B和Q型烟粉虱对寄主植物适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以寄主植物长期隔离饲养的烟粉虱为材料,研究寄主植物营养及次生物质对B、Q型烟粉虱成虫体内主要消化酶、氨基酸代谢酶、体内主要营养物质及雌雄成虫体长的影响。同时比较B型烟粉虱四个不同寄主种群和Q型烟粉虱一品红种群体内游离氨基酸的差异;为研究烟粉虱对寄主植物的适应性、种群分化、.生物型替代及综合防治等提供理论依据,主要结论如下:
     1寄主植物营养差异:不同寄主植物体内主要营养物质及植物次生物质的含量均有显著差异。一品红和甘蓝总糖含量显著高于其它三种寄主植物;黄瓜总氮和可溶性蛋白含量显著高于其它四种寄主植物,棉花和一品红总氮和可溶性蛋白含量最低;甘蓝游离脂肪酸含量显著高于其它四种寄主植物;甘蓝、黄瓜和番茄含水量显著高于棉花和一品红;一品红总氨基酸和总酚含量显著高于其它四种寄主植物。
     2烟粉虱体内主要营养物质差异:不同寄主种群及生物型烟粉虱体内营养物质存在显著差异,其中B型棉花种群体内总糖含量最高,B型黄瓜种群含量最低.五个寄主种群烟粉虱体内总脂含量也存在极显著差异,以B型棉花种群含量最高,B型番茄种群含量最低。而不同寄主种群及不同生物型烟粉虱体内总蛋白和水含量均无显著差异。
     3不同寄主种群及生物型烟粉虱雌雄成虫体长比较:结果表明B型黄瓜、B型番茄和B型棉花种群雌虫体长显著大于B型甘蓝和Q型一品红种群。B型黄瓜和B型棉花种群雄虫体长显著大于B型甘蓝、B型番茄和Q型一品红种群,其中B型黄瓜种群最大,Q型一品红种群最小。
     4消化酶活力比较:经不同寄主植物长期隔离饲养,B型烟粉虱不同寄主种群及Q型烟粉虱一品红种群体内蛋白酶、脂肪酶和淀粉酶活性均无显著差异;而海藻糖酶和蔗糖酶活性差异显著。B型番茄种群和Q型一品红种群海藻糖酶活力显著高于B型棉花、B型黄瓜和B型甘蓝种群;B型番茄种群蔗糖酶活力显著高于其它四个种群,Q型一品红种群蔗糖酶活力最低。
     5氨基酸代谢酶活力比较:B型棉花种群谷草转氨酶GOT活力最高,Q型一品红种群最低;B型棉花种群和Q型一品红种群谷丙转氨酶GPT活力显著高于其他三个种群;Q型一品红种群谷氨酰胺合成酶GS活力显著高于B型烟粉虱四个种群。
     6游离氨基酸比较:通过比较B和Q型烟粉虱不同寄主种群之间游离氨基酸种类和含量,发现Q型烟粉虱一品红种群磷酸丝氨酸、磷乙醇胺、苏氨酸、色氨酸、甘氨酸、丙氨酸、缬氨酸、蛋氨酸、p-丙氨酸、酪氨酸的百分含量均显著高于B型烟粉虱种群。而天冬酰胺在B型烟粉虱不同寄主种群及Q型烟粉虱一品红种群之间无显著差异。在B型烟粉虱4个不同寄主种群及Q型烟粉虱一品红中,游离氨基酸含量存在显著差异,B型黄瓜种群>B型甘蓝种群>B型番茄种群>Q型一品红种群>B型棉花种群。但瓜氨酸仅存在黄瓜中,而鹅肌肽仅存于Q型一品红种群中。
     B型烟粉虱四个不同寄主种群体内各种游离氨基酸百分含量除色氨酸,蛋氨酸,半胱氨酸,苏氨酸,p-丙氨酸无显著差异外,其他各类氨基酸在B型烟粉虱不同寄主种群中均具显著差异。
     根据烟粉虱体内游离氨基酸的组成,采用判别分析方法,对不同寄主种群进行区分,发现五种不同寄主种群烟粉虱可明显分为五类,表明寄主植物营养对烟粉虱体内游离氨基酸的组成和含量具有显著影响。
Using four host populations of B-biotype Bemisia tabaci and one of Q-biotype B. tabaci, which had been long-term isolatedly cultured on different host plants, we determine the effects of host nutrition and secondary metabolites on'the activities of main digestive enzymes and amino acid metabolism enzyme. We also compared the differences of insect main nutrition, body size and the composition and contents of free amino acid. The results offered the theoretical basis for studing on the adaptation to host plants, Population Division, biotype alternative, comprehensive control of Bemisia tabaci. Our results as follows.
     Variation of host plant nutrition:The contents and composition of plant nutrition and secondary metabolites were significant different in five host plants. Total sugar contents of poinsettia and cabbage were significantly higher than the other three host plants. Total nitrogen and soluble protein contents of cucumber were highest, followed by cotton and poinsettia, and lowest in cabbage and tomato. Fatty acid content of cabbage was significantly higher than the other four host plants. The water contents of cabbage, cucumber and tomato were significantly higher than those of cotton and poinsettia.Total amino acid and total phenolic content of poinsettia were significantly higher than other four host plants.
     Variation of main nutrition contents:of whitefly. Results of main nutritions among different host populations of B. tabaci indicated that the contents of total sugars and lipids of cotton population were significantly higher than those of other four host populations. B-biotype cucumber population was the lowest; The total protein and water content in different host populations and different bio types of B. tabaci showed no significant difference.
     Variation of adult body size of male and female among different host populations: Female body size of B-biotype cucumber, B-biotype tomato and B-biotype cotton populations were significantly larger than B-biotype cabbage and Q-biotype poinsettia populations. Male body size of B-biotype cucumber and cotton populations was significantly larger than B-biotype cabbage, B-biotype tomato and Q-biotype poinsettia populations. Of which male body size of B-biotype cucumber population was the largest, while Q-biotype poinsettia population was the lowest.
     Digestive enzymes:There were no significant variations in protease, lipase and amylase activity among four B-biotype host populations and Q-biotype poinsettia population. In contrast, significant differences were found in trehalase and invertase activities. Trehalase activity of B-biotype tomato and Q-biotype poinsettia population was significantly higher than B-biotype cotton, B-biotype cucumber and B-biotype cabbage population. In addition, invertase activity of B-type tomato population was significantly higher than other host populations, and the invertase activity of Q-biotype poinsettia population was the lowest.
     Amino acid metabolism enzymes:GOT activity of B-biotype cotton population was the highest, while Q-biotype poinsettia population was the lowest. GPT activity of B-biotype cotton and Q-biotype poinsettia populations were significantly higher than other three host populations. GS activity of Q-biotype poinsettia population was significantly higher than four B-biotype host populations.
     Variation of free amino acids:Contents of phosphorylation of serine, ethanolamine phosphate, threonine, tryptophan, glycine, alanine, valine, methionine,β-alanine, tyrosine in Q-biotype were significantly higher than those of B-biotype. In contrast, there were no significant differences in contents of asparagine among four B-biotype host populations and one Q-biotype poinsettia population. There were significant differences in contents of free amino acids among four B-biotype host populations and Q-biotype poinsettia populations. The contents of free amino acids ranked as follows. B-biotype cucumber, B-biotype cabbage, B-biotype tomato, Q-biotype poinsettia and B-biotype cotton populations. However, the citrulline was only detected in B-biotype cucumber population, while Q-carnosine was only detected in Q-biotype poinsettia population. There were significant differences in contents of various amino acids except tryptophan, methionine, cysteine, threonine andβ-alanine in four different B-biotype host populations.
     According to variations of the composition and contents of free amino acids in five B. tabaci host populations, we used discriminating analysis to distinguish host populations and found that the different host populations were classified into five categories. The results indicated that host plant nutritions had significant effects on composition and content of free amino acid of whitefly.
引文
[1]钦俊德.昆虫与植物的关系:论昆虫与植物的相互作用及其演化[M].北京:科学出版社,1987.
    [2]Chapman RF.The Insects:Structure and Function[M].Cambridge,UK:Cambridge Univ. Press1998.
    [3]Schoonhoven LM, van Loon JA, Dicke M. Insect-Plant Biology[M]. Oxford: Oxford Univ. Press 2005.
    [4]Bernays EA, Chapman RF. Host-Plant Selection by Phytophagous Insects[M]. New York:Chapman & Hall. Press 1994.
    [5]Slansky F, Rodriguez JG. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates[J]. NewYork:Wiley,1987,645-72.
    [6]Harry T Valentine, William E Wallner, and Philip M Wargo. Nutritional changes in host foliage during and after defoliation,and their relation to the weight of gypsy moth pupae[J]. Oecologia (Berlin),1983,57:298-302.
    [7]Pedro Barbosa and Jane Greenblatt. Suitability, Digestibility and Assimilation of Various Host Plantsof the Gypsy Moth Lymantria dispar L[J]. Oecologia (Berl.), 1979,43:111-119.
    [8]Laurel R Fox and Macauley BJ. Insect Grazing on Eucalyptus in Response to Variation in Leaf Tannins and Nitrogen[J]. Oecologia (Berl.),1977,29:145-162.
    [9]Karley AJ, Douglas AE and Parker WE. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids [J]. Journal of Experimental Biology, 2003,205:3090-3018.
    [10]Moreau Gatan, Eldon S, Eveleigh Bauce. Advantages of a mixed diet:feeding on several foliar age classesincreases the performance of a specialist insect herbivore[J]. Oecologia,2003,135:391-399.
    [11]BI JL, Toscano NC and Madore MA. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations [J]. Journal of Chemical Ecology,2003,29: 747-761.
    [12]Ehrlieh P R, Raven PH. Butterflies and plants:a study in coevolution[J]. Evolution,1964,.18:586-608.
    [13]Jermy T, Symp. Insect-host-plant relationship-co-evolution or sequential evolution? [J].BioL.Hung,1976,16:109-113.
    [14]Fox LR. Diffuse Coevolution Within Complex Communities[J]. Ecology,1988, 69:906-907.
    [15]van Valen L. A new evolutionary law[J].Evolutionary theory,1973,1:1-30.
    [16]Thompson JN. Concepts of coevolution[J]. Trends in Ecology & Evolution, 1989,4:179-183.
    [17]Thompson JN. Specific Hypotheses on the Geographic Mosaic of Coevolution[J]. The American Naturalist,1999,153:S1-S14.
    [18]钦俊德.植食性昆虫的食性和营养[J].昆虫学报,1962,11(2):169-185.
    [19]钦俊德.植食性昆虫的食性的生理基础[J].昆虫学报,1980,23(1):106-122.
    [20]朱麟,古德祥.植物抗虫性概念的当代内涵[J].昆虫知识,1999,366.
    [21]Pa PW, Tumlinson JH. Induced synthesis of plant vdatiles[J]. Nature,1997, 38S(2):30-31.
    [22]Pa PW, Tumlinson JH. De novo biosynthesis of vdatiles induced by insect herbivory in eottorl plots[J]. Plam,1997,114:1161-1167.
    [23]Albom HT,Turlings TC,Jones TH,Tumlimon JH. An elieit of volafilmfrom beet Elywoml[J]. Science,1997,276:945-949.
    [24]Dieke M. Inducedindirect plant defell:eomnmnieation and exploitation in multitude mtext[J],1998,11:453-464.
    [25]Turlings TCJ, Benrey B. effects of plant metabolites on the behaviour and development of parasitic wasps[J]. Ecoscimce,1998, S(3):321-333.
    [26]张文辉;刘光杰.植物抗虫性次生物质的研究概况[J].植物学通报,2003,20(5):522-53.
    [27]朱麟,古德祥.昆虫对植物次生性物质的适应策略[J].生态学杂志,2009,19:36-45
    [28]Bell'EA and Charlwond BV. Secondary plant products Encyclopedia of Plant Physiology[J]. Springer Verlag.Berlia,1980,8:367-372.
    [29]王琛柱,查利文,杨奇华.棉铃虫的取食营养特点与棉花抗虫素分布的关系[J].昆虫学报,1997,40(增刊):55-59.
    [30]Arneson PA, Durbin RD. Hydrolysis of tomatine by Septoria lycopersici:a detoxification mechanism[J].Phytopathology,1967,57(2):1358-1360.
    [31]Campbell BC, Dutty SS. Alleviation of a-tomatine-induced toxicity to the parasitoid,Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea[J]. Journal of Chemical Ecology,1981,7:927-946.
    [32]徐美娟,管致和.番茄植株中生物碱类对菜青虫活性成分的分离和提纯[J].北京农业大学学报,1994,20(2):153-156.
    [33]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41:204-213.
    [34]Turlings TCJ, Tumlinson JH. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts?[J]. Florida Entomol,1991,74:42-50.
    [35]张锐,刘锦霞.利用植物次生代谢产物开发生物农药.甘肃科学学报,1998,10(3):82-84.
    [36]娄永根,程家安.植物的诱导抗虫性[J].昆虫学报,1997,40(3):320-32.
    [37]Srivastava S, Gupta MM, Prajapati V. Sesamin a potent antifeedant principle from Piper mullesua[J].Phytother.Res,2001,15:70-72.
    [38]Kennedy JS. Host finding and host alternation in aphid[J]. Congr.EntomoL (Stockholm),1950,19:423-426.
    [39]Kennedy JS. Mechanism of host plant selection[J]. Ann.Appl.Biol,1965,56: 317-322.
    [40]Bernays EA, Chapman RF. Insect behavior at the leaf surface and learning as aspects of host plant selection[J]. Cellular and Molecular Life Sciences,1989,45:215-222.
    [41]Schoonhoven LM, Jermy T and van Loon JJA. Insect-Plant Biology:From Physiology to Evolution[M]. London:Chapman & Hall, Press 1998.
    [42]Simpson SJ and Simpson CL. The mechanisms of nutritional compensation by phytophagous insects[M]. In Insect-Plant Interactions Boca Raton, FL:CRC, Press1990,2:111-160.
    [43]Waldbauer GP and Friedman S. Self-selection of optimal diets by insects. Annu[J]. Rev. Entomol,1991,36:43-63.
    [44]Simpson SJ and Raubenheimer D. The central role of the haemolymph in the regulation of nutrient intake in insects[J]. Physiol. Entomol,1993,18:395-403.
    [45]O'Brien DM, Fogel ML and Boggs CL. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera[J]. Proc.Natl.Acad. Sci,2002,99:4413-4418.
    [46]McNeill S and Southwood TRE. The role of nitrogen in the development of insect plant relationships. In Biochemical Aspects of Plant and Animal Coevolution (ed. J. Harborne)[M]. London:Academic, Press1978,77-98.
    [47]Mattson WJ. Herbivory in relation to plant nitrogen content [J]. Annu. Rev. Ecol. Syst,1980,11:119-161.
    [48]Scriber J M and Slansky F. The nutritional ecology of immature insects[J]. Annu. Rev. Entomol,1981,26:183-211.
    [49]White TCR. The Inadequate Environment:Nitrogen and the Abundance of Animals[J]. New York:Springer,1993,63:90-105.
    [50]Felton G W. Nutritive quality of plant protein:sources of variation and insect herbivore responses[J]. Arch. Insect Biochem. Physiol,1996,32:107-130.
    [51]Chambers PG, Simpson SJ and Raubenheimer D. Behavioural mechanisms of nutrient balancing in Locusta migratoria nymphs[J]. Anim. Behav,1995,50:1513-1523.
    [52]Simpson SJ and Raubenheimer D. The hungry locust [J]. Adv. Study Behav,2000, 29:1-44.
    [53]Simpson SJ, Sibly RM, et al. Optimal foraging when regulating intake of multiple nutrients[J]. Anim. Behav,2004,68:1299-1311.
    [54]Mickel CE, Standish J. University of Minnesota Agricultural Experim ental Station Technical[J]. Bulletin,1947,178:1-20.
    [55]Koiwa K, et al,Phage display selection can differentiate insecticidal activity of soybean cystatins[J]. Plant Journal,1998,14:371-379.
    [56]Vain P, Worland B,Clarke MC, et al. Theoretical and Applied Genetics[M], Press 1998,96:266-271.
    [57]Ashraf Abdeenl, Ariadna Virgos Etcl. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors[J]. Plant Molecular Biology,2005,57:189-202.
    [58]Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco[J]. Nature,1987,330:160-163.
    [59]Johnson R, Narvaez J, An G and Ryan CA. Expression of proteinase inhibitors Ⅰ and Ⅱ in transgenic tobacco plants:effects on natural defense against Manduca sexta larvae[J]. Proc. Natl. Acad. Sci. USA,1989,86:9871-9875.
    [60]McManus MT, White DWR and McGregor PG. Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transg[J]. Res, 1994,3:50-58.
    [61]Duan X, Li X, Xue Q, et al. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant[J]. Nat. Biotech,1996,14: 494-498.
    [62]Strickland JA and Walsh TA. Inhibition of Diabrotica larval growth by a multicystatin from potato tubers[J]. J. Insect Physiol,1994,40:893-900.
    [63]Leple JC, Bonade-Bottino M, et al. Toxicity to Chrysomela tremulae (Coleoptera: Crysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor[J]. Mol. Breed,1995,1:319-328.
    [64]Koiwa H, Bressan RA. Hasegawa PM[J]. Trends in Plant Science,1997,2: 379-384.
    [65]Broadway RM and Duffey SS. Plant proteinase inhibitors:mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua[J]. J. Insect Physiol,1986,32:827-833.
    [66]Gatehouse AMR, Boulter D. et al. Plant Genetic Manipulation for Crop Protection[J]. CAB jjInternational,1992,22:1408-1409.
    [67]Karleya AJ, Ashford A. et al. The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum Journal of Insect Physiology[J],2005,51:1313-1319.
    [68]Becker. A, Schloder P, Steele JE and Wegener G. The regulation of trehalose metabolism in insects[J]. Experientia,1996,52:433-439.
    [69]Rockstein M,王孟淑,曾耀辉(译).昆虫生物化学[M],北京:科学出版社,1988,2-61.
    [70]Yamashita O, Sumida M and Hasegawa K. Developmental changes in midgut trehalase activity and its localization in the silkworm, Bombyx mor[J] Insect Physiol, 1974,20:1079-1085.
    [71]Tatun N, Singtripop T, Tungjitwitayakul J and Sakurai S. Regulation of soluble and membrane-bound trehalase activity and gene expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochem[J]. Mo lec, 2008,38:788-795.
    [72]Wegener G, Tschiedel V, Schloder. The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycemia[J]. Experimental Biol, 2003,206:1233-1240.
    [73]Kono Y, Takeda S, Kameda, et al. activity of a trehalase inhibitor, validoxylamine A, and its influence on the blood sugar level in Bombyx mori (Lepidoptera: Bombycidae) [J]. App. Entomol Zool,1993,28:379-386.
    [74]Richardson M. Methods in Plant Biochemistry9[M],1990,5:261-307.
    [75]Strong FE. Studies on lipids in some homopterous insects[J]. Hilgardia,1963,34: 43-61.
    [76]Albrecht G. Untersuchungen iiber die chemische Zusammensetzung einiger Insektenfette[J]. Z. Vergleich Physiol,1961,44:487-508.
    [77]Vanderzant ES and Reiser R. Studies of the nutrition of the pink bollworm using purified casein media [J]. Entomological Society of America,1956,49:454-58.
    [78]Becker A, Schl6der P, Steele JE, et al. The regulation of trehalose metabolism in insects [J]. Birkhfiuser Verlag Basel,1996,52:433-439.
    [79]Wilkinson TL, Ashford DA, Pritchard J, Douglas AE. Honeydew sugars and
    osmoregulation in the pea aphid Acryrthosiphon pisum[J]. journal of Experimental Biology,1997,200:2137-4143.
    [80]Ashford DA, Smith WA, Douglas AE. Living on a high sugar diet:the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acryrthosiphon pisum[J]. journal of insect Physiology,2000,46:335-341.
    [81]Wilkinson TL, Douglas AE. Phloem amino acids and the host Plant range of the Poly Phagous aphid APhisfabae[J]. Entomologia Experimenzalis Et Applicata,2003, 106:103-113.
    [82]Brown JK, Frohlich DR and Rosell RC. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? [J]. Annu. Rev. Entomol,1995,40: 511-534.
    [83]Oliveira MRV, Henneberry TJ and Anderson P. History, current status, and collaborative research projects for Bemisia tabaci[J]. Crop Protec,2001,20:709-723.
    [84]Perring TM. The Bemisia tabaci species complex[J]. Crop Protec,2001,20: 725-737.
    [85]Bedford ID, Briddon RW, Brown JK, Rosell RC and Markham PG. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions[J]. Ann. Appl. Biol,1994, 125:311-325.
    [86]Markham PG. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions[J]. Ann. Appl. Biol,1994,125:311-325.
    [87]Brown JK, Frohlich DR and Rosell RC. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? [J]. Annu. Rev. Entomol,1995,40: 511-534.
    [88]Jones DR. Plant viruses transmitted by whiteflies[J]. Eur. J. Plant Pathol,2003, 109:195-219.
    [89]Berry SD, Fondong VNC, et al. Molecular evidence for five distinct Bemisia tabaci (Homoptera:Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa[J]. Ann. Entomol,2004,97:852-859.
    [90]Bosco D, Mason G and Accotto GP. TYLCV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius) [J]. Virology,2004,323:276-283.
    [91]El-Helaly MS, El-Shazil AY and El-Gayar FH. Biological studies on Bemisia tabaci Genn. (Homoptera:Aleyrodidae) attacking cotton in the coastal plain of Israel[J]. Bull. Entomol,1971,70:213-219.
    [92]Azab AK, Megahed MM and El-Mirsawi DH. On the Biology of Bemisia tabaci (Genn.)[J]. Societe Entomologie D'Egypte Bulletin,1971,55:305-315.
    [93]邱宝利,任顺祥,等.不同寄主植物对烟粉虱发育和繁殖的影响[J].生态学报,2003,23(6):1206-1211.
    [94]罗晨,郭晓军,岳梅,等.寄主植物对B型烟粉虱形态学和生物学特性的影响[J].生物多样性,2006,14(4):333-339.
    [95]徐彩霞,吴建辉,任顺祥,王兴民.B型烟粉虱在四种葫芦科寄主植物上的发育和繁殖[J].应用生态学报,2008,19(5):1099-1103.
    [96]Coudriet DL, Prabhaker N, Kishaba AN, et al. Variation in developmental rate on different hosts and over wintering of the sweetpotato whitefly, Bemisia tabaci(HomopteraAleyrodidae) [J]. Environmental Entomology,1985,14:516-519.
    [97]Mohanty AK and Basu AN. Effect of host plants and seasonal factors on intraspecific variations in pupal morphology of the whitefly vector, Bemisia tahaci(Genn) (Homoptera:Aleyrodidae) [J]. Appl. Entomol,1986,10(1):19-26.
    [98]Tsai JH and Wang KH. Development and reproduction of Bemisia argentifolii(Homoptera:Aleyrodidae)on five host plants[J]. Environ Entomol,1996, 25(4):810-816.
    [99]Zimmermann MH, Ziegler H. Transport in plants:phloem transport[J]. In: Encyclopedia of plant physiology,1975,480-503.
    [100]Hayashi H, Fukuda A, et al. in the sieve element-companion cell complexes: their detection, localization and possible functions[J]. Australian Journal of Plant Physiology,2000,27:489-496.
    [101]Walz C, Giavalisco P, Schad M, et al. Proteomics of curcurbit phloem exudate reveals a net workof defence proteins[J]. Phytochemistry,2004,65:1795-1804.
    [102]Richardson PT, Baker DA, Ho LC. The chemical composition of cucurbit vascular exudates[J]. Journal of Experimental Botany,1982; 33:1239-1247.
    [103]Houk EJ & Griffiths GW. Intracellular symbiotes of the Homoptera[J]. Annual Review of Entomology,1980,25:161-187.
    [104]Campbell B C. On the role of microbial symbiotes in herbivorous insects. In: Bernays E A. Insect-plant Interactions[M]. CRC Press, Boca aton, Florida,1989, 1-44.
    [105]Sasaki T & Ishikawa H. Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum[J]. Journal of'Insect Physiology,1995,41:41-46.
    [106]Douglas AE. Nutritional interactions in insect-microbial symbioses:Aphids and their symbiotic bacteria Buchnera[J]. Annual Review of Entomology,1998,43:17-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700