用户名: 密码: 验证码:
HSV-1感染L-02细胞对核不均一性核糖核蛋白H2(hnRNP H2)表达影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疱疹病毒对于人类是一种危害严重的病原体,其中以单纯疱疹病毒(Herpessimplex virus,HSV)在人群中的感染最为普遍,HSV原发感染后,机体虽然能够产生特异性免疫反应,但并不能彻底消除病毒,病毒以潜伏感染的形式终生存在于宿主神经节细胞内,在一定状态下可以被重新激活进行裂解性增殖,从而损坏机体上皮组织。
     单纯疱疹病毒1型(Herpes simplex virus 1,HSV-1)感染能导致一系列的细胞效应,尤其是宿主细胞蛋白质合成途径在病毒侵入后出现明显变化,例如:宿主细胞mRNA被选择性或非特异性降解、mRNA转录被关闭、蛋白质被选择性地降解或保持稳定,甚至重新定义细胞蛋白功能。
     本课题借助比较蛋白质组学的技术平台,将HSV-1病毒感染的人正常肝细胞L-02与未感染细胞分别进行双向电泳(2-DE),作蛋白质组图,鉴定表达差异较为显著的蛋白点。在所发现的差异蛋白中,有一个为核不均一性核糖核蛋白H2(heterogeneousnuclear ribonucleoprotein H2,hnRNP H2),在细胞中具有正性调控mRNA剪切和加工和转运,当被HSV-1感染后表现为表达量显著下调,这一结果提示:病毒通过影响细胞转录、翻译调控及关闭细胞蛋白质等不同途径实现病毒蛋白的合成。其中对剪接及转运蛋白合成的下调,将直接导致pre-mRNA加工受阻。这对宿主细胞来说,意义显得十分重要。在此基础上,本课题通过Western blot,Northern blot等技术方法进一步验证其在病毒复制过程中不同时段对其表达影响。初步探索hnRNP H2这一重要的mRNA剪切和转运蛋白,在HSV-1感染过程中与病毒蛋白之间的相互作用。NorthernBlot实验则提示,在病毒感染的不同时期hnRNP H2 mRNA的表达量有比较显著的差异,随着病毒感染的进行,表达量显著下降。与此同时,Western blot与Northern Blot实验结果相吻合,即HSV-1感染L-02细胞4h、12h和24h后,检测到hnRNP蛋白随感染进行其表达逐步下调,在0-4h内下降最为明显,从而初步得出结论,可能是由于HSVⅠ的立早基因表达产物的参与,使hnRNP H2在病毒复制早期就开始显著下调。
     尽管上述细胞蛋白与病毒蛋白的具体作用机制还有待于进一步研究,但本课题为探讨病毒如何改变宿主蛋白合成途径提供了很多新的线索。
Herpes virus, as a kind of important pathogen for human, can induce various diseases. Herpes simplex virus (HSV) that is one group of this family induces popular infection in human. In its primary infection, HSV, which is able to induce the specific immune response of individual, can keep its long time existence in neurons of host through latent state and will be reactivated under some certain conditions to induce pathological damages in epidemic tissues.
     HSV-1 infected cells present a serial changes in micromolecular metabolism, especially in protein synthesis pathway, including degradation of cellular mRNA, shutoff host transcription, selective stabilization and activation of cellular protein, and so on. By used the proteomics platform, normal human liver cell line L-02 and HSV-1 infected L-02 cellular protein mixture were separated individually by 2-DE. A set of protein spots in 2-DE pattern were matched. In this research, it found cellular protein heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) decreased in HSV-1 infected L-02. hnRNP H2 is a positive regulator in pre-mRNA processing. The changed expression level of this proteins in HSV-1 infected cell may imply that all of them play important roles involving in virus-host interactions to affect the protein expression pattern. in order to verification The effect of expression in different stage of virus infection, we use the Northern blot and Western blot technologies. To further explore the function of the significant splicing protein-hnRNP H2 in the virus infection and interaction with viral protein.
     By analysis the result, we can draw a conclusion that maybe the participate of the IE expression product, which dramatically effect the expression of hnRNP H2.
     The changed expression level of this protein in HSV-1 infected cell may imply that all of them play important roles involving in virus-host interactions to affect the protein expression pattern and at the same time will offer us a new clue to analysis the changes of host cell after the infection of virus.
引文
1 李琦涵.病毒感染的分子生物学.北京:化学工业出版社,2004.第一版:1-15.
    2 Duvet S,Dubuisson J et al Glycosylation of the hepatitis C virus envelope protein E1occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line.Glycobiology.2002 Feb;12(2):95-101.
    3 金齐.医学分子病毒学.北京:科学出版社,2001.第一版:711-716.
    4 Elgadi,M.M.and J.R.Smiley,Picomavirus internal ribosome entry site elements target RNA cleavage events induced by the herpes simplex virus virion host shutoff protein.J Virol,1999.73(11):p.9222-31.
    5 Halterman,M.W.,et al.,Improved HSV-1 amplicon packaging using virion host shutoff mutants lacking mRNAse activity.J Gene Med,2006.8(11):p.1320-8.
    6.Preston,C.M.and A.A.Newton,The effects of herpes simplex virus type 1 on cellular DNA-dependent RNA polymerase activities.J Gen Virol,1976.33(3):p.471-82.
    7.Durand,L.O.,et al.,The carboxyl-terminal domain of RNA polymerase Ⅱ is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1.J Virol,2005.79(11):p.6757-62.
    8 Hardy,W.R.and R.M.Sandri-Goldin,Herpes simplex virus inhibits host cell splicing,and regulatory protein ICP27 is required for this effect.J Virol,1994.68(12):p.7790-9.
    9.Sandri-Goldin,R.M.and M.K.Hibbard,The herpes simplex virus type 1 regulatory protein ICP27 coimmunoprecipitates with anti-Sm antiserum,and the C terminus appears to be required for this interaction.J Virol,1996.70(1):p.108-18.
    10.Sciabica,K.S.,Q.J.Dai,and R.M.Sandri-Goldin,ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation.Embo J,2003.22(7):p.1608-19.
    11 Everett,R.D.,et al.,PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0.J Virol,2006.80(16):p.7995-8005.
    12 Davido,D.J.,et al.,Phosphorylation site mutations affect herpes simplex virus type 1 ICPO function. J Virol, 2005. 79(2): p. 1232-43.
    
    13 Everett, R.D. and A. Zafiropoulos, Visualization by live-cell microscopy of disruption of ND10 during herpes simplex virus type 1 infection. J Virol, 2004.78(20): p. 11411-5.
    
    14 Everett, R.D., et al., Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein VmwllO. Embo J, 1999.18(6): p. 1526-38.
    
    15 Lomonte, P. and R.D. Everett, Herpes simplex virus type 1 immediate-early protein VmwllO inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol, 1999.73(11): p. 9456-67.
    
    16 Advani, S.J., et al., The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U(S)1.5 and U(L)13 viral genes. J Virol,2000. 74(1): p. 8-15.
    
    17 Le Hir, H., et al., The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. Embo J,2001. 20(17): p. 4987-97.
    
    18 Wiegand, H.L., S. Lu, and B.R. Cullen, Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A, 2003.100(20): p. 11327-32.
    
    19 Custodio, N., et al., In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. Rna, 2004.10(4): p. 622-33.
    
    20 Chen, I.H., et al., ICP27 recruits Aly/REF but not TAP/NXF1 to herpes simplex virus type 1 transcription sites although TAP/NXF1 is required for ICP27 export. J Virol, 2005.79(7): p. 3949-61.
    
    21 Rodrigues, J.P., et al., REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc Natl Acad Sci U S A, 2001. 98(3): p. 1030-5.
    
    22 Chen, I.H., K.S. Sciabica, and R.M. Sandri-Goldin, ICP27 interacts with the RNA export factor Aly/REF to direct herpes simplex virus type 1 intronless mRNAs to the TAP export pathway. J Virol, 2002. 76(24): p. 12877-89.
    23 Alkan, S.A., K. Martincic, and C. Milcarek, The hnRNPs F and H2 bind to similar sequences to influence gene expression. Biochem J, 2006.393(Pt 1): p. 361-71.
    
    24 Halterman, M.W., et al., Improved HSV-1 amplicon packaging using virion host shutoff mutants lacking mRNAse activity. J Gene Med, 2006. 8(11): p1320-8.
    
    25 Honore, B., et al., Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes. J Biol Chem, 1995. 270(48):p. 28780-9.
    
    26 Caputi, M. and A.M. Zahler, Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/HVF/2H9 family. J Biol Chem,2001. 276(47): p. 43850-9.
    
    27 Dreyfuss G, Matunis M J , Pinol2Roma S , et al . HnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 1993 , 62 (1) :289—321
    
    28 Munroe S H , Dong X F. Heterogeneous nuclear ribonucleoprotein Al catalyzes RNA2RNA annealing. Proc Natl Acad Sci USA,1992, 89 (10): 895-899
    
    29 Herschlag D , Khosle M, Tsuchihashi Z, et al. An RNA chaperone activity of non specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J , 1994 ,13 (2): 2913-2924
    
    30 Krecic, A.M. and M.S. Swanson, hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol, 1999.11(3): p. 363-71.
    
    31 Mayeda A, Munroe S H , Caceres J F , et al. Function of conserved domains of hnRNPA1 and other hnRNPA/ B proteins. EMBO J, 1994,13 (6): 5483-5495
    
    32 Min, H., R.C. Chan, and D.L. Black, The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev, 1995.9(21): p. 2659-71.
    
    33. Chen, C.D., R. Kobayashi, and D.M. Helfman, Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev, 1999.13(5): p. 593-606.
    34 Hastings, M.L., C.M. Wilson, and S.H. Munroe, A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA. Rna, 2001. 7(6):p. 859-74.
    35 Liu, J., et al, Heterogeneous nuclear ribonucleoprotein-H plays a suppressive role in visceral myogenesis. Mech Dev, 2001.104(1-2): p. 79-87.
    
    36 Veraldi, K.L., et al., hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol Cell Biol,2001.21(4): p. 1228-38.
    
    37 Mehlin H , Daneholt B , Skoglund U. Structural interaction between the nuclear pore complex and a specific translocating RNA particle. J Cell Biol , 1995 , 129(8): 1205-1216
    
    38 Pinol2Roma S , Dreyfuss G. Shuttling of pre-mRNA binding proteins betweennucleus and cytoplasm. Nature, 1992 ,355(6362): 730-732
    
    39 Liu X, Mertz J E. HnRNPL binds a cis2acting RNA sequenceelement that enables intron2independent gene expression. Genes Dev, 1995 ,9 (14): 1766-1780
    
    40 David M. Knipe. field virology. Philadelphia: Lippincott Williams & Wilkins, 2001.4th
    
    41 Bagga,P.S.et al.The G-rich auxiliary downsteam element has has distinct sequence and position requirements and mediates efficient 3'end pre-mRNA processing through a trans-acting factor. Nucleic Acids Res,1995.23
    
    42 Terence E. Martin, Stephen C. Barghusen, George P. Leser, and Patricia G.SpearRedistribution of Nuclear Ribonucleoprotein Antigens during Herpes Simplex Virus Infection. The Journal of Cell Biology, Volume 105, November 1987 2069-2082
    
    43 Fontaine-Rodriguez, E.C., et al., Proteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors. Virology, 2004. 330(2): p.487-92.
    
    44 Bagga, P.S., et al., The G-rich auxiliary downstream element has distinct sequence and position requirements and mediates efficient 3' end pre-mRNA processing through a trans-acting factor. Nucleic Acids Res, 1995.23(9): p. 1625-31.
    
    45 Bagga, P.S.et al.The G-rich auxiliary downsteam element has has distinct sequence and position requirements and mediates efficient 3'end pre-mRNA processing through a trans-acting factor. Nucleic Acids Res, 1995.23(9):p.l625-31
    1.Omori Y,Imai J,Watanabe M,Komatsu T,Suzuki Y,Kataoka K,Watanabe S,Tanigami A,Sugano S.CREB-H:a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liverspecific expression.Nucleic Acids Res 2001;29:2154-2162
    2.Mahajan SS,Wilson AC.Mutations in host cell factor 1 separate its role in cell proliferation from recruitment of VP16 and LZIP.Mol Cell Biol 2000;20:919-928
    3.Luciano RL,Wilson AC.N-terminal transcriptional activationdomain of LZIP comprises two LxxLL motifs and the host cell factor-1 binding motif.Proc Natlicad Sci USA 2000;97:10757-10762
    4.Lu R,Yang P,Padmakumar S,Misra V.The herpes virus Tran activator VP16 mimics a human basic domain leucine zipper protein,luman,in its interaction with HCF.J Viral 1998;72:6291-9297
    5.Raggo C,Rapin N,Stirling J,Gobeil P,Smith-Windsor E,O'Hare P,Misra V.Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol Cell Biol 2002;22:5639-5649
    
    6. Lu,R,Yang,P,Padmakumar,S and Misra,V.(1998)J.Virol, 72, 6291-6297
    
    7. Lu,R.and Misra,V.(2000)J。 Viral, 74, 934-943
    
    8. Atanasoski, S., E. Schreiber, A. Fontana, and W. Herr. 1997. N-Oct 5 is generated by in vitro proteolysis of the neural POU-domain protein N-Oct 3. Oncogene 14:1287-1294.
    
    9. Smolik, S.M., R.E. Rose, and R.H. Goodman. 1992. A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A,is a member of the leucine zipper family. Mol. Cell.Biol. 12: 4123-4131
    10 . Weir J P. Regulation of Herpes simplex virus gene expression. Gene , 2001 , 271(2): 1172130.
    
    11. Ace, C. I., T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston.1989.Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J. Virol. 63:2260-2269
    
    12. Smiley, J. R., and J. Duncan. 1997. Truncation of the C-terminal acidic transcriptional activation domain of herpes simplex virus VP16 produces a phenotype similar to that of the in1814 linker insertion mutation. J.Virol.71:6191-6193.
    
    13.. Lai, J. S., and W. Herr. 1997. Interdigitated residues within a small region of VP16 interact with Oct-1, HCF, and DNA. Mol. Cell. Biol. 17:3937-3946.
    
    14. Chen, J., K. Ueda, S. Sakakibara, T. Okuno, and K. Yamanishi. 2000. Transcriptional regulation of the Kaposi's sarcoma-associated herpes virus viral interferon regulatory factor gene. J. Viral. 74:8623-8634.
    
    15. Schulz, T. F. 2000. Kaposi's sarcoma-associated herpes virus (human herpes virus 8):epidemiology and pathogenesis. J. Antimicrob. Chemother. 45(Suppl. T3):15-27.
    
    16. Gruffat, H., E. Manet, A. Rigolet, and A. Sergeant. 1990. The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res. 18:6835-6843.
    
    17. Gruffat, H., S. Portes-Sentis, A. Sergeant, and E. Manet. 1999. Kaposi's sarcoma-associated herpes virus (human herpesvirus-8) encodes a homologue of the Epstein-Barr virus bZip protein EB1. J. Gen. Viral. 80(Pt. 3):557-561.
    
    18. Hicks, M. R., Balesaria, S., Medina-Palazon, C, Pandya, M. J.,Woolfson, D. N. &Sinclair, A. J. (2001). Biophysical analysis ofnatural variants of the multimerization region of Epstein-Barr virus lytic-switch protein BZLF1. J Viral 75, 5381-5384.
    
    19 Francis, A., Ragoczy, T., Gradoville, L., Heston, L., El-Guindy, A., Endo, Y. &Miller, G (1999). Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein-Ban- virus R transactivator. J Viral 73,3054-3061.
    
    20. Adamson, A. L. & Kenney, S. (1999). The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Viral 73, 6551-6558.
    
    21. Gruffat, H., Portes-Sentis, S., Sergeant, A. & Manet, E. (1999).Kaposi's sarcoma-associated herpes virus (human herpesvirus-8)encodes a homologue of the Epstein-Barr virus bZip protein EB1.J Gen Viral 80,557-561.
    
    22. Lin, S. F., Robinson, D. R., Miller, G. & Kung, H. J. (1999). Kaposi's sarcoma-associated herpes virus encodes a bZIP protein with homology to BZLF1 of Epstein-Barr virus. J Viral 73,1909-1917.
    
    23. Sinclair, A. J. & Farrell, P. J. (1992). Epstein-Barr virus transcription factors. Cell Growth Differ 3,557-563.
    
    24. Schwarzmann, E, Jager, M., Prang, N. & Wolf, H. (1998). The control of lytic replication of Epstein-Barr virus in B lymphocytes. Int J Mol Med 1,137-142.
    
    25. Speck, S. H., Chatila, T. & Flemington, E. (1997). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5,399-405.
    
    26 .Lukac, D. M., Renne, R., Kirshner, J. R. & Ganem, D. (1998).Reactivation of Kaposi's sarcoma-associated herpes virus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252,304-312
    
    27. Poison, A. G, Huang, L., Lukac, D. M., Blethrow, J. D., Morgan, D. O.,Burlingame,A. L. & Ganem, D. (2001). Kaposi's sarcoma-associated herpes virus K-bZIP protein is phosphorylated by cyclin-dependent kinases.J Viral 75,3175-3184.
    28.Izumiya,Y.,Lin,S.F.,Ellison,T.,Chen,L.Y.,Izumiya,C.,Luciw,P.&Kung,H.J.(2003).Kaposi's sarcoma-associated herpes virus K-bZIP is a coregulator of K-Rta:physical association and promoterdependent transcriptional repression.J Viral 77,1441-1451.
    29.Chmielewicz,B.,Goltz,M.,Franz,T.,Bauer,C.,Brema,S.,Ellerbrok,H.,Beckmann,S.,Rziha,H.-J.,Lahrmann,K.-H.,Romero,C.,Ehlers,B.,2003.A novel porcine gammaherpesvirus.Virology 308,317-329.
    30.Lukac,D.M.,Kirshner,J.R.,Ganem,D.,1999.Transcriptional activation by the product of open reading frame 50 of Kaposi's associated herpes virus is required for lytic viral reactivation in B cells.J.Viral.73,9348-9361.
    31.Ragoczy,T.,Heston,L.,Miller,G.,1998.The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes.J.Viral.8 K8protein.J.Gen.Viral.82,507-512.
    32.Schwarzmann,F.,Jager,M.,Prang,N.,Wolf,H.,1998.The control of lytic replication of Epstein-Barr virus in B lymphocytes.Int.J.Mol.Med.1,137-142.
    33.金奇 医学分子病毒学 716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700