三江平原不同水位梯度湿地植物—土壤系统氮循环特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地氮循环过程不仅影响湿地系统自身的调节机制,其在地球表层系统中所表现出的特殊动力学过程还与一系列全球环境问题息息相关。湿地水文过程控制着湿地的形成与演化,是形成和维持特殊湿地类型与湿地过程的决定性因子。湿地水文条件的变化影响着湿地植被的空间格局、植物的生长状况和植被的生存环境,并最终通过改变湿地植物群落特征而影响湿地氮循环过程。本文通过野外定位测定和室内分析,对比研究了三江平原不同水位梯度上3种典型湿地植物—土壤系统的氮循环特征,采用“空间代替时间”的方法,阐明湿地不同演替阶段氮循环的基本特征,揭示了淡水湿地不同水位梯度下植物—土壤系统氮循环模式,建立了淡水湿地不同水位梯度下植物—土壤系统氮循环模型,为深入研究湿地氮循环的生物地球化学机制和规律提供理论基础。主要得出以下结论:
     小叶章湿地、乌拉苔草湿地和毛苔草湿地土壤中,氮主要以有机氮的形态存在,有机氮在总氮中所占的比例高达99%以上,有利于氮的储存。3种湿地土壤中各形态氮的含量和分布特征均存在较大差异,这主要与由碟形洼地的中心向边缘倾斜的地形差异所导致的水分条件和土壤类型差异以及氮素物理运移的差异有关。3种湿地土壤中各形态氮的垂直分布和季节变化特征明显不同,这与不同土层和不同时期影响氮分布的主导因素不同有关。
     小叶章湿地、乌拉苔草湿地和毛苔草湿地植物地上部分各器官的总氮含量在生长季内均逐渐降低;地下根系中总氮含量在生长季内均波动较大;枯落物总氮含量在生长季内均逐渐降低,并表现为乌拉苔草湿地>小叶章湿地>毛苔草湿地。三者地上部分氮积累量表现为乌拉苔草湿地>小叶章湿地>毛苔草湿。毛苔草湿地地下根系氮积累量始终最高,乌拉苔草湿地和小叶章湿地则呈交替变化趋势。三者各器官的氮积累量在生长期表现为根>叶>茎,在成熟期表现为根>茎>叶,说明根是植物亚系统中主要的氮储库。三者枯落物中氮积累量均随时间的推移而逐渐增加。
     无论在地表还是在土壤剖面的不同深度,棉布在小叶章湿地、乌拉苔草湿地和毛苔草湿地分解小区内的分解速率均不同,说明环境条件对于物质分解有着重要影响。棉布的分解速率均与水温以及不同深度地温呈一定的正相关关系;与土壤含水量呈一定的负相关关系;与土壤容重正相关;与土壤pH值正相关。相同的环境条件下,小叶章、乌拉苔草和毛苔草湿地枯落物及根系的分解速率与棉布的分解速率明显不同,说明枯落物和根系的质量对物质分解有重要影响。枯落物的分解速率与其最初的N和P浓度均呈正相关关系,与最初的C、C/N、C/P和N/P均呈负相关关系。根系的分解速率与C/P和N/P均呈显著的正相关关系,而与P浓度呈极显著负相关关系。分解过程中,小叶章、乌拉苔草和毛苔草湿地枯落物和根系均发生氮的净释放,枯落物各时期的氮绝对量表现为毛苔草湿地枯落物<乌拉苔草湿地枯落物<小叶章湿地枯落物。根系各时期的氮绝对量均表现为小叶章湿地根系最低,乌拉苔草和毛苔草湿地根系则呈高低交替的变化趋势。
     小叶章湿地、乌拉苔草湿地和毛苔草湿地植物—土壤系统中,土壤是主要的氮储库;植物亚系统的氮储量所占比例较低,根和枯落物是植物亚系统中的主要氮储库。小叶章湿地、乌拉苔草湿地和毛苔草湿地植物—土壤系统的氮储量分别为714.93 g·m~(-2)、626.49 g·m~(-2)和552.59 g·m~(-2)。
     小叶章湿地、乌拉苔草湿地和毛苔草湿地植物—土壤系统中,每年地上部分吸收的氮量表现为乌拉苔草湿地>小叶章湿地>毛苔草湿地;每年地上部分向枯落物分室转移的氮量表现为毛苔草湿地<乌拉苔草湿地<小叶章湿地;每年从地上部分向根分室再转移的氮量表现为乌拉苔草湿地>毛苔草湿地>小叶章湿地,并且乌拉苔草湿地是毛苔草湿地的3倍,是小叶章湿地的5倍;每年根吸收的氮量和由根向土壤转移的氮量均表现为小叶章湿地<乌拉苔草湿地<毛苔草湿地;从枯落物分室向土壤分室转移的氮量则表现为小叶章湿地>乌拉苔草湿地>毛苔草湿地。
     小叶章湿地、乌拉苔草湿地和毛苔草湿地植物—土壤系统氮循环特征明显不同。虽然枯落物分解释放的氮量随水位降低而显著增加,但3种湿地土壤库的氮输出均超过氮输入,净释放量表现为乌拉苔草湿地<小叶章湿地<毛苔草湿地。植物从土壤中吸收的氮大部分存留在根系中,只有小部分用于内部循环。用于内部循环的氮量表现为乌拉苔草湿地>小叶章湿地>毛苔草湿地。植物地上部分每年吸收的氮大部分通过枯落物归还,小部分再转移到地下。氮的年吸收量和年存留量均表现为小叶章湿地<乌拉苔草湿地<毛苔草湿地。氮的年归还量则表现为小叶章湿地>乌拉苔草湿地>毛苔草湿地。可见,随着水位的升高,湿地氮的年吸收量和存留量均增加,而氮的年归还量减少。随着水位的升高,湿地植物的吸收系数和利用系数均增高,循环系数降低。可见,在氮的吸收和利用方面毛苔草湿地植物最强,乌拉苔草湿地植物次之,小叶章湿地植物最低;而在促进氮周转方面小叶章湿地植物最强,乌拉苔草湿地植物次之,毛苔草湿地植物最低。
Nitrogen (N) cycling process of wetland not only affected its self-regulation mechanism, but also showed a special kinetics process in the Earch Surface System. Moreover, the special kinetics process was correlated with a series of global environmental problems. Hydrologic process was a decisive factor in the formation and maintenance of special type of wetlands, which constrained the succession of wetland system. Hydrological conditions controlled the spatial patterns of vegetation, the growth of plants and living environment of vegetation. Moreover, some aspects of plant community attributes controlled N cycling. In results, shifts in hydrological conditions may alter N cycling through changing community attributes. In order to provide an insight into the mechanism of hydrologic regime constraining the process of N circulation, patterns of N cycling in plant-soil systems were examined using compartments model in three freshwater wetlands along a water level gradient in the Sanjiang Plain, Northeast China. N storages, N distributions, N fluxes and cycle efficient were measured in Calamagrostis angustifolia wetland (XW), Carex meyeriana wetland (WW) and Carex lasiocarpa wetland (MW). The main results were drawn as following:
     Orgnic nitrogen was the main form in XW, WW and MW soils. More than 99% of total N storage was orgnic nitrogen in the three wetland soils. The N content and distribution pattern were different among the three wetland soils. Because the water condition and soil type which induced by morphological charictaristic and N physical transference were different in the three wetlands. The vertical distributions and seasonal change characteristics of all kinds of N were different significantly in XW, WW and MW soils. Because the main factors affected N distribution in various soil layers and times were different in the three wetland soils.
     Total N content in aboveground organs of plants in XW, WW and MW were declined gradually during the growing season. The total N content in roots was in greater fluctuation during the growing season. The total N content in litter was declined gradually with lapse of time and showed a significant decrease: WW>XW>MW. N accumulation amounts in the three wetlands showed a significant decrease: WW>XW>MW. The N accumulation amount in root was the highest in MW. In the three wetlands, the N accumulation amount in organs of plant in growth time showed a decrease: root>leaf>stem, and in autumn showed a different decrease: root>stem >leaf. It is indicted that root was the important N storage. The N accumulation amounts in litter among three wetlands were increased with lapse of time during the growing season.
     Calico decomposition rates were statistically different among the three wetlands in the upper soil profile and were also different in the lower depth range, which indicats environmental conditions influence on decomposition strongly. Calico decomposition rates were posively correlated with temperature and pH, but were negtively correlated with soil water contents. In this study, the strong influence of litter quality on decomposition was demonstrated by different decomposition rates between calico and litter/ roots in the same environment. Litter decomposition rates were positively correlated with initial N and P concentrations, but were not correlated with other parameters. Root decomposition rates were posively correlated with C/P ratio and N/P ratio, were negtively correlated with initial P concentration, but were not correlated with initial N and C/N ratio. The N contents in Calamagrostis angustifolia, Carex meyeriana and Carex lasiocarpa litter decreased gradually during the decomposition period and showed a significant increase all the time:Carex lasiocarpa litter      In plant-soil system, soil was the main N storage, the N storage in plant subsystem was less, and root and litter were the main N storages in plant subsystem. The N storages in XW, WW and MW were 714.93 g·m~(-2),626.49 g·m~(-2) and 552.59 g·m~(-2) respectively.
     In plant-soil systems, annual N uptake by aboveground biomass showed a significant decrease: WW>XW>MW. Annual N uptake by aboveground biomass was higher in WW, but the difference between XW and MW was not so significant. Annual N transferred from aboveground biomass to litter showed a significant increase: MWMW>XW. Re-translocation of N from aboveground biomass to root in WW was three-fold higher than that in MW, but five-fold higher than that in XW. N uptake by root among the three wetlands showed a significant increase: XWWW>MW.
     Characteristics of N cycling in plant-soil system among the three wetlands along a water level gradient were different significantly. N outputs from the soil exceeded N inputs in plant-soil system of the three wetlands. Moreover, N release from litter decomposition increased significantly with water level decreasing. A large percent of N uptake from soil was detained in root, and just a small percent of N uptake was used in internal circulation. In addition, annual N used in internal circulation among the three wetlands showed a decrease: WW>XW>MW. A majority of annual N uptake by aboveground plant was returned through litterfall, and a small part was transferred from aboveground to belowground in the three wetlands. With water level increasing, annual N uptake and annual N retention increased, but annual N return, cycle coefficient decreased. These results suggest that the rate of biological cycling was decreased with water level increasing.
引文
[1]Mitsch W J, Gosselink J G. Wetlands(3rd)[M]. New York: John Wiley and Sons, 2000,155-204.
    [2]吕宪国,黄锡畴.我国湿地研究进展[J].地理科学,1998,18(4):293-300.
    [3]杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,(4):508-514.
    [4]何池全,赵魁义.湿地生态过程研究进展[J].地球科学进展,2000,13(5):165-171.
    [5]Johnson W C, Boettcher S E, Poiani K A, et al. Influence of weather extremes on the water levels of glaciated prairie wetlands[J]. Wetlands, 2004,24:385-398.
    [6]白军红,欧阳华,邓伟,等.湿地氮素传输过程研究进展[J].生态学报, 2005,25(2):326-333.
    [7]熊汉锋,王运华.湿地碳氮磷的生物地球化学循环研究进展.土壤通报, 2005,36(2):240-243.
    [8]Darren S B, Gavin N R, Alison M M, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland[J]. Wetlands,2006,26(2):455-464.
    [9]Erik B, Schilling B, Graeme L. Relationship between productivity and nutrient circulation within two contrasting southeastern U.S. floodplain forests[J]. Wetlands,2006,26,181–192
    [10]Vitousek P M, Ha¨ttenschwiler S, Olander L, et al. Nitrogen and nature[J]. Ambio, 2002, 31:97–101.
    [11]Steven S P, Douglas A M, Thomas D B, et al. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range[J]. Ecosystems, 2006, 9:63–74.
    [12]Reddy K R, Diaz O A, Scinto L J, et al. Phosphorus dynamics in selected wetlands and streams of the Lake Okeechobee Basin[J]. Ecological Engineering, 1995, 5:183–207.
    [13]Sharpley A N. Soil phosphorus dynamics: agronomic and environmental impacts[J]. Ecological Engineering, 1995,5:261- 279.
    [14]Wang W, Yung Y, Lacis A A, et al. Greenhouse effects due to man made perturbation of trace gases[J]. Science, 1976, 194: 685–690.
    [15]王洋,刘景双,孙志高,等.湿地系统氮的生物地球化学研究概述[J]..湿地科学,2006, 4(4):311-320.
    [16]Sun Z G, Liu J S. Nitrogen cycling of atmosphere-plant-soil system in the typical Calamagrostis angustifolia wetland in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2007,19:986–995.
    [17]Ulrike R, Jrgen A, Rolf R, et al. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake[J]. Soil Biology &Biochemistry, 2004, 36: 77–90.
    [18]陈宜瑜,吕宪国.湿地功能与湿地科学的研究方向[J].湿地科学,2003,1(1):7-11.
    [19]Keddy P A. Wetland Ecology: Principles and Conservation[M]. Cambridge, UK: Cambridge University Press , 2000.
    [20]Keddy P, Fraser L H. Four general principles for the management and conservation of wetlands in large lakes: the role of water levels, nutrients, competitive hierarchies and centrifugal organization[J].Lakes and Reservoirs: Research and Management,2000,5:177-185.
    [21]Baldwin A H, Egnotovich M S, Clarke E. Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed-bank experiments[J]. Wetlands, 2001, 21:519-532.
    [22]De Steven D, Toner M M. Vegetation of upper coastal plain depression wetlands: Environmental templates and wetland dynamics within a landscape framework[J]. Wetlands, 2004, 24: 23-42.
    [23] Gross K L, Pregitzer K S, Burton A J. Spatial variability in nitrogen availability in three successional plant communities[J]. J Ecol, 1995, 83:357-367.
    [24] Lockaby BG., Miller J H., Clawson R G. Influences of community composition on biogeochemistry of loblolly pine (Pinus taeda) systems[J]. Am Midl Nat, 1995, 134:176-184.
    [25] Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277:1300-1302.
    [26]刘振乾,刘红玉,吕宪国.三江平原湿地生态脆弱性研究.应用生态学报,2001,12(2):241-244.
    [27]中科院长春地理所沼泽研究室.自然环境变化与合理开发利用的初步探讨.地理学报,1981,36(1):33-46
    [28]Denmead O T. Micrometeorological method for measuring gaseous losses of nitrogen in the field [C]//Freney J R, Simpson J R. Gaseous Losses of Nitrogen from Plant-soil Systems. Martinus Nighoff DiWjunk Publishers, 1983, 133-157.
    [29]张福珠,梁辉,章慧麟,等.怀柔山地油松林氮、磷、硫生物地球化学循环的研究[J]环境科学学报,1991,11(2):131-140.
    [30]Li Y S, Redmann R E. Nitrogen budget of Agropyron dasytachyum in Canadian mixed prairie[J].The American Midland Naturalist,1992,128:61-71.
    [31]魏晶,赵景柱,邓红兵,等.长白山高山冻原氮素生物循环及与北极冻原的对比[J].环境科学,2005,26(2):1-4.
    [32]李新华,刘景双7,孙志高,等.三江平原小叶章湿地生态系统硫的生物地球化学循环[J].生态学报,2007,27(6):2199-2207.
    [33]陈灵芝, Lindley D K.英国Hampsfe的蕨菜草地生态系统的营养元素循环[J].植物学报, 1983,25(1):67-74.
    [34]林鹏,卢昌义.海南岛的红树群落[J].厦门大学学报(自然科学版),1985,24(1):117-123.
    [35]白军红,邓伟,朱颜明,等.水陆交错带土壤氮素空间分异规律研究—以月亮泡水陆交错带为例[J].环境科学学报,2002,(3):343-348.
    [36]刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002.
    [37]Lauchlan H F,Jason P K. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences[J].Wetlands,2005,25(3):520-530.
    [38]武维华.植物生理学[M].北京:科学出版社, 2003,101-104.
    [39]徐治国,何岩,闫百兴,等.营养物及水位变化对湿地植物的影响[J].生态学杂志, 2006,25(1):87-92.
    [40]梁威,胡洪营.2003.人工湿地净化污水过程中的生物作用[J].中国给水排水,19(10):28-31.
    [41]种云霄,胡洪营,钱易.2003.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,4(2):36-40.
    [42]李夜光,李中奎,耿亚红,等.2006.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报,26(2):317-325.
    [43]Kang S, Kang H, Ko D, et al. Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica. Ecological Engineering[J], 2002,18:467-475.
    [44]Romero J A, Com in F A, Garcia C. Restored wetlands as filters to remove nitrogen[J].Chemosphere,1999,39:323-332.
    [45]Ennabili A, Ater M, Radoux M. Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula[J]. Aquatic Botany. 1998,62:45-56.
    [46]Lim P E, Wong T F, Lim D V. Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions[J]. Environment International, 2001,26:425-431.
    [47]Christian R P, Lauchlan H F, David S. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms[J]. Bioresource Technology, 2005,96:1039-1047.
    [48]Reddy K R, Debusk. Nutrient removal potential of selected aquatic macrophytes[J]. J.Environ.Qual, 1985, 14(4):459-462.
    [49]尹炜,李培军,裘巧俊,等.植物吸收在人工湿地去除氮、磷中的贡献[J].生态学杂志,2006,25(2):218-221.
    [50]Chen R, Twilley R R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils [J]. Biogeochemistry,1999,44:93-118.
    [51]孙雪利.三江平原典型沼泽湿地氮循环研究[D].长春:中国科学院长春地理研究所.1998.
    [52]赵建刚,陈章和.单种和多种群落湿地对污水的净化效果和植物生长生物量研究[J].应用与环境生物学报, 2006,12(2):203-206
    [53]Martin J F, Reddy K R. Interaction and spatial distribution of wetland nitrogen process [J]. Ecological Modelling, 1997,105:1-21
    [54]孙雪利,刘景双,褚衍儒.三江平原小叶樟和毛果苔草中N素营养动态分析[J].应用生态学报, 2000,11(6):893-897.
    [55]吕宪国,刘玉红.湿地生态系统保护与管理[M].北京:化学工业出版社,2004,29-30.
    [56]Margaret G, Anne W. Constructed wetlands in Queensland;Performance efficiency and nutrient bioaccumulation[J]. Ecol Eng,1999,12:39~55.
    [57]熊汉锋,黄世宽,陈治平,等.2007.梁子湖湿地植物的氮磷积累特征[J].生态学杂志,26(4):466-470
    [58]尚士友,杜健民,李旭英,等.草型富营养化湖泊生态恢复工程技术的研究——内蒙古乌梁素海生态恢复工程试验研究[J].生态学杂志, 2003,22(6):57-62.
    [59]闫芊,何文珊,陆健健.崇明东滩湿地植被演替过程中生物量与氮含量的时空变化[J].生态学杂志,2006,25(9):1019-1023.
    [60]何池全.毛果苔草湿地植物营养元素分布及其相关性[J].生态学杂志2002,21(1):10-13.
    [61]朱清海,曲向荣,李秀珍.苇田养分生物循环的研究[J].生态学杂志,2000,19(6):21-23.
    [62]陈桂葵,陈桂珠.白骨壤模拟湿地系统中氮的分配、循环及其净化效应[J].生态学杂志, 2004,23(6):15-18.
    [63]郭继勋,祝廷成.羊草草地枯枝落叶中N、P、K变化动态[J].应用生态学报,1995,6(2):223-225.
    [64]王毅勇,杨青,王瑞山.三江平原大豆田氮循环模拟研究[J].地理科学,1999,(6):555-558.
    [65]高建华,杨桂山,欧维新.苏北潮滩湿地植被对沉积物N、P含量的影响[J].地理科学,2006,26(2):224-230.
    [66] Garver E G, Dubbe D R, Pratt D C. Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp.[J]. Aquatic Botany,1988, 32(1-2):115-127.
    [67]孙志高,刘景双,王金达等.三江平原不同群落小叶章种群生物量及氮、磷营养结构动态[J],应用生态学报,2006,17(2):221-228.
    [68]Steven M. D. Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades[J]. Aquatic Botany,1991,40(3):203-224.
    [69]Xie Y H,Wen M Z, Yu D. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations[J]. Aquatic Botany,2004,79:257-266.
    [70]蔡晓明.生态系统生态学[J].北京:科学出版社, 2000.
    [71]Taylor B R, Ejdung G, Romare P, et al. Variable effects of air-drying on leaching losses from tree leaf litter[J]. Hydrobiologia,1996,325:173-182.
    [72]France R, Culbert H, Freeborough C, et al. Leaching and early mass loss of boreal leaves and wood in oligotrophic water[J]. Hydrobiologia,1997,345:209-214.
    [73]Stephen E D, Carlos C M, Daniel L C, et al. Temporally dependent C,N and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in Oligotrophic Mangrove wetlands of the Southern Everglades[J]. Aquatic Botany,2003,75:199-215.
    [74]杨继松,刘景双,于君宝等.三江平原小叶章湿地枯落物分解及主要元素变化动态[J].生态学杂志,2006,25(6):597-602.
    [75]Kuehn K A, Suberkropp K. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus[J].Freshwater Biology,1998,40:717-727.
    [76]厉恩华,刘贵华,李伟,等.洪湖三种水生植物的分解速率及氮、磷动态[J].中国环境科学2006,26(6):667-671.
    [77]Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikos,1997,79:439–449.
    [78]杨路华,沈荣开,覃奇志.土壤氮素矿化研究进展[J].土壤通报, 2003,34(6):569-571
    [79]Freeman C, Ostle N J, Fenner N, et al. A regulatory role for phenol oxidase during decomposition in peatlands[J]. Soil Biology&Biochemistry, 2004,(36):1663-1667
    [80]Michael J C, Kathleen C P. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA)[J].Ecological Engineering,2006,21:1054-1075.
    [81]Bridgham S D, Updegraff K, Pastor J. A comparison of nutrient availability indices along an ombrotrophic–minerotrophic gradient in Minnesota. wetlands[J]. Soil Sci. Soc. Am. J., 2001, 65: 259-269.
    [82]Debusk W F, Reddy K R. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh[J]. Soil Sci. Soc. Am. J., 1998,62: 1460-1468.
    [83]Alicia S M, Roberto A D. Decomposition of and nutrient dynamics in leaf litter and roots of Poaligularis and Stipa gyneriodes[J]. Journal of Arid Environments, 2003, 55: 503-514.
    [84]Lee A A, Bukaveckas P A. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities[J]. Aquatic Botany, 2002,74:273-285.
    [85]Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay-rates:a microcosm test[J]. Ecology, 1989,70: 97-104.
    [86]Sanchez F G. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality[J]. For. Ecol. Manag., 2001,152:85–96.
    [87]Blair J M, Crossley D A, Callaham L C. Effects of litter quality and microarthropods on N-dynamics and retention of exogenous N-15 in decomposing litter[J]. Bio. Fert. Soils, 1992,12:241–252.
    [88]王其兵,李凌浩,白永飞.模拟气候变化对三种草原植物群落混合凋落物分解的影响[J].植物生态学报. 2000,24(6):674-679.
    [89]Raija L, Jukka L, Carl C T, et al. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation[J]. Soil Biology&Biochemistry, 2004,36:1095-1109.
    [90]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628.
    [91]白光润,王升忠,冷雪天,等.草本泥炭形成的生物环境机制[J].地理科学. 1999,54(3):247-254.
    [92]Brinson M M, Bradshaw D, Kane E S. Nutrient assimilative capacity of an alluvial floodplain swamp [J]. Journal of Applied Ecology, 1984,21:1041-1057.
    [93]Edward R C, Frank P D, Robert B A. Influence of environment and substrate quality on root decomposition in naturally regenerating and restored Atlantic white cedar wetlands[J]. Wetlands,2007,27:1-11.
    [94]Lin C, Wood M, Haskins P, et al. Controls on water acidification and de-oxygenation in an estuarine waterway, eastern Australia[J]. Estuarine﹠Coastal and Shelf Science,2004,61:55-63.
    [95]Van der Valk AG, Rhymer J M, Murkin H R. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland [J]. Wetlands, 1991,11:1-16.
    [96]Wrubleski D A, Murkin H R, Arnold G. van der Valk, et al. Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh[J]. Aquatic Botany. 1997,58(2):121-134.
    [97]Edward G T, Frank P D. Decomposition of roots in a seasonally flooded swamp ecosystem[J].Aquatic Botany,1990,37(3):199-214.
    [98]Anderson J T, Smith L M. The effects of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands(Southern Great Plains,USA)[J]. Aquatic botany. 2002,74:97-108.
    [99]Battle J M, Mihuc T B. Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river [J]. Hydrobiologia, 2000, 418: 123-136.
    [100]Timo Domisch, Leena Finér, Jukka Laine, Raija Laiho. Decomposition and nitrogen dynamics of litter in peat soils from two climatic regions under different temperature regimes [J]. European Journal of Soil Biology, 2006,42:74–81.
    [101]Melillo J M, Naiman R J, Aber J D, et al. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams[J]. Bull. Mar. Sci., 1984,35: 341-356.
    [102]Schlesinger W H, Hasey M M. Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leave[J]. Ecology,1981,62:762-774.
    [103]Verhoeven J T A, Toth E. Decomposition of and litter in fens: Effects of litter quality and inhibitionby living tissue homogenates[J]. Soil Biology and Biochemistry,1995,27(3):271-275.
    [104]Atkinson R B, Cairns J. Plant decomposition and litter accumulation in depressional wetlands: functional performance of two wetland age classes that were created via excavation[J]. Wetlands, 2001,21: 354-362.
    [105]Debusk W F, Reddy K R. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh[J]. Biogeochemistry, 2005,75:217-240.
    [106]Villar C A, L de Cabo, Vaithiyanathan P, et al. Litter decomposition of emergent macrophytes in a floodplain marsh of the Lower ParanáRiver[J]. Aquatic Botany,2001,70:105-116.
    [107]Coulson J C, Butterfield J. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog[J]. Journal of Ecology, 1978,66:631-650.
    [108]Szumigalski A R, Bayley SE. Decomposition along a bog to rich fen gradient in central Alberta[J]. Canada.Can. J. Bot,1996,74:573-581.
    [109]Thormann M N, Bayley S E. Decomposition along a moderate-rich fen-marsh peatland gradient in boreal Alberta,Canada[J]. Wetlands, 1997,17:123-137.
    [110]宋长春,张金波,张丽华.氮素输入影响下淡水湿地碳过程变化[J].地球科学进展, 2005,20(11):1249-1255.
    [111] Kittle D J, McGraw J B, Garbutt K. Plant litter decomposition in wetlands receiving acid mine drainage[J]. J. Environ. Qual, 1995,24:301–306.
    [112]James H, Robert K N. Decomposition of Sparganium eurycarpum under controlled pH and nitrogen regimes[J]. Aquatic Botany,1993,46(1):17-33.
    [113]Roache M C, Bailey P C, Boon PI. Effects of salinity on the decay of the freshwater macrophyte Triglochin procerum. Aquatic Botany, 2006, 84(1): 45-52.
    [114]Barik S K, Mishra S, Ayyappan S. Decomposition patterns of unprocessed and processed lingo-cellulosicsin a freshwater fish pond[J]. Aquatic Ecology, 2000, 34:185-204.
    [115]KomínkováD, Kuehn K A, Büsing N, et al. Microbial biomass, growth, and respiration associated with submerged litter of phragmites australis decomposing in a littoral reed stand of a large lake[J]. Aquat Microb Ecol, 2000, 22: 271-282.
    [116]Lilleb? A I, Flindt M R, Pardal M ? , et al. The effect of macrofauna, meiofauna and microfauna the degradation of spartina maritime detritus from a salt marsh area[J]. Acta Oecologica, 1999,20(4):249-258.
    [117]Huryn A D, Huryn B, Arbuckle V M, et al. Catchment land-use, macroinvertebrates and detritus processing in headwater streams: taxonomic richness versus function[J]. Freshw. Biol., 2002, 47: 401-415.
    [118]Jonsson M, Malmqvist B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects-[J]. Oikos, 2000, 89: 519-523.
    [119]Jonsson M, Malmqvist B, Hoffsten P O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter[J]. Freshw. Biol., 2001, 46:161-172.
    [120]Gessner M O, Hieber M . Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates[J]. Ecology, 2002, 83(4):1026-1038.
    [121]沈善敏.中国土壤肥力[M].北京:中国农业出版社. 1998.
    [122]鲁彩艳,陈欣.土壤氮矿化-固持周转(MIT)研究进展[J].土壤通报,2003,34(5):473-477.
    [123]陶水龙,林启美.土壤微生物量研究方法进展[J].土壤肥料.1998,5:15-8.
    [124]Sierra J. Nitrogen mineralization and its error of estimation under field conditions related to the light-fraction soil organic matter[J]. Aust. J. Soil Res,1996,34:755-767.
    [125]Alongi D M, Pfitzner J, Trott L A, et al. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China[J].Estuarine, Coastal and Shelf Science. 2005.
    [126]Adhikari C, Bronson K F, Panuallah G M, et al. On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh[J]. Field Crops Research, 1999,64:273-286.
    [127]Marrs R H, Thompson J, Scott D, et al. Nitrogen mineralization and nitrification in terra firm forest and savanna soils on IIha de Maraca, Roraima, Brazil [J]. Journal of Tropical Ecology. 1991,791):123-137.
    [128]Denef K, Six J, Bossuyt H, et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology & Biochemistry,2001,3:1599-1611.
    [129]Maysoon M M, Charles W R, George A M. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology & Biochemistry,2005,37:339–347.
    [130]Prescott C E, Chappell H N, Vesterdal L. Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital[J]. Ecology,2000,81:1878-1886.
    [131]Chen Ronghua, Twilley Robert R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark river estury, Florida [J].Estuaries,1999, 22(4):955-970.
    [132]Groffman P M, Hanson G C, Erick Kiviat, et al. Variation in microbial biomass and activity in four different wetland types[J]. Soil ScienceSociety of American Journal, 1996,60:622-629.
    [133]黄瑞农.环境土壤学[M].北京:高等教育出版社,1994,145~146.
    [134]Arunachalam A, Maithani K, Pandey H N, et al. Leaf litter decomposition and nutrient mineralization patterns in regrowing stands of a humid subtropical forest after tree cutting[J]. For. Ecol. Manage., 1998,109:151-161.
    [135]Berg M P,Verhoef H A. Ecological characteristics of a nitrogen-saturated coniferous forest in the Netherlands[J].Biology and Fertility of Soil, 1998,26:258-267.
    [136]Satti P, Mazzarino M J, Gobbi M, et al. Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests[J].Journal of Ecology, 2003,91:173-181.
    [137]Lovett, G M, Weathers KC, Arthur M A, et al. Nitrogen cycling in a northern hardwood forest: do species matter[J]? Biogeochemistry, 2004,67:289-308.
    [138]Catherine Ste-Mariea, Daniel Houleb. Forest floor gross and net nitrogen mineralization in threeforest types in Quebec, Canada[J].Soil Biology & Biochemistry, 2006,38:2135-2143.
    [139]Liu Y, Muller R N. Aboveground net primary productivity and nitrogen mineralization in a mixed mesophtic forest of eastern Kentuky[J]. Foresty ecological management, 1993,59(1):53-62.
    [140]Ferris H, Venette R C, Meulen H R, et al. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement[J]. Plant and Soil. 1998,203(2):159-171.
    [141]Bengtsson G, Bengtson P, Mansson K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology & Biochemistry,2003,35: 143–154.
    [142]Vitousek P M, R W Howarth. Nitrogen limitation on land and in the sea: How can it occur[J]? Biogeochemistry,1991,13:87-115.
    [143]Willem Koerselman, Mueleman A F M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology,1996,33:1441-1450.
    [144]Lockaby B G, W H Conner. N:P balance in wetland forests: productivity across a biogeochemical continuum[J]. The Botanical Review,1999,65:171-185.
    [145]段晓男,王效科,欧阳志云等.乌梁素海野生芦苇群落生物量及影响因子分析[J].植物生态学报,2004,28 (2) 246-251.
    [146]Chapin III F.S. The mineral nutrition of wild plant[J]. Ann Rev Ecol Syst,1980,11:233-260.
    [147]Killingbeck K T. Nutrient in senesced leaves: keys to the search for potential resorption and resorption proficiency[J]. Ecology,1996,77: 1716-1727.
    [148]Aerts R. Nutrient resorption from senescing leaves of perennials:are there general patterns[J]?Journal of Ecology,1996,84:597-608.
    [149]Berit Arheimer, Hans B Wittgren. Modelling nitrogen removal in potential wetlands at the catchment scale [J]. Ecological Engineering, 2002.19(1):63-80.
    [150]赵建刚,杨琼,陈章和,等.几种湿地植物根系生物量研究[J].中国环境科学,2003,23(3):290-294.
    [151]刘育,夏北成.芦苇湿地不同生物量处理生活污水中三氮[J].环境科学与技术,2006,29(4):98-99.
    [152]徐德福,徐建民,王华胜,等.湿地植物对富营养化水体中氮、磷吸收能力研究[J].植物营养与肥料学报,2005,11(5):597-601.
    [153]吴春笃,沈明霞,储金宇,等.北固山湿地虉草氮磷积累和转移能力的研究[ J ].环境科学学报, 2006,26(4): 674-678.
    [154]曲向荣,贾宏宇,张海荣,等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究[J].应用生态学报,2000,11(2):270-272.
    [155]中国科学院长春地理研究所沼泽研究室.三江平原自然环境变化与合理开发利用的初步探讨,见:黄锡踌主编,中国沼泽研究[C].北京:科学出版社,1988,440-451.
    [156]马学慧,牛焕光.中国的沼泽[M].北京:科学出版社,1991,151-156.
    [157]王世岩.三江平原沼泽湿地退化过程及其驱动力研究[D].中国科学院研究生院博士学位论文,2003.长春.
    [158]中国科学院长春地理所沼泽研究室.三江平原沼泽[M].科学出版社,1983.
    [159]易富科.三江平原湿地植被类型及其利用与保护.见:陈宜瑜主编,中国湿地研究[C].长春:吉林科学技术出版社,1995,124-133.
    [160]赵魁义.中国湿地生物多样性研究与持续利用.见:陈宜瑜主编,中国湿地研究[C].长春:吉林科学技术出版社,1995,48-54.
    [161]赵魁义,孙广友,杨永兴,等.中国沼泽志[M].北京:科学出版社,1999.
    [162]杨永兴,刘兴土,蒋桂文.三江平原地区沼泽生态农业开发及其效益研究.见:陈刚起主编,三江平原沼泽研究[C].北京:科学出版社,1996,146-151.
    [163]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展.2002,21(2):111-120.
    [164]刘吉平,杨青,吕宪国. 2005.三江平原典型环型湿地土壤温度梯度研究[J].湿地科学,3(1):42-47.
    [165]杨青,刘吉平,吕宪国,等.三江平原典型环型湿地土壤-植被-动物系统的结构及功能研究.生态学杂志,2004,23(4):72-77.
    [166]白军红,邓伟,欧阳华,等.吉林向海沼泽湿地土壤氮素的剖面分布.湖泊科学,2004,16(4):377-380.
    [167]Verhoeven J A, Whigham D F, Kerkhoven M Y. Comparative study of nutrient related processes in geographically separated wetlands: Towards a science base for functional assessment procedure. In: WilliamJ M. Global Wetlands: Old World and New[C]. Columbus: Elsevier Press,1994,91-106.
    [168]杨永兴,王世岩,何太蓉,等.三江平原典型湿地生态系统生物量及其季节动态研究[J].中国草地, 2002,24 (1) : 1-7
    [169]尹承军,黄德华,陈佐忠.内蒙古典型草原4种植物凋落物分解速率与气候因子之间的定量关系.生态学报,1994,14:27-32.
    [170]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报.2002,22(9):1534-1544.
    [171]Wang L X, Wang J, Huang J H. Comparision of major mutrient release patterns of Quercus liaotungensis leaf litter decomposition in different climatic zones. Acta Botanica Sinica, 2003,45(4):399-407.
    [172]Kalburtji K L, Mosjidis J A, Mamolos A P. Litter dynamics of low and high tannin sericea lespedeza plants under field conditions. Plant and Soil, 1999, 208(2): 217-281.
    [173]Ross D J, Tate K R, Newton P C D, et al. Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at natural CO2 spring. Plant and Soil, 2002 , 240 (2) : 275-286.
    [174]Enríquez S , Duarte C M, Sand-Jensen K. Patterns in decomposition rates among photosynthetic organisms : the importance of detritus C∶N∶P content .Oecologia, 1993,94(3) : 457-471.
    [175]Koukoura Z, Mamolos A P, Kalburtji KL. Decomposition of dominant plant species litter in a semi2arid grassland. Applied Soil Ecology, 2003, 23 (1):13~23.
    [176]佟守正,吕宪国,杨青,等.三江平原湿地研究进展与展望.资源科学,2005,27(6):180-188.
    [177]Vitousek P M, Turnet D R, Parton W J, et al. Litter decomposition on the Maunal Loa environmental matrix, Hawaii: patters, mechanisms and models. Ecology, 1994,75(2);418-429.
    [178]BakerⅢT T, Lockaby B G, Conner W H, et al. Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci. Soc.Am.J.,2001,65:1334-1347.
    [179]Ranneklev S B, B??th E, 2001. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation[J]. Appl Environ Microbiol, 67: 1116–1122.
    [180]Pietik?inen J, Petterson M, B??th E, 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates[J]. FEMS Microb Ecol, 52:49–58.
    [181]Fahey T J, Hughes J W, Mou P et al. 1988. Root decomposition and nutrient flux following whole-tree harvest of a northern hard wood forest[J]. Forest Science, 34: 744–68.
    [182]Hall R J, Likens G E, Fiance S B et al. 1980. Experimental acidification of a stream in the Hubbard Brook experimental forest, New Hampshire[J]. Ecology, 61:976–989.
    [183]Gross S, Robbins E I, 2000. Acidophilic and acid-tolerant fungi and yeasts[J]. Hydrobiologia,433:91–109.
    [184]Rob S. E. W. Leuven, Willy J. Wolfs. Effects of water acidification on the decomposition of Juncus bulbosus L. [J]. Aquatic Botany. 1988,31(1-2):57-81.
    [185]刘景双,孙雪利,于君宝.三江平原小叶章、毛苔草枯落物中氮素变化分析.应用生态学报,2000,11(6):898-902.
    [186]Fayez Raiesi. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agriculture, Ecosystems & Environment, 2006,112(1):13-20
    [187]Anu Liikanen, Jari T. Huttunen, Satu Maaria Karjalainen, Kaisa Heikkinen, Tero S. V?is?nen, Hannu Nyk?nen and Pertti J. Martikainen. 2006. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering, 26(3):241-251
    [188]孙志高,刘景双,杨继松,李新华,周旺明. 2007,三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放.应用生态学报,18 (1):185-192
    [189]Dahlman R C, Kucem C L. Root productivity and turnover in native prairie. Ecology,1965, 46,84–89.
    [190]白军红.向海沼泽湿地系统氮素生物地球化学过程研究[D].中国科学院研究生院博士学位论文.2003,长春.
    [191]河池全,赵魁义.毛果苔草湿地营养元素的积累、分配及其生物循环特征.生态学报,2001,21(12);2074-2080.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700