, Reutov N A, Rybushkina G V. Generation ofTollmien-Schlichting waves via scattering of acoustic and vortexperturbations in boundary layer on a wavy surface. J. Appl. Mech. Tech. Phys.1983,24:355~361
    [15] Luo J S, Zhou H. On the generation of Tollmien-Schlichting waves in theboundary layer of a flat plate by the disturbances in the free stream. Proc. R.Soc. Lond,1987, A413:351~367
    [16] Dietz A J. Local boundary-layer receptivity to a convected free-streamdisturbance. J. Fluid Mech,1999,378:291~317
    [17] Saric W S, Reed H L. Kerschen E. J. Boundary layer receptivity tofreestream disturbances. Annu. Rev. Fluid Mech.,2002,34:291~319
    [18]张永明,周恒.自由流中涡扰动的边界层感受性的数值研究.应用数学和力学,2005,26(5):505~511
    [19] Zhong X L. Leading-edge receptivity to free-stream disturbance waves forhypersonic flow over a parabola. J. Fluid Mech.,2001,441:315~367
    [20] Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flatplate. Part1: Wave structures and interactions. J. Fluid Mech.,2003,488:31~78
    [21] Ma Y B, Zhong X L. Receptivity of a supersonic boundary layer over a flatplate. Part2: Receptivity to free-stream sound. J. Fluid Mech.,2003,488:79~121
    [22] Mack L. M. Linear Stability Theory and the Problem of SupersonicBoundary-Layer Transition. AIAA Journal,1975,13(3):278~289
    [23] Mack L. M. Boundary Layer Stability Theory. Jet Propul. Lab. Rep.900-277,Rev. A,1969
    [24] Mack L. M. Boundary Layer Linear Stability Theory. AGARD709-1984,1984
    [25] Brown W. B. Exact Numerical Solutions of the Complete LinearizedEquations for the Stability of Compressible Boundary Layers. NORAIRDivision Rep. NOR-62-15,1962
    [26] Malik M. R., Chuang S., Hussaini M. Y. Accurate Numerical Solution ofCompressible, Linear Stability Equations. Zeitschrift für AngewandteMathematik und Physik (ZAMP),1982,33(2):189~201
    [27] Herbert, T. Nonlinear stability of parallel flows by high-order amplitudeexpansions. AIAA,1980, JL18:243~248
    [28] Zhou H. On the nonlinear theory of stability of plane Poseuille fow in thesubcritical range. Proceeding of the Royal Society of London, Series A,1982,381:407~418
    [29]周恒.平面Poiseuille流的非线性稳定性理论.天津大学学报,1982,2:1~12
    [30]周恒,李骊. Orr-Sommerfeld方程的特征值问题及展开定理.应用数学和力学,1981,2(3):295~305
    [31]周恒,李骊.流体层流运动稳定性中的Liapounoff方法.应用数学和力学,1983,4(3):453~462
    [32]周恒.流动稳定性弱非线性理论中幅值方程的一个必要的修正.科学通报,1990,35(16):1228~1230
    [33]周恒.流动稳定发生弱非线性理论的重新考虑.应用数学和力学,1991,12(3):203~208
    [34]周恒.流动稳定性理论中空间模式不稳定波能量方程中的一个问题.力学学报,1991,23(1):116~118
    [35]周恒,尤学一.论流动稳定性中的弱非线性理论.中国科学A辑,1992,A(6):615~622
    [36] Zhou H, You X Y. On the problems in the weakly nonlinear theory ofhydrodynamic stability and its improvements. Acta. Mechanica Sinica(English Edition),1993,9(1):1~12
    [37]周恒,藤村薰.流动稳定性弱非线性理论的进一步改进.中国科学A辑,1997,27(12):1111~1118
    [38] Luo J S, Zhou H. Atheoretical investigation of the development of stationarycrossflow vortices in the boundary layer on a swept wing. Acta. MechanicaSinica (English Edition),1998,14(2):97~103
    [39] Klebanoff P. S., Tidstrom K. D., Sargent L. M. The three-dimensional natureof boundary-layer instability. J.Fluid Mech.1962,12:1~34
    [40] Kachanov Y. S., Levchenko V. Resonant Interaction of Disturbances atLaminar-Turbulent Transition in a Boundary Layer. Journal Of FluidMechanics,1984,138:209~247
    [41] Herbert T. Analysis of the Subharmonic Route to Transition in BoundaryLayers. AIAA Paper,1984,1984~0009
    [42] Craik A. D. D. Non-Linear Resonant Instability in Boundary Layers. JournalOf Fluid Mechanics,1971,50(02):393~413
    [43] Dryganets S V, Kachanov Y S, Levchenko V Y. et al. Resonant flowrandomization in K-regime of boundary layer transition. J. Appl. Mech. Tech.Phys.,1990,31(2):239~249
    [44] Thumm A. Numerische Untersuchungen Zum Laminar-TurbulentenStr omungsumschlag in Transsonischen Grenzschichtstr omungen. Ph.Dthesis, Universit at Stuttgart,1991
    [45] Dryganets S V, Kachanov Y S, Levchenko V Y, et all. Resonant flowrandomization in K-regime of boundary layer transition. J. Appl. Mech. Tech.Phys.,1990,31(2):239~249
    [46] Kachanov Y S. Physical mechanisms of laminar-boundary-layer transition.Annu. Rev. Fluid Mech.,1994,26:411~482
    [47] Bake S, Fernholz H, Kachanov Y S. Resemblance of K-and N-regimes ofboundary-layer transition at late stages. Eur. J. Mech. B/Fluids,2000,19(1):1~22
    [48]李存标.转捩和湍流研究的最新进展.流体力学实验与测量,1998,12(1):8~27
    [49]赵耕夫,周恒.平面Poiseuille流中弱非线性理论和二次失稳理论的关系.应用数学和力学,1988,9(8):571~576
    [50] Kachanov Y. S. On the resonant nature of the breakdown of a laminarboundary layer. J. Fluid Mech.1987,184:43~74
    [51] Cebeci T., Shao J. P., Chen H. H.et al. The Preferred Approach forCalculating Transition by Stability Theory. Proceeding of internationalconference on boundary and interior layers. ONERA, Toulouose France,2004
    [52] Cebeci T., Stewartson K. On Stability and Transition in Three-DimensionalFlow. AIAA Journal,1980,18(4):398~405
    [53] Crouch J. D., Kosorygin V. S., Ng L. L. Modeling the Effects of Steps OnBoundary-Layer Transition. Proceedings of the sixth IUTAM Symposium onLaminar Turbulent Transition, Bangalore,India: Springer,2004,37~44
    [54] Malik M. R. Boundary-Layer Transition Prediction Toolkit. AIAA Paper,1997,1997~1904
    [55]苏彩虹,周恒.小攻角高超音速尖锥边界层的转捩预测及E~N法的改进.中国科学,2009,39(01):123-130
    [56] Kleiser L, Zang T A. Numerical simulation of transition in wall-boundedshear flows. Annu. Rev. Fluid Mech.,1991,23:495~537
    [57] Williams D R, Fasel H, Hama F R. Experimental determination of thethree-dimensional vorticity field in the boundary layer transition process. J.Fluid Mech.,1984,149:179~203
    [58] Rist U, Fasel H. Direct numerical simulation of controlled transition in aflat-plate boundary layer. J. Fluid Mech.,1995,298:211~248
    [59] Borodulin V L, Gaponenko V R, Kachanov Y S, et al. Late-stage transitionalboundary layer structures direct numerical simulation and experiment.Theoret. Comput. Fluid Dynamics,2002,15:317~337
    [60] Saric W S. Physical description of boundary layer transition, experimentalevidence. In AGARD-CP-793,1994
    [61] Chaoqun Liu., Zhining Liu. Multigrid mapping and box relaxation forsimulation of the whole process of flow transition in3d boundary layers. J.Comput. Phy.1995,119:325~341
    [62] Wang Z, Yeo K.S, Khoo B.C. Spatial direct numerical simulation oftransitional boundary layer over compliant surfaces. Computers&Fluids,2005,34:1062~1095
    [63] Bhaganagar K., Rempfer D., Lumley J. Direct numerical simulation ofspatial transition to turbulence using fourth-order vertical velocitysecond-order vertical vorticity formulation. J. Comput. Phy.,2002,180:200~228
    [64] Berlin S., Lundbladh A., Henningson D. Spatial simulations of obliquetransition in a boundary layer. Phys. Fluids,1994,6(6):1949~1951
    [65] Markus J. K. A robust high-resolution split-type compact fd scheme forspatial direct numerical simulation of boundary-layer transition. AppliedScientific Research,1998,59:353~377
    [66] Fasel H. F., Rist U. Konzelmann U. Numerical investigation of thethree-dimensional development in boundary-layer transition. AIAA,1990,(1):29~37
    [67] Fasel H., Konzelmann U. Non-parallel stability of a flat-plate boundary layerusing the complete navier-stokes equations. J. Fluid Mech.1990,221:311~347
    [68] Rist U., Kachanov Y. S. Numerical and experimental investigation of theK-regime of boundary-layer transition. Proc. IUTAM-Symp.Laminar-Turbulent Transition, Sendai, Springer-Verlag,1995,405~412
    [69] Rist U. DNS of boundary-layer instability and transition using the spatialapproach. Transitional Boundary Layers in Aeronautics, Royal NetherlandsAcademy of Arts and Sciences. Amsterdam, Elsevier,1996,99~111
    [70] Meyer D., Rist U., Wagner S. DNS of the generation of secondaryλ-vortices in a transitional boundary layer. Advances in Turbulence VII,Kluwer,1998:97~100
    [71] Maucher U., Rist U., Wagner S. A refined method for DNS of transition ininteracting boundary layers. AIAA,98-2435:1~11
    [72] Meyer D. G. W., Rist U., Borodulin V. I., et al. Late-stage transitionalboundary-layer structures. Direct numerical simulation and experiment.Laminar-Turbulent Transition, Proc. IUTAM-Symp Sedona, Sept.,2000,167~172
    [73]陈健,崔桂香,许春晓等.空间发展圆管转捩的直接数值模拟.力学学报,2003,35(1):6~13
    [74]陈健,崔桂香,许春晓等.圆管流动的二次转捩.工程力学,2003,20(5):37~41
    [75]王新军,罗纪生,周恒.平面槽道流中层流-湍流转捩的"breakdown"过程的内在机理.中国科学, G辑,2005,35(1):71~78
    [76] Tang Hongtao, Luo Jisheng. Mechanism of breakdown in laminar-turbulenttransition of incompressible boundary layer on a flat plate. TianJinDaXueXueBao: YingWenBan,2007
    [77]李宁.基于空间模式的平板边界层层流到湍流的转捩研究[天津大学博士论文].2007
    [78] Herbert Th, Bertolotti F P. Stability Analysis of Nonparallel Boundary Layers.J. Bull. Am. Phys. Soc.,1987,32:2079~2806
    [79] Schubauer G B, Skramstad H K. Laminar boundary-layer oscillations andtransition on a flat plate. NACA Adv. Conf. Rep.,1947,38:251~292
    [80] Ross J A, Barnes F H, Burns J G, et al. The flat plate boundary layer. Part3.Comparison of theory with experiment. Journal of Fluid Mechanics,1970,43:819~832
    [81] Strazisar A J, Reshotko E, Prahl J M. Experimental study of the stability ofheated laminar boundary layers in water. Journal of Fluid Mechanics,1977,83:225~247
    [82] Kachanov Yu S, Kozlov V V, Levchenko V Ya. Nonlinear development of awave in a boundary layer. Fluid Dynamics,1977,12(3):383~390
    [83] Gaster M. On the effects of boundary-layer growth on flow stability. Journalof Fluid Mechanics,1974,66:465~480
    [84]于秀阳,周恒.平板边界层流的非平行性对流动稳定性的影响.力学学报,1986,18:297~306
    [85] Bertolotti F P, Herbert Th, Spalart P R. Linear and nonlinear stability of theBlasius boundary layer. Journal of Fluid Mechanics,1992,242:441~474
    [86] Joslin, R. D., Chang, C.-L., and Streett, C. L. Spatial Direct NumericalSimulation of Boundary-Layer Transition Mechanisms: Validation of PSETheory. Theor. Comput. Fluid Dyn.,1993,3:271~288
    [87] F. Li, M. R. Malik. On the nature of the PSE approximation. Theor. Comput.Fluid Dyn.,1996,8:253~273
    [88] Malik M. R., F. Li, Choudhari M M, et al. Secondary instability of crossflowvortices and swept-wing boundary-layer transition. Journal of FluidMechanics,1999,399:85~115
    [89] Esfanhanian V., Hejranfar K., Sabetghadam F. Linear and nonlinear PSE forstability analysis of the blasius boundary layer using compact scheme.Journal of Fluids Engineering,2001,123(3):545~550
    [90] Herbert TH. Parabolized Stability Equation. Annu. Rev. Fluid mech.,1997,29:245~283
    [91] Bertolotti F. P. Compressible boundary layer stability analyzed with the PSEequation. AIAA Paper,1991,91~1637
    [92] Hu S. H., Zhong X. Nonparallel stability analysis of compressible boundarylayer using3-D PSE. AIAA Paper,1999,91:0813
    [93] Chang C., Malik M.R. Oblique-Mode Breakdown and Secondary Instabilityin Supersonic Boundary Layers. Journal of Fluid Mechanics,1994,273:323~360
    [94] Chang C. The Langley Stability and Transition Analysis Code(Lastrac): Lst,Linear and Nonlinear PSE for2-D, Axisymmetric and Infinite Swept WingBoundary Layer, AIAA Paper,2003,2003~0974
    [95] Chang C. Langley Stability and Transition Analysis Code(Lastrac) Version1.2User Manual, NASA/TM-2004-213233,2004
    [96] Chang C. Lastrac.3D: Transition Prediction in3D Boundary Layers. AIAAPaper,2004:2004~2542
    [97]张永明,周恒.抛物化稳定性方程在可压缩边界层中应用的检验.应用数学与力学,2007,28(08):883~893
    [98]张永明,周恒. PSE在可压缩边界层转捩问题中的应用.应用数学与力学,2008,29(07):757~763
    [99]张永明,周恒. PSE在超音速边界层二次失稳问题中的应用.应用数学与力学,2008,29(01):1~7
    [100]董明,张永明,周恒.计算可压缩边界层转捩及湍流的一种新方法—PSE+DNS.应用数学与力学,2008,29(12):1527~1534
    [101]梁贤.高超声速钝锥边界层稳定性特性.博士毕业论文,上海,上海大学,2010
    [102] Gaster, Grant. An experimental investigation of the formation anddevelopment of a wave packet in a laminar boundary layer. Proc. R. Soc.Lond. A.,1975,347:253~269
    [103] Jacob Cohen, Kenneth S. Breure, Joseph H., et al. On the evolution of a wavepacket in a laminar boundary layer. J. Fluid Mech.,1991,225:575~606
    [104] Jacob Cohen. The initial evolution of a wave packet in a laminar boundarylayer. Physics of Fluids,1993,6:1133~1143
    [105] Kennetn S.Breuer, Jacob Cohen, Joseph H. Haritonidis. The late stages oftransition induced by a low-amplitude wavepacket in a laminar boundarylayer. J. Fluid Mech.,1997,340:395~411
    [106] Marcello A. F., Medeiros, Michael Gaster. The influence of phase on thenonlinear evolution of wavepackets in boundary layers. J. Fluid Mech.,1999,397:259~283
    [107] Konzelmann, U., Fasel, H. Numerical simulation of a three-dimensionalwavepacket in a growing flat-plate boundary layer. In Boundary LayerTrabsition and Control,1991,1~24
    [108] Bech, K.H., Henningson, D.S., Henkes, R.A.W.M. Linear and nonlineardevelopment of localized disturbance in zero and adverse pressure gradientboundary layer. Phys. Fluids,1998,10(6):1405~1418
    [109] K.S.YEO, X.Zhao, Z.Y. Wang et al. DNS of wavepacket evolution in aBlasius boundary layer. J. Fluid Mech.,2010,652:333~372
    [110] Reibert, M. S., Saric W. S., Carrillo, R. B., et al. Experiments in nonlinearsaturation of stationary crossflow vortices in a swept-wing boundary layer.AIAA,1996,96~0184
    [111] Kohama, Y., Saric, W. S., Hoos, J. A. Ahigh frequency, secondary instabilityof crossflow vortices that leads to transition. Proc. R. Aeronaut. Soc. Conf.on Boundary-Layer Transition and Control,1991,4.1~4.13
    [112] Haynes T S, Reed H L. Simulation of Swept-Wing Vortices Using NonlinearParabolized Stability Equations. J. Fluid Mech.,2000,405:325~349
    [113] Arnal, D. Boundary layer transition: predictions based on linear theory. InSpecial Course on Progress in Transition Modelling, AGARD Rep.,1994,793
    [114] Radeztsky, R. H., Reibert, M. S., Saric, W. S. Development of stationarycrossflow vortices on a swept wing. AIAA,1994,94~2373
    [115] Radeztsky, R. H., Reibert, M. S., Saric, W. S. et al. Effect of micron-sizedroughness on transition in swept-wing flows. AIAA,1993,93~0076
    [116] Julian J., Seminara. Boundary-Layer Receptivity Analysis of a NACA0012Airfoil with Wall Suction. Mecanica Computacional,2006,2699~2717
    [117] Atobe T T K. Linear Stability Analysis of Secondary Instability of BoundaryLayer Flow on a Two DimensionalAirfoil. Adelaide, Australia,2008
    [118] Li F, Choudhari M. Spatially Developing Secondary Instabilities inCompressible Swept Airfoil Boundary Layers. Theor Comp Fluid Dyn,2011,25(1-4):65~84
    [119]刘吉学,唐登斌,朱国祥.机翼非平行边界层稳定性研究.南京航空航天大学学报,2005,720~724
    [120]徐国亮,符松.曲率对翼型边界层二次失稳影响.力学学报,2010(11),995~1005
    [121]左岁寒,杨永,李栋.基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究.计算物理,2010,27(5):665~670
    [122]王菲,额日其太,王强等.三种典型翼型边界层稳定性对比分析.空气动力学学报,2011,4:481~485
    [123] Karniadakis G. E., Israeli M., Orszag S. A. High-order splitting methods forthe incompressible navier-stokes equations. J. Comput. Phy.1991,97:414~443
    [124]傅德薰,马延文.平面混合流拟序结构的直接数值模拟.中国科学A辑,1996,26(7):659~664

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700