饲料的吸湿解吸平衡规律和颗粒饲料冷却的模型拟合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料安全作为食品安全的重要环节已得到空前的重视。水分控制对饲料质量、饲料企业效益和养殖户直至终端的肉奶蛋消费者至关重要。国内外饲料行业普遍存在饲料水分(特别是颗粒饲料)难于稳定控制的问题。本研究从饲料原料和成品饲料吸湿解吸平衡以及颗粒饲料冷却两条路线,尝试发现、计算和控制饲料的平衡含水率或水活度、计算安全水分和蒸发潜热,寻找冷却规律,为合理设计和控制饲料水分提供依据。具体结果主要包括:
     1.利用饱和盐静态重量法或水活度仪法,研究比较了玉米、普通豆粕、去皮豆粕、发酵豆粕、低温白豆片、不同热处理白豆片、大豆分离蛋白、棉籽粕、脱酚高蛋白棉仁粕、菜籽粕、鱼粉、喷雾干燥血球粉、肉骨粉、酶解羽毛粉、啤酒酵母、DDGS、大豆糖蜜、甜菜糖蜜、魔芋精粉、可溶性淀粉、明胶以及烘干后作为载体的玉米粉、玉米芯粉、麸皮和稻壳粉等主要饲料原料在常温(T=25℃)或者常温范围(T=5℃-45℃)内的吸湿或解吸平衡,并对部分样品的水分吸着等温线进行了模型拟合。平衡水分(EMC)也作为衡量其持水力(WBC)的指标。这些平衡相对湿度(ERH)-平衡水分(EMC)-温度(T)之间的关系对于饲料的干燥、存贮等具有重要价值。研究发现,常见饲料原料中DDGS、糖蜜、发酵豆粕、魔芋精粉具有较高的持水力。持水力的差异在高水活度范围加大。DDGS中水溶性成份的增加线性提高EMC,这为DDGS原料选择和质量控制提供了新的指标。25℃时引入含水溶性成分比例的BY修正模型很好拟合了DDGS的EMC。豆粕经过发酵后提高了EMC。豆粕蛋白溶解度提高有增加EMC的趋势,但除非极端过生或严重加热过度,在正常热处理豆粕的蛋白溶解度的范围内,蛋白溶解度没有对白豆片的EMC产生显著的影响。魔芋精粉除具有较高的EMC外,表现出抗霉变的作用;其与玉米混合后,并未额外提高混合体系的EMC。大豆糖蜜和甜菜糖蜜的ERH-EMC关系显著区别于其他原料,在低水活度区域具有较高EMC,不同水活度时的差异很小(例如15℃时从氢氧化钠到氯化镁饱和盐的Aw,EMC=11.36-11.8%)。甜菜糖蜜的EMC低于大豆糖蜜。从BaCl2饱和盐的ERH以上,温度升高提高了EMC值。动物性原料中肉骨粉、羽毛粉的EMC低于鱼粉和喷雾血球蛋白粉。样品Aw-EMC的关系与优选模型的符合程度,可能有助于判断鱼粉的掺假。菜籽粕在Aw=0.753以下的EMC含量明显低于棉仁粕和棉籽粕,但在Aw≥0.84时基本一致。高蛋白(>50%)的棉仁粕EMC低于普通40%蛋白的棉仁粕。玉米和豆粕的粉碎粒度没有对EMC产生显著的影响,尽管过细的玉米样品表现出降低EMC的趋势,但可能与较低的初始水分有关。从ERH-EMC关系角度,结合水分与流动性的关系判断,稻壳粉是良好的预混料载体(稀释剂)。结合模型的泛化能力和适用性,除糖蜜外,Peleg、Generalized D'Arcy and Watt (GDW)、Blahovec and Yanniotis (BY)、GAB-VR和GAB可作为优选模型。其他经典的Henderson、Oswin、Halsey和Chung-Pfost模型有其具体的适用对象和范围,例如mChung-Pfost模型是拟合玉米解吸平衡的优选模型。当ERH≤84%, Peleg和mPeleg模型能良好地拟合糖蜜在15℃-45℃的ERH-EMC-T的关系。
     2.对三种代表性的成品颗粒饲料在15℃~45℃范围的研究表明,肉大鸡料、肉大鸭料和草鱼颗粒饲料的吸湿解吸规律各有特点。在高湿环境下(ERH>90%),肉大鸭和草鱼颗粒料的平衡含水率随温度升高而提高,区别于一般农产品EMC随温度上升而下降的规律。Peleg、GDW、BY、GAB以及GAB-VR是优选的拟合颗粒饲料ERH-EMC关系的模型,而经典的Henderson、Osiwn、Halsey和Chung-Pfost模型及其修正型以及Chen-Clayton模型存在明显的局限性。结合对于原料的模型拟合数据,本研究成功地将温度变量引入到Peleg、GDW和BY模型当中,并通过文献数据得以验证。利用优选模型对三种饲料在15℃(或10℃)~45℃区间吸湿或解吸过程的安全水分进行了估计。草鱼颗粒料的安全水分低于肉大鸭和肉大鸡颗粒饲料。说明安全水分标准的设计还应考虑具体的饲料类别,而不是一刀切。在计算蒸发潜热过程中,选用拟合精度达到要求的经典模型更为便捷。
     3.利用自行设计安装的颗粒饲料薄层冷却系统,通过相关与回归分析及神经网络训练证明,存在且可以找到综合各主要变量的数学模型,用于预测进而控制冷却过程。薄层冷却与实际的逆流冷却过程相比,仅缺乏颗粒流量、深床内存在的温度梯度和湿度梯度变量,这为把料层分解为适当厚度的薄层进而实现逐级仿真模拟提供了参考。根据肉大鸭颗粒饲料在不同颗粒初始条件(温度48~87℃,水分12.67%~23.54%db)和环境变量(空气温度7~40℃、相对湿度19%~94%、流速0.28~2.88 m/s)条件下冷却至高于环境温度10℃和5℃时的时间(T10,T5)-水分(M10,M5)变化,建立了含15~22个参数的经验模型。这个过程需要用优选的吸湿解吸模型估计出的EMC。参数模型中,对水分的拟合精度和预测精度优于时间模型,但需要将冷却时间作为自变量。时间模型在包含水分损失速率时的拟合以及预测精度显著优于不含损失速率的模型。不含水分损失速率的时间模型拟合精度满足实用要求,但预测精度有待于改进。对变量进行均值化处理并未显著提高拟合精度。T10与T5、M10与M5间存在显著的线性相关,T5≈1.52T10,M5≈0.99M10。神经网络模型对于水分的估计,即使不采用冷却时间变量,可获得优于本研究所建立的参数模型的结果,然而对于时间的拟合与预测结果欠佳。可能需要结合两者的优点进行建模。
     利用参数模型计算表明,将初始温度80℃,水分18% db的肉鸭饲料进行冷却,在10℃~40℃,55%RH环境下提高风速可降低冷却时间。湿度影响到降温速率。提高空气湿度增加冷却后的产品含水率(10℃时线性方程的斜率为0.0371,20℃时为0.0247),提高风速降低产品水分(Hoerl函数是描述水分-风速关系的优选模型:M=a*bVair*VairC),但是在30~38℃高温环境里风速对于水分的影响明显不同于一般室温环境(10℃~20℃),大于1.444 m/s的风速将提高冷却后的产品水分。高温下湿度对于冷却产品水分的影响减弱,显示高温环境需要不同于一般室温条件下的冷却策略。由薄层冷却数据采集系统得到的温度水分变化数据还可以用于计算与冷却相关的热质传递参数。这个过程需要用优选的吸湿解吸模型估计出的EMC。
     4.采用红外热成像-录像方法在蒸汽调质器出口、冷却器卸料口对料流进行连续温度记录,结合水分分析,发现DDC调制器出料口料流最低和最高温度相差达12℃,且出现低温湿料团;冷却器卸料口平面上的温度和水分不均匀现象因冷却器而异。这些现象与规律为实现自动控制消除不稳定因素提供了参考。实验也表明红外热成像技术在饲料和粮油食品行业可发挥更大作用。
     5.合理设计的神经网络模型很好地拟合了一种池塘鱼颗粒饲料的在线冷却结果。利用多层感知器(MLP)网络对自变量重要性分析为控制手段的设计提供了参考。在所研究的产品和设备环境下,粉料水分、颗粒出模水分、平衡含水率、调制温度与水分以及空气温度是影响冷却后产品水分的主要因素,而影响冷却产品温度的主要变量为风量(以风门开度为度量)、平衡含水率、调质水分、空气温度和调制温度。
     6.颗粒饲料的吸湿解吸及其适宜模型、蒸发潜热计算、薄层冷却数据,结合颗粒水分与颗粒直径和密度容重等的关系,为采用数值解法求解带有微分方程的热质平衡模型或者ANSYS建模与求解、CFD建模和求解提供了重要的基础数据。本研究利用试验所获得的部分参数,尝试用数值方法对初步设计的热质平衡模型进行求解,结果距离预期还有很大差距,表明模型、算法或者基础数据还有待于完善。
Feed safety as a sector in the food safety system has drawn dramatic public attention; hence moisture control plays an important role in feed quality, feed production margin, animal producers'net profit and the daily consumption of meat, milk and eggs. Stable feed moisture content, esp. in pellet feed, is still a challenge for the global feed industry. Moisture sorption isotherms, which is well known and investigated practically in food industry, is not carrying sufficient awareness it deserves. A relatively systematic research in moisture adsorption and desorption in feed materials and/or compound feeds is absent, thus elementary sorption data and typical predictive equations are deficient. Moisture adsorption and/or desorption equilibration determinations of more than forty feed raw material samples and three typical feed feeds were carried out to find options to improve feed water binding capacity and to reduce water activity, together with choice sorption isotherm equations either original or modified by the authors. A small thin-layer cooling system based upon PAC was established for lab study and online counterflow cooling data acquisition to investigate the possibility to simulate the cooling process by empirical equations and/or artificial neural networks. The research provided preliminary dada and methods to control hot feed pellet cooling practice.
     1. Adsorption and/or desorption equilibrium moisture content (EMC) of feedstuff samples, including corn, regular soybean meals (SBM), dehulled soybean meal (DHSBM), fermented soybean meal(FSBM), white soybean flakes(WSF) heated at different condition, soybean protein isolates(SPI), cotton seed meal (CSM), degossypololized high-protein CSM(DGCSM), rapeseed meal(RSM), fishmeal(FM), spray-dried blood cells (SDBC), meat and bone meal(MBM), enzymatic hydrolyzed feather meal(HFM), dried beer brewery yeast(DBY), dried distillers'grains and solubles (DDGS), soybean molasses(SBML), sugar beet molasses(BML), choice konjac meal(KJM), soluble starch, gel, and dried ground corn, dried corn cob meal, dried wheat bran and ground rice hull were determined with conventional static gravimetric method with saturated salt solutions and/or the water activity determination instrument, at typical room temperatures (T=25℃, or between 5℃to 45℃). Some of the EMC-Temperature-Aw (water activity, or ERH, equilibrium relative humidity) relationship was modeled. EMC is known as one of the approaches to find the water binding capacity (WBC). This EMC-Aw-Temperature relationship is valuable in feed drying/cooling, handling and storage. In our research, highest WBC were found in quality DDGS, molasses, FSBM and KJM, especially within high water activity range. Water soluble part (WSP) in DDGS linearly increases EMC level, which means new parameters for DDGS selection and quality management. Blahovec and Yanniotis (BY) model with WSP as a variable was the best equation fitting the DDGS EMC at 25℃. Fermentation seemingly increases EMC in soybean meal. Increasing protein solubility of SBM gave a tendency of higher EMC, but did not improve it significantly within the normal solubility range of regular meal, unless in extremely undercooked or overcooked SBM. KJM has very high EMC level, and is inhibitive in mold multiplication. It did not provide higher EMC than the weighted average in mixture with corn. Both the two molasses showed obviously different ERH-EMC relation from other materials, for the high EMC at low ERH range lower than that by saturated MgCl2 solution. Sugar beet molasses took more moisture than soybean molasses. Increasing temperature resulted in higher EMC from ERH provided by saturated BaCl2 solution. Within the animal protein resources, MBM and HFM had lower EMC than fish meal and SDBL. The fitness of Aw-EMC relationship with selected equations could be helpful in fish meal adulteration detection. High protein CSM showed lower EMC than low protein meal. When Aw is under 0.843, RSM EMC is lower than all the four CSMs, but from 0.843 it is very close to that of CSMs. This partially explains the lower EMC in grownout grass carp feed than the level in the broiler feed and the duck feed. Particle size did not affect the EMC of corn and SBM, though the finest corn had seemingly lower EMC, possibly due to the low initial moisture in this fine corn. Ground rice hull is a good premix carrier or dilutor for premix, judged by the Aw-EMC relation and the moisture-flowability interaction. New sorption isotherm equations including Peleg, Generalized D'Arcy and Watt (GDW), Blahovec and Yanniotis (BY) as well as the conventional GAB model fit generally all the materials except for molasses, while other conventional models such as Henderson, Oswin, Halsey and Chung-Pfost performed well for specific feedstuffs and/or specific water activity ranges, e.g. mChung-Pfost for corn desorption process and mHalsey for cottonseed meals. Peleg and mPeleg described well the ERH-EMC-T relationship of molasses when ERH<=84% from 15℃to 45℃.
     2. Moisture sorption behavior of pelleted finishing broiler feed, pelleted finishing duck feed and pelleted grownout grass carp feed differed from each other, within the temperature range from 15℃to 45℃. Duck feed and grass carp feed absorbed much higher moisture at high temperature and humid condition (45℃, ERH>90%), which did not follow the principle of normal agricultural products that increasing temperature reduces the EMC. The model Peleg, GDW, BY, GAB and GAB-VR were choice models for the feed pellets. Henderson, Oswin, Halsey and Chung-Pfost as well as their modified forms and Chen-Clayton model either fits secondary to the choice or have limited generalization and utilization. Also as stated in feed material sorption research, this compound feed sorption study successfully introduced temperature effect as a new variable into either Peleg, GDW or BY model, which was approved by published data. These models were adopted to estimate proper moisture content for safe storage, with Aw=0.65 as the critical Aw point. Traditional sorption isotherm equations were more convenient for latent heat calculation once they fit the data with accepted goodness.
     3. A thin layer cooling data acquisition system was established to facilitate the approval of possibility to find empirical parametric equations and/or artificial neural network (ANN) models that integrated all key independent variables for predicting and controlling the cooling process. Thin layer cooling models lack only pellet flow, temperature gradient and relative humidity gradient that exist in deep bed cooling. This system and data provided information for layer by layer cooling simulation after dividing the pellet bed into thin-layers with proper depth increment. Empirical equations with 15 to 22 parameters were obtained for fitting the time to a pellet temperature ten (T10) and five degrees Celsius (T5) above air and for fitting the moisture content at these two time points (M10, M5), of the pelleted duck feed during thin-layer cooling at various pellet initial condition (temperature from 48℃to 87℃,moisture from 12.67% to 23.54% db) and ambient condition (air temperature from 7℃to 40℃, relative humidity from 19% to 94%, and air velocity from 0.28 m/s to 2.88 m/s). EMC calculated by choice sorption equation(s) was involved in the regression. The empirical moisture equation with cooling time as an independent variable performed better than the time equation. The cooling time equation including average moisture loss rate gave much better fitting goodness than the equation without the rate. If the moisture loss rate was excluded the cooling time model gave a fitting accuracy close to acceptance, but the predictive accuracy for the validation data group required improvement. Equalization of variables did not improve the fit significantly. T5 could be linearly estimated by T10 (T5≈1.52T10) and M5 linearly by M10 (M5≈0.99M10). For moisture content, ANN gave much better prediction and validation even without the cooling time variable, than the established empirical moisture equation, but neither of them could fit or simulate the cooling time excellently. A combination of the merits of ANN and the empirical parametric model might be another approach. Simulation of the duck feed (assigned initial temperature 80℃and moisture:18% db) at 55% RH from 10℃to 40℃with the empirical equation found that faster air movement reduced exponentially the cooling time. Relative humidity changed the reductive effect. Higher RH increased the moisture content in cooled feed linearly (slope was 0.0371 at 10℃and 0.0247 at 20℃), raised air velocity reduced moisture level and the Hoerl model (M=a*bVair*VairC) described well this function. However, the moisture increasing effect was different at hot environment (30℃~38℃) from that at normal range (10℃~20℃) because on the contrary the velocity higher than 1.444 m/s increased the moisture percentage in the cooled pellets. High air temperature weakened the effect of relative humidity on moisture in the product, thus the cooling configuration requires adjustment from that in lower temperature condition. The temperature and water data obtained by the thin-layer cooling system are useful for calculation of coupled heat and mass transfer coefficients.
     4. Infrared thermo-videoing system were managed to record the temperature variation in the steam conditioned mash flow at the steam conditioner exit and in the cooled pellets at the cooler exit plain. The average lowest temperature was about 12℃lower than the average highest in the mash flow. Occasional cool and wet clots were found as well. Deviation of temperature and moisture of feed at the cooler downloading plain varied from cooler to cooler. These findings will help avoid fluctuation in the planned cooling automation system. The trial suggested extensive potential utilization of thermo videoing in both research and production in feed, food, cereal and oilseed industries.
     5. A proper ANN network simulated well the online counterflow cooling of a pelleted aqua feed for fresh water farming. Evaluation of variable importance by a multi-layer preceptor network (MLP) provided references for automation design. For the specific product manufactured by the specific processing line within the air circumstances, mash moisture, pellet moisture at the die exit, EMC, conditioned mash temperature and moisture as well as the air temperature were profound factors on product moisture, while the air flow (determined by air valve openings), EMC, conditioned mash moisture, air temperature and the conditioned mash temperature were critical factors on cooled pellet temperature.
     6. The data obtained on pellet feed EMC and corresponding choice equation(s), the latent heat, and the thin-layer cooling information as well as the moisture effect on pellet diameter, pellet density and bulk density etc. facilitate substantially the numerical solution of mass and heat problems with differentiation equations, problems by ANSYS and/or that in CFD modeling. This study tried to establish and solve numerically the heat and mass balance equation groups with assistance by the collected data. However the report was not good as expected, which means further effort is necessary to improve the modeling, the solving and/or the data base.
引文
[1]Van den Berg C. and Bruin S. Water activity and its estimation in food systems:theoretical aspects. In: Water Activity:Influences on Food Quality [M]. Edited by L. B. Rockland and G. F. Steward. Academic Press, London,1981:1-63
    [2]Lewicki P.P. Water as the determinant of food engineering properties. A review[J]. Journal of Food Engineering,2004(61):483-495.
    [3]Reid D.S.2001. Factors to consider when estimating water vapor pressure. In:Current Protocols In Food Analytical Chemistry[M]. Eds. Wrolstad, pp:A2.1. to A2.1.3. New York,:John Wiliey & Sons, Inc.
    [4]王璋许时婴汤坚编.食品化学[M].北京:中国轻工业出版社,1999:7-30
    [5]Labuza T. P. Water binding of humectants. In:Water Properties in food [M], edited by. D. Simatos & J.L. Multon. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, NATO ASl Series.1985: 425-445
    [6]Norman N.Potter and Joseph H.Hotchkiss著,王璋等译,食品科学(第五版)[M].北京:中国轻工业出版社,2001:103-120,215-220
    [7]中国标准出版社第一编辑室编.中国食品工业标准汇编—肉、禽、蛋及其制品卷.GB/T9695.12-1988,“肉与肉制品—水分活度测定”[S].北京:中国标准出版社
    [8]SN 0180-1992“食品水活度测定方法”[S],中华人民共和国国家进出口商品检验局.
    [9]Tapia M.S., Stella M. Alzamora, and Jorge Chirife. Effects of water activity (aw) on microbial stability: as a hurdle in food preservation. In:Water activity in Foods:Fundamentals and Applications (Barbosa-Canovas, G.V., et al., eds). IFT Press, Blackwell Publishing Professional, Iowa, USA. pp.239-271
    [10]Herrman T. J, and Loughin T, M. Processing and shelf-life performance of feed manufactured from high moisture corn[J]. Transactions ASAE,2003,46(3):697-703.
    [11]熊易强.挤压(膨化)食品/饲料的水分控制.饲料技术讲座文集2000-2001,美国大豆协会
    [12]Boente G. H., Gonzhlez H. L., Martinez E. etc. Sorption isotherms of corn-study of mathematical models [J]. Journal of Food Engineering,1996(29):115-128
    [13]Toeh H.M., Schmdit S.J., Day G.A. and Faller J.E. Investigation of cornmeal components using dynamic vapor sorption and differential scanning calorimetry [J]. Journal of Food Science.2001,66(3):434-440.
    [14]Viollaz P.E., Rovedo C.O. Equilibrium sorption isotherms and thermodynamic properties of starch and gluten [J]. Journal of Food Engineering,1999 (40):287-292
    [15]Al-Muhtaseb A.H., McMinn W.A., Magee T.R.A.2004. Water sorption isotherms of starch powders, part 2:thermodynamic characteristics [J]. Journal of Food Engineering,2004,62(2):135-142
    [16]彭桂兰,陈晓光,吴文福,姜秀娟.玉米淀粉水分吸附等温线的研究及模型建立[J].农业工程学报.2006,22(5):176-179
    [17]Aviara N.A., Ajibola O.O. Thermodynamics of moisture sorption in melon seed and cassava[J]. Journal of Food Enginieering,2002b,55(2):107-113
    [18]Sanni L.O., Atere A., Kuye A.. Moisture sorption isotherms of fufu and tapioca at different temperatures[J]. Journal of Food Engineering,1997,34(2):203-212
    [19]Duggal A L, Muir W.E.; Brooker D.B. Sorption equilibrium moisture content of wheat kernels and chaff [J]. Transactions of ASAE,1982,25(4):1086-1090
    [20]ASAE,1993. Moisture relationship of grains[S]. ASAE D245.4 Dec 1992. In:Standards 1993. AEAE, St.Joseph. MI, pp.412-416
    [21]Fasina O., Sokhansanj S., Tyler R.. Thermodynamic of moisture sorption in alfalfa pellets[J]. Drying Technology,1997,15(5):1553-1570
    [22]杨洲,罗锡文,李长友.稻谷动平衡含水率试验研究.华南农业大学学报(自然科学版)[J].2003,24(1):74-76
    [23]Basunia M.A., Abe T.. Moisture desorption isotherms of medium-grain rough rice[J]. Journal of Stored Products Research,2001 (37):205-219
    [24]Bonado A.L., Rizvi S.S.H., Thermodynamic properties of water on rice as calculated from reversible and irreversible isotherms[J]. Journal of Food Science,1985(50):101-105
    [25]Multon J.L. Interactions between water and the constitutions of grains, seeds and by-products[M]. In: Preservation and Storage of Grains, Seeds and their By-products (Multon J.L. ed.). Lavoissier Publishing Co., New York. pp 89-159
    [26]Pollio M.L., Resnick S.L., Chirife J.1987. Water sorption isotherms of soya bean varieties grown in Argentina[J]. International Journal of Food Science and Technology,1987(22)335-338.
    [27]Aviara N.A., Ajibola O.O., Oni S.A.. Sorption Equilibrium and Thermodynamic Characteristics of Soya Bean[J].. Biosystems Engineering,2004,87(20):179-190.
    [28]Hutchinson D., Otthen L. Thin-layer air drying of soybeans and white beans[J]. Journal of Food Technology,18,507-522.
    [29]Zhongli Pan. Adsorption characteristics of functional soy protein products[J]. Journal of Food Process Engineering,2003(25):499-514.
    [30]German Jovanovich, Maria C. Puppo, Sergio Giner, and Maria C. Anon. Water uptake by dehydrated soy protein isolates Comparison of equilibrium vapor sorption and water imbiding methods[J]. Journal of Food Engineering,2003(56):331-338.
    [31]Vykundeshwari Ganesan, K. Muthukumarappan. Sorption isotherm characteristics of distillers dried grains with solubles (DDGS). An ASAE Meeting Presentation, paper No.066165. A Presentation at the ASABE Annual International Meeting [C]. Oregon Convention Center, Portland, Oregon. July 9-12,2006
    [32]Kingsly, A.R. P., K. E. Ileleji. Modeling moisture sorption isotherms of corn dried distillers' grains with solubles (DDGS) using artificial neural network[J]. Transactions of ASABE.2009, Vol.52(1): 213-222
    [33]Diosady L. L; Riviz S. S. H., Cai W., Jagdeo D.J. Moisture sorption isotherms of canola meals and applications to packing[J]. Journal of Food Science,1996,61,204-208
    [34]Majdi A. Al-Mahasneh, Taha M. Rababah, W. Yang. Moisture sorption thermodynamics of defatted sesame meal (DSM)[J]. Journal of Food Engineering,2007(81):735-740. www.elsevier.com/locate/jfoodeng
    [35]Pixton S.W., and Sylvia Warburton. The moisture content/equilibrium relative humidity relationship of soya meal[J]. Journal of stored Products Research.1975, Vol.11, pp.249-251. Pergamon Press. Printed in Great Britain.
    [36]Karon, M. L. Hygroscopic equilibrium of cottonseed[J]. Journal of American Oil Chemistry Society. 1947(24):56-59
    [37]Gely M.C., Giner S.A. Water-corn equilibrium:temperature dependency of the G.A.B. model parameters and calculation of the heat of sorption[J]. Drying Technology,2000,18(7),1449-1464
    [38]Thompson T. L., Peart R.M., Foster G.H. Mathematical simulation of corn drying-a new model[J]. Transactions of the American Society of Agricultural Engineering,1968,24,582-586
    [39]Chen, Chia-chung. A study of equilibrium relative humidity for yellow-dent corn kernels [D]. Ph.D. Thesis. Ann Arbor, Michigan, UMI,1989
    [40]ASAE D245.6. Oct.2007. Moisture relationships of plant-based agricultural products. St. Joseph, Mich.:ASABE
    [41]Garcia R. A., Flores R. A., Mazenko C.E.. Factors contributing to the poor bulk behavior of meat & bone meal and methods for improving these behaviors[C]. An ASAE Meeting Presentation Paper No: 056170.2005 ASAE Annual International Meeting, Tampa Convention Center, Tampa, Florida,17-20 July 2005
    [42]US Grains Council (USGC). USDA reports indicated increasing availability of DDGS[N]. http//www.grains.org//1429-11-USDA-reports-indicates-increasing-availability-of-DDGS,11 March, 2009.
    [43]DeFrain J. M., Shirley J. E., Behnke K.C., Titgemeyer E.C., Ethington R.T. Development and evaluation of a pelleted feedstuff containing condensed corn steep liquor and raw soybean hulls for dairy cattle diets. Animal Feed Science and Technology,2003(107):75-86
    [44]McEllhiney R.R.,饲料制造过程中的损耗控制.摘自:饲料制造工艺学(第三版),中国粮油学会饲料专业学会,1991.pp 760
    [45]Moreira R., Chenlo F., Torres M. D. Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition. Journal of Food Engineering, Article in Press, Accepted Manuscript, doi:10.1016/j.jfoodeng.2009.03.026
    [46]Welti-Chanes J., Perez E., Guerrero-Beitran J.A., etc.. Application of water activity management in the food industry. Chapter 13. In:Water activity in Foods:Fundamentals and Applications[M]. Edited by Babosa-Canovas G.V., Fontana A.J., Schmidt S.J., Labuza T.P., IFT Press, Blackwell Publishing Professional, Iowa, USA.2007,341-357
    [47]牛智有,谭鹤群,宗力.颗粒饲料平衡含水率的试验研究[J].粮食与饲料工业,1998(4):15-16.
    [48]张旭华.颗粒饲料冷却过程计算机数值模拟[D].华中农业大学2004届硕士研究生学位论文
    [49]Maier D. E., Bakker-Arkema F. W. The counterflow cooling of feed pellets[J]. Journal of Agricultural Engineering Research,1992(53),305-319
    [50]Maier D.E. The counterflow cooling of feed pellets[D]. MS. Dissertation. Michigan State University, MI, USA,1998
    [51]Friedrich W. Der Kuehlvorgang von Mischfutterpellets und sein Einflus auf die Pelletfestigleit (in German:The cooling process and its influence in the pellet durability)[J]. Die Huhle Mischfuttertechnik 1980,117(20):268-281
    [52]Brook R.C., Foster G.H. Drying, cleaning and conditioning[M]. In:Handbook of Transportation and Marketing in Agriculture. Volume II, Field Crop. (Finney E.E., Eds). Boca Raton, CRC Press, Florida, 1981:63-110.
    [53]Biagi J.D. Modeling of the feed-pellet cooling process [D]. Unpublished Ph.D. thesis. Michigan State University, East Lansing, Michigan, USA 1989.
    [54]Headly V. E. Equilibrium moisture content of some pelleted feeds and its effect on pellet durabiloity index[J]. Transactions of the ASAE,1969:9-12. Paper No.68-345, Annual Meeting of American Society of Agricultural Engineers, Logan, Utah, June 1968
    [55]Berry, M. R., Jr., Dickerson R. W., Jr. Moisture adsorption isotherms for selected feeds and ingredients[J]. Transactions of the ASAE.1973,16(1):137-139
    [56]Henderson S. The relationship between moisture content and eqauilibrium relative humidity of pig feed[J]. Journal of stored products research 1985,21(3):131-134
    [57]Van den Berg C. and Bruin S. Water activity and its estimation in food systems:theoretical aspects. In: Water Activity:Influences on Food Quality [M]. Edited by L. B.Rockland and G. F. Steward. Academic Press, London,1981:1-63
    [58]Boquet R., Chirife J., Iglesias H.A. Equations for fiting water sorption isotherms of food. II. Evaluation of various two-parameter models[J]. Journal of Food Technology,1978(13):319-327.
    [59]Chirife H.A., Chirife J.. Prediction of effect of temperature on water sorption of food materials[J]. Journal of Food Technology,1976(11):109-116
    [60]Cazier J.B., Gekas V. Water activity and its prediction:a review [J]. International Journal of Food Properties,2001(4):35-38
    [61]Chirife J., Iglesias H.A. Equations for fiting water sorption isotherms of food:Part Ⅰ-a review[J]. Journal of Food Technology,1978(13):159-174
    [62]Timmermann E.O., Chirife J, Iglesias H.A. Water sorption isotherms of food and foodstuffs:BET or GAB parameters? [J]. Journal of Food Engineering,2001(48):19-31
    [65]Labuza T.P., Bilge Altunakar. Water activity prediction and moisture sorption isotherms. Chapter 5. In: Water activity in Foods:Fundamentals and Applications[M]. Edited by Babosa-Canovas G.V., Fontana A.J., Schmidt S.J., Labuza T.P., IFT Press, Blackwell Publishing Professional, Iowa, USA.2007, 109-154
    [66]Chen C., Jayas D. Evaluation of GAB equation for the isotherms of agricultural products. Transactions of the ASAE,1998(43):673-683
    [67]Chen C. Sorption isotherms of sweet potato slices [J]. Biosystems Engineering,2002(83):85-95
    [68]Chen C. Moisture sorption isotherms of pea seeds[J].Journal of Food Engineering,2003(58):45-51
    [69]Peleg M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms [J]. Journal of Food Processing Engineering,1993(16):21-37
    [70]Jayas D.S., Mazza G. Comparison of five three parameter equations for the description of adsorption data of oats [J]. Transactions of ASAE,1993,36(1):119-125
    [71]Bala B. K. Drying and storage of cereal grains [M]. Science Publisher. USA.1997:100-120.
    [72]Lewicki P.P. Raoult's law based food water sorption isotherm[J]. Journal of Food Engineering, 2000(43):31-40
    [73]刘传云,毛志怀,王双林,袁佐林,谢霞,叶真洪.小麦静态吸湿模型研究[J].粮食与饲料工业, 2006(6):12-13
    [74]Furmaniak S., Terzyk A.P., Gauden P. A., Rychlicki G.. Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs[J]. Journal of Food Engineering,2007a, (79):718-723.
    [75]Furmaniak S., Terzyk A.P, Gauden P.A. The general mechanism of water sorption on foodstuffs-Importance of the multitemperature fitting of data and the hierarchy of models [J]. Journal of Food Engineering,2007b, (82):528-535
    [76]Blahovec J., Yanniotis S. Modified classification of sorption isotherms[J]. Journal of Food Engineering,2009,91(1):72-77. doi:10.1016/j.jfoodeng.2008.08.007
    [77]Menkov N. D., Paskalev H. M., Galyazkov D.I., Kerezieva-Rakova M. Applying the linear equation of correlation of Branauer-Emmet-Teller (BET)-monolayer moisture content with temperature[J]. Nahrung/Food,1999(43),118-121
    [78]Timmermann E.O., Chirife J., Iglesias H. A. Water sorption isotherms of food and foodstuffs:BET or GAB parameters?[J] Journal of Food Engineering,2001(48):19-31
    [79]Kaleemullah S., R. Kailappan. Monolayer moisture, free energy change and fraction of bound water of red chillies [J]. Journal of Stored Products Research,2007(43):104-110
    [80]Labuza T.P. Moisture sorption:practical aspects of isotherm measurement and use[J]. American Association of Cereal Chemists, St. Paul, MN, U.S.A.1984.
    [81]Aviara N.A., Ajibola O.O. Thermodynamics of moisture sorption in melon seed and cassava[J]. Journal of Food Enginieering,2002,55(2):107-113
    [82]Caurie M. Deviation of full range moisture sorption isotherms [M]. In:Rockland, L.B., Steward G.F.,(Eds), Water Activity:Influences on Food Quality. Academic Press, New York,1981:63-87.
    [83]Caurie M. Hysteresis phenomenon in foods. International Journal of Food Science and Technology, 2007(42):45-49
    [84]Chen D.S., Clayton J.T. The effect of temperature on sorption isotherms of biological materials[J]. Transactions of the ASAE,1971,14(5):927-929
    [85]Murata S., Tagawa A., Ishibashi S. An equation for calculating the latent heat of vaporization of water in cereal grains-The measurement and analysis of equilibrium moisture content[J]. Journal of the Japanese Society of Agricultural Machinery.1988,50(3):85-93
    [86]Tagawa A., S. Murata, H. Hayashi.1993. Latent heat of vaporization in buckwheat using the data of equilibrium moisture content[J]. The Transactions of ASAE,1993, Vol 36(1):113-118
    [87]Pfost H.B., Maurer S.G., Chung D.S., Milliken G..A. Summarizing and reporting equilibrium moisture data for grains[C]. ASAE paper No.76-3520. St Joseph, MI:ASAE.
    [88]Lewicki P.P. Raoult's law based food water sorption isotherm[J]. Journal of Food Engineering, 2000(43):31-40
    [89]Abalone R., Gaston A., Cassinera A., Lara M.A.. Thin Layer Drying of Amaranth Seeds[J]. Biosystems Engineering,2006,93(2):179-188 doi:10.1016/j.biosystemseng.2005.11.010, PH-Postharvest Technology
    [90]Iglesias H. A., Chirife J. Isosteric heats of water vapour sorption on dehydrated foods. Part 1:analysis of the differential heat curves [J]. Lebensmittel-Wissenchaft und Technology,1976(9):123-127.
    [91]Rizvi S.S.H. Thermodynamic properties of foods in dehydration. In:Rao M.A., and Rizvi S.S.H., (Eds.), Engineering Properties of Foods[M]. Marcel Dekker Inc., New York,1986:133-214
    [92]Yang W. H., Cenkowski S. Latent heat of vaporization for canola as affected by cultivar and multiple drying-rewetting cycles[J]. Canadian Agricultural Engineering,1993(35):195-198
    [93]Chen Chiachung. Obtaining the isosteric sorption heat directly by sorption isotherm equations[J]. Journal of Food Engineering,2006(74):178-183
    [94]Aguerre R.J., Suarez C., Viollaz P.E. Enthalpy-entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms[J]. Journal of Food Science, 1986(51):1547-1549
    [95]Falabella M. C., Aguerre R. J., Suaarez C. Modelling non isothermal sorption equilibrium data of cereal grains[J]. Lebensmittel-Wissenschaft Und Technologie.1992(25):286-288.
    [96]Bahloul N., Boudhrioua N., Kechaou N. Moisture desorption-adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.)[J].Industrial Crops and Products. (2008), doi:10.1016/j.indcrop.2008.02.003.
    [97]Tsami E., Maroulis Z.B., Marinos-Kouris D., Saravaos G.D. Heat of sorption of water in dried fruits[J]. International Journal of Food Science and Technology,1990(25):350-359.
    [98]Mulet A., Garcia-Reverter J., Sanjuan R., Bon J.. Sorption isosteric heat determination by thermal analysis and sorption isotherms [J]. Journal of Food Science,1999(53):75-81.
    [99]Sanchez E.S., Sanjuan N.S., Simal S., Rossello C. Calerimetric techniques applied to the determination of isosteric of desorption for potato[J]. Journal of the Science of Food and Agriculture,1997(74):57-63.
    [100]李春喜,王志和,王文林.生物统计学(第二版)[M].北京:科学出版社,2000:158-171
    [101]Park K.J., Vohnikova Z., Brod F.P.R. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.)[J]. Journal of Food Engineering,2002(51):193-199.
    [102]Nurhan Arslan and Hasan Togrul. Moisture sorption isotherms for crushed chillies[J]. Biosystems Engineering,2005,90(1):47-61
    [103]李锡纯李承启主编.现代质量管理[M].辽宁科学技术出版社,1991:95-140
    [104]Fasina O.O., Ajibola O.O., Tyler R.T. Thermodynamics of moisture sorption in winged beans and gari[J]. Journal of Food Processing Engineering,1999(33):29-32
    [105]吴有炜著,试验设计与数据处理[M].苏州:苏州大学出版社,2002,239-284
    [106]丛爽编著.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998
    [107]Myhara R. M., Sablani S. S., Al-Alawi S. M., Taylor M. S.. Water Sorption Isotherms of Dates: Modeling Using GAB Equation and Artificial Neural Network Approaches[J], Lebensm.-Wiss. u.-Technol.,1998(31):699-706. Article No. fs980492
    [108]李洋,石必明.基于贝叶斯正则化BP人工神经网络的煤与瓦斯突出预测的研究[J].工矿自动化,2009(2):1-4
    [109]樊春玲,孙四通,金志华.贝叶斯神经网络建模预测方法及其应用[J].中国惯性技术学报,2009,17(1):85-88
    [110]The Mathworks Inc.,2009. www.mathworks.com. Natick, Massachusetts, USA
    [111]Spiess W. E. L., Wolf W. Critical evaluation of methods to determine moisture sorption isotherms. Chapter 10. In:Water Activity:Theory and Application to Food. (L.B. Rockland and L.R. Buechat Eds.)[M]. Marcel Dekker, New York.1987, pp 215-232.
    [112]Greenspan L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards Section A:Physics and Chemistry,1977,81(1):89-96.
    [113]Fontana A.J., Jr.2007. Water activity of saturated salt solutions. Appendix A. In:Water activity in Foods:Fundamentals and Applications (Barbosa-Canovas G.V. et al., eds)[M]. IFT Press, Balckwell Publishing Professional, Iowa, USA. pp.391-393
    [114]Novasina.2001. AW TH500 Users'Manual[M]. Novasina AG., Lachen, Switzerland
    [115]Franceli da Silva, Kil Jin Park, Pedro Melillo Magalhaes., Marina Pozitano. Desorption isotherms of Calendula (Officialis L.) [C]. Drying 2004-Proceedings of the 14th International Drying Symposium (IDS 2004). Sao Paulo, Brazil,22-25 August 2004, Vol. C. pp 1569-1576
    [116]Wexler A. Constant humidity solutions. In:CRC Handbook of Chemistry and Physics (Lide D R, Ed)[M],73rd edition. CRC Press, Boca Raton, USA.1993, pp 15-20
    [117]OIML R 121, edition 1996(E). The scale of relative humidity of air certified against saturated salt solutions[S]. Organisation Internationale de Metrologie Legale, Bureau International de Metrologie Legale,11, rue Turgot-75009, Paris-France
    [118]Oyelade O.J., Tunde-Akintundeb T.Y., Igbekac J.C., Okeb M.O. and Rajid O.Y. Modelling moisture sorption isotherms for maize flour[J]. Journal of Stored Products Research,2008(44):179-185
    [119]Wang Lijun, Sun Da-Wen. Recent developments in numerical modeling of heating and cooling processes in the food industry-a review[J]. Trends in Food Science & Technology,2003,14:408-423
    [120]过世东著.水产饲料生产学[M].北京:中国农业出版社,2004:139-140
    [121]牛智有,谭鹤群,宗力.冷却器中颗粒饲料冷却干燥过程的计算与图解[J].饲料工业,1998,19(6):7-10
    [122]李毅峰颗粒饲料加工冷却工序自动控制节能系统[J].现代农业装备,2003(3):62-64
    [123]盖玲,王剑平,黄顺进.薄层干燥实验数据采集系统[J].南京林业大学学报,1997,21(增刊):250-253
    [124]刘正怀,王俊,马广.质热平衡原理预测萝卜丝薄层干燥与试验研究[J].中国农机化,2006(5):90-92
    [125]Ibrahim Doymaz, Mehmet Pala. The thin-layer drying characteristics of corn[J]. Journal of Food Engineering,2003(60):125-130
    [126]ASAE Standard, S448 DEC98. Thin-Layer Drying of Grains and Crops[S]. ASAE,1998, Michigan, U.S.A.
    [127]Zehua Hu,Da-Wen Sun. CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process[J]. Journal of Food Engineering, 2000(46):189-197.
    [128]Sun D -W, Hu Z. CFD simulation of coupled heat and mass transfer through porous foods during vacuum cooling processes [J]. International Journal of Refrigeration,2003(26):19-27
    [129]Thompson R.W., Foster G.H.. Cooling rates of grain-A laboratory study with grain fully exposed to near maximum airflow[J]. Agricultural Marketing Service, USDA. Purdue University,1960. pp 1-23
    [130]Bakker-Arkema, F.W., Schisler, I. P. Counterflow cooling of grain. American Society of Agricultural Engineers[C].1984. Paper number 84-3523
    [131]Kays W., Crawford M.E., Weigand B.著,赵振南译.对流传热与传质(第四版)[M],高等教育出版社,北京,2007
    [132]私人通讯,Michael Crawford,2009
    [1]US Grains Council (USGC). USDA reports indicated increasing availability of DDGS. http//www.grains.org//1429-11-USDA-reports-indicates-increasing-availability-of-DDGS[N],11 March,2009.
    [2]US Grains Council (USGC). DDGS的物理和化学特性.美国含可溶物干酒糟(DDGS)使用手册(第八章)[C],2007,51-56
    [3]Ganesan V., Rosentrater K. A., Muthukumarappan K. Effect of moisture content and soluble level on the physical, chemical, and flow properties of distillers dried grains with solubles (DDGS) [J]. Cereal Chemistry,2008c,85(4),464-470.
    [4]Ganesan V., Muthukumarappan K.. Sorption isotherm characteristics of distillers dried grains with solubles (DDGS) [A]. An ASAE Meeting Presentation, paper No.066165. A Presentation at the ASABE Annual International Meeting [C]. Oregon Convention Center, Portland, Oregon. July 9-12, 2006
    [5]中国饲料工业标准汇编[S].北京:中国标准出版社,1996
    [6]郭吉原.玉米和DDGS质量检测.“东北第二届饲料品控技术培训班”技术资料[C],哈尔滨普凡饲料有限公司,2007年2月27日-3月1日
    [7]Van den Berg C., Bruin S. Water activity and its estimation in food systems:theoretical aspects. In: Water Activity:Influences on Food Quality [M]. Edited by L. B. Rockland and G. F. Steward. Academic Press, London,1981:1-63
    [8]Cheesbrough V., Kurt A. Rosentrater, Jerry Visser. Properties of distillers grains composites:a preliminary investigation[J]. Journal of Polymer & the Environment,2008,16:40-50
    [9]Kingsly A.R. P., Ileleji K. E.. Modeling moisture sorption isotherms of corn dried distillers'grains with solubles (DDGS) using artificial neural network[J]. Transactions of ASABE.2009, Vol.52(1):213-222
    [10]Furmaniak S., Terzyk A. P., Gauden P. A., Rychlicki G.. Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs[J]. Journal of Food Engineering,2007a, (79):718-723.
    [11]Blahovec J., Yanniotis S. Modified classification of sorption isotherms[J]. Journal of Food Engineering.2009,91(1),72-77. doi:10.1016/j.jfoodeng.2008.08.007
    [12]Peleg M.1993. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms [J]. Journal of Food Processing Engineering,1993(16):21-37
    [13]Labuza T.P., Bilge Altunakar. Water activity prediction and moisture sorption isotherms. Chapter 5. In: Water activity in Foods:Fundamentals and Applications[M]. Edited by Babosa-Canovas G.V., Fontana A.J., Schmidt S.J., Labuza T.P. IFT Press, Blackwell Publishing Professional, Iowa, USA.2007, 109-154
    [14]中国产业发展促进会.2010年中国大豆进口预计将超过5100万吨[N]. http://www.capid.org.cn/webpub/publishcenter/cjh/cyjj2/smfw/showdetail.aspx?Article_ID=201009281 547554826.2010年9月28日
    [15]Berry M. R. Jr., Dickerson R. W., Jr. Moisture adsorption isotherms for selected feeds and ingredients. Transactions of the ASAE.1973,16(1):137-139
    [16]Pixton S.W., Warburton S.1975. The moisture content/equilibrium relative humidity relationship of soya meal. Journal of Stored Products Research.1975, Vol.11, pp.249-251. Pergamon Press. Printed in Great Britain.
    [17]魏金涛,齐德生.四种常用饲料原料水活性等温吸附曲线及霉变后品质变化[D].华中农业大学硕士研究生论文,2007.
    [18]季伟,徐学明,乳酸链球菌固态发酵豆粕的研究[J].粮食与饲料工业,2006(5):32-34
    [19]李善仁,蔡海松,林新坚,胡开辉,陈济琛.豆粕发酵制备大豆肽菌株的筛选[J].微生物学杂志,2009,29(1):86-89
    [20]王金斌,马海乐,段玉清,李文,徐珠,彭蕾.混菌固态发酵豆粕生产优质高蛋白饲料研究[J].中国粮油学报,2009,24(2):120-124
    [21]Feng J., Liu X, Xu Z.R., Lu Y.P, Liu Y.Y. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Animal Feed Science and Technology 2007(134):295-303
    [22]Song Y.S., Perez V.G., Pettigrew J.E., Martinez-Villaluenga C. E, Gonzalez de Mejia. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma Animal Feed Science and Technology,2010,159(1-2):41-49
    [23]李建.发酵豆粕研究进展[J].粮食与饲料工业,2009(6):31-35
    [24]Norman N.Potter and Joseph H.Hotchkiss著,王璋 等译,食品科学(第五版)[M].北京:中国轻工业出版社,2001:103-120,215-220
    [25]Hermansson, A. M. Functional properties of proteins for foods-water vapor sorption. Journal of Food Technology,1977(12):177-187
    [26]Jayas, D. S., D. A. Kukelko and N. D. G. White. Equilibrium moisture-equilibrium relative humidity relationship for canola meal. Transactions of the ASAE,1988,31(5):1585-1588,1593
    [27]Karon M. L. Hygroscopic equilibrium of cottonseed. Journal of American Oil Chemistry Society. 1947(24):56-59
    [28]Garcia R. A., Flores R. A., Mazenko C.E.. Factors contributing to the poor bulk behavior of meat & bone meal and methods for improving these behaviors[C]. An ASAE Meeting Presentation Paper No: 056170.2005 ASAE Annual International Meeting, Tampa Convention Center, Tampa, Florida,17-20 July 2005
    [29]Samapundo S, Devlieghere f., Meulenaer B.D., Atukwase A., Lamboni Y., Debevere J.M. Sorption isotherms and isosteric heats of sorption of whole yellow dent corn[J]. Journal of Food Engineering, 2007(79):168-175.
    [30]Boente G. H., GonzhlezCH. L., Martinez E., etc. Sorption isotherms of corn-study of mathematical models [J]. Journal of Food Engineering,1996(29):115-128
    [31]Bartosik R. E., Maier D. E..2007. Study of adsorption and desorption equilibrium relationships for yellow dent, white and waxy corn types using the modified Chung-Pfost equation[J]. Transactions of the ASABE, Vol.50(5):1741-1749, American Society of Agricultural and Biological Engineers ISSN 0001-2351
    [32]Thompson T.L., Peart R.M., Foster G.H. Mathematical simulation of corn drying-a new model[J]. Transactions of the American Society of Agricultural Engineering,1968(24):582-586
    [33]Gely M.C., Giner S.A. Water-corn equilibrium:temperature dependency of the G.A.B. model parameters and calculation of the heat of sorption. Drying Technology,2000,18(7):1449-1464
    [34]Ibrahim Doymaz, Mehmet Pala. The thin-layer drying characteristics of corn[J]. Journal of Food Engineering,2003(60):125-130
    [35]李兴军,王双林,王金水.谷物平衡水分研究概况[J].中国粮油学报,2009,24(11):137-144
    [36]Toeh H.M., Schmdit S.J., Day G.A., Faller J.E.. Investigation of cornmeal components using dynamic vapor sorption and differential scanning calorimetry[J]. Journal of Food Science,2001,66(3):434-440.
    [37]Novasina AW TH500 Users'Manual [M].. Novasina Inc., Sweden,2001.
    [38]Blahovec J., Yanniotis S. Modified classification of sorption isotherms. Journal of Food Engineering, 2009,91(1),72-77. doi:10.1016/j.jfoodeng.2008.08.007
    [39]Furmaniak S., Terzyk A. P., Gauden P. A., Rychlicki G. Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs. Journal of Food Engineering.2007a,79,718-723
    [40]刘志明,韩光,姜瑶,刘炜靖.魔芋粉的保水性能评价及应用研究[J].农产品加工=学刊,2005(9):16,17.
    [41]张盛林,刘佩英.中国魔芋资源和开发利用方案[J].西南农业大学学报,1999(3):214-215
    [42]楼文高,柏春祥,殷肇君.魔芋开发利用现状及发展对策[J].上海水产大学学报,1999(1):76-80
    [43]吴遵霖,李蓓,田彬,等.鳖、蟹饲料粘合剂—魔芋性能试验[J].水利渔业,1991(5):21-24.
    [44]唐胜球,董小英,邹晓庭,许梓荣.畜禽生物饲料添加魔芋葡甘聚糖的研究与应用[J].饲料工业,2005,26(2):37.
    [45]Yu L., Mazza G., Jayas D.S.. Moisture sorption characteristics of freeze dried, osmo-freeze-dried, and osomo-air-dried cherries and blueberries [J]. Transactions of ASAE,1999,42(1):141-147.
    [46]Jayas D. S., Mazza G. Comparison of five three parameter equations for the description of adsorption data of oats[J]. Transactions of ASAE,1993,36(1),119-125
    [47]Labuza, T. P.1985. Water binding of humectants. In:Water Properties in Food (D. Simatos and J.L. Multon, eds.)[M]. Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, NATO ASI Series. pp 425-445
    [48]GB/T 13092-2006.饲料中霉菌总数测定方法[S].北京:中国标准出版社,2006.
    [49]邹新禧编著.超强吸水剂(第二版)[M].北京:化学工业出版社,2001
    [50]Mike B. Coelho等.饲料预混料生产.沈再春等译.见:饲料加工工艺学(第四版)[M].北京:农业出版社,1997
    [51]Duggal A.L, Muir W.E., Brooker D.B. Sorption equilibrium moisture content of wheat kernels and chaff [J]. Transactions of ASAE,1982,25(4):1086-1090
    [52]Bindzus W., Livings S. J., Gloria-Hernandez H., Fayard G., van Lengerich B, Meuser F. Glass transition of extruded wheat, corn and rice starch[J]. Starch/Starke,2002(54):393-400
    [53]GB-T 5009-88-2003食物中不溶性膳食纤维的测定[S]
    [54]陈军.用稻壳粉作饲料添加剂载体[J].饲料工业,1989(11-12):40-42.
    [56]孙攀峰,高腾云,肖杰.苹果渣饲用价值的研究进展[A].中国牧业网专家访谈.http://www.china-ah.com/subject/gaotengyun/memo.php?id=2354
    [57]张俐娜主编.天然高分子改性材料及其应用[M].北京:化学工业出版社,2005
    [58]Peleg M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms [J]. Journal of Food Processing Engineering,1993(16):21-37
    [59]Viollaz P. E., Rovedo C.O.1999. Equilibrium sorption isotherms and thermodynamic properties of starch and gluten [J]. Journal of Food Engineering 1999 (40):287-292
    [60]Oyelade O.J., Tunde-Akintundeb T.Y., Igbekac J.C., Okeb M.O.and Rajid O.Y.. Modelling moisture sorption isotherms for maize flour[J]. Journal of Stored Products Research,2008(44):179-185
    [61]Chen Chia-chung. A study of equilibrium relative humidity for yellow-dent corn kernels [D]. Ph.D. Thesis. Ann Arbor, Michigan, UMI,1989
    [62]彭桂兰,陈晓光,吴文福,姜秀娟.玉米淀粉水分吸附等温线的研究及模型建立[J].农业工程学报,2006,22(5):176-179.
    [1]全国饲料工作办公室,2010.8.16. www.chinafeed.org.org/cms/_code/business/code/php/ 3050366.htm[N]
    [2]王卫国,杨洋,左朝晖.水产膨化颗粒饲料的加工质量分析[J].粮食与饲料工业.2003(5):19-20
    [3]周兵,李树文,张宏玲,简丽,程宗佳.不同淀粉含量饲料制粒后淀粉糊化度、水分、温度以及颗粒质量的变化初探[J].饲料广角,2006(8):21-26
    [4]Maier D.E., Bakker-Arkema F.W.. The counterflow cooling of feed pellets[J]. Journal of Agricultural Egineering Research.1992(53):305-319
    [5]McEllhiney R.R. What's new in pelleting[J]. Feed Management 1986,38(2):22-34
    [6]Samapundo S., Devlieghere F., DeMeulenaer B., Atukwase A., Lamboni Y., Debevere J.M. Sorption
    isotherms and isosteric heats of sorption of whole yellow dent corn[J]. Journal of Food Engineering, 2007(79):168-175.
    [7]Tolaba Marcela P., Peltzer Mercedes, Enriquez Natalia, Pollio Marria Lucia. Grain sorption equilibria of quioa grains[J]. Journal of Food Engineering,2004(61):365-371
    [8]Blahovec J., Yanniotis S. Modified classification of sorption isotherms[J]. Journal of Food Engineering, 2009,91(1):72-77. doi:10.1016/j.jfoodeng.2008.08.007
    [9]Bartosik R. E., Maier D. E. Study of adsorption and desorption equilibrium relationships for yellow dent, white and waxy corn types using the modified Chung-Pfost equation. Transactions of the ASABE, 2007,50(5):1741-1749
    [10]Chen C., Morey R.V.1989. Comparison of four EMC/ERH equations [J]. Transactions of the ASAE, 1989(32):983-990
    [11]Aviara N.A., Ajibola O.O., Oni S.A. Sorption Equilibrium and Thermodynamic Characteristics of Soya Bean[J]. Biosystems Engineering,2004,87(20):179-190.
    [12]Furmaniak S., Terzyk A. P., Gauden P. A., Rychlicki G.2007a. Applicability of the generalised D'Arcy and Watt model to description of water sorption on pineapple and other foodstuffs[J]. Journal of Food Engineering.2007a,79:718-723
    [13]Furmaniak S., Terzyk A.P., Gauden P.A. The general mechanism of water sorption on foodstuffs-Importance of the multitemperature fitting of data and the hierarchy of models[J]. Journal of Food Engineering,2007b,82:528-535
    [14]McMinn W. A. M., Magee T. R. A. Thermodynamic properties of moisture sorption of potato[J]. Journal of Food Engineering,2003(60):157-165
    [15]Kaleemullah S., R. Kailappan. Monolayer moisture, free energy change and fraction of bound water of red chillies [J]. Journal of Stored Products Research,2007(43):104-110
    [16]Basunia, M.A., Abe T.. Moisture desorption isotherms of medium-grain rough rice[J]. Journal of Stored Products Research,2001(37):205-219
    [17]Norman N.Potter and Joseph H.Hotchkiss著,王璋等译,食品科学(第五版)[M].北京:中国轻工业出版社,2001:103-120,215-220
    [18]Herrman T. J., Loughin T. M. Processing and shelf-life performance of feed manufactured from high moisture corn[J]. Transactions of ASAE 2003,46(3):697-703.
    [19]姚玉英黄凤廉陈常贵柴诚敬编.化工原理(上)[M].天津科学技术出版社.2002:356-357.
    [20]Chirifie J., Timmermann E.O., lglesias H.A., Boequet R. Some features of the parameter k of the GAB equations as applied to sorption isotherms of selected food materials [J]. Journal of Food Engineering,1992, (15):75-82
    [21]Iglesias H. A., Chirife J. Isosteric heats of water vapour sorption on dehydrated foods. Part 1:analysis of the differential heat curves [J]. Lebensmittel-Wissenchaft und Technology,1976(9):123-127.
    [22]Aviara N.A., Ajibola O.O. Thermodynamics of moisture sorption in melon seed and cassava[J]. Journal of Food Enginieering,2002b,55(2):107-113
    [23]Aviara N.A., Ajibola O.O., Dairo U.O. Thermodynamics of moisture sorption in sesame seed[J]. Biosystems Engineering 2002,83(3):423-431
    [24]Landfeld, Nesvadba P., Kyhos K., Novotna P., Pruchova J., Houska M. Sorption and thermal properties of dried egg whites[J]. Journal of Food Engineering,2008(87):59-63
    [25]Fasina O., Sokhansanj S., Tyler R. Thermodynamic of moisture sorption in alfalfa pellets[J]. Drying Technology,1997,15(5):1553-1570
    [26]Iglesias H. A., Chirife, J. Handbook of Food Isotherms:Water sorption Parameters for Foods and Food components[M]. Academic Press, New York, USA.1982
    [27]稻鸭共作技术概论[N],中国养殖技术网来源:Ag365.com发布时间:2010-4-8 16:17:20
    [28]Biagi J.D. Modeling of the feed-pellet cooling process [D]. Unpublished Ph.D. thesis. Michigan State University, East Lansing, Michigan, USA 1989.
    [29]Maier D. E. The counterflow cooling of feed pellets. MS. Dissertation. Michigan State University, MI, USA,1988
    [30]牛智有,谭鹤群,宗力.颗粒饲料平衡含水率的试验研究[J].粮食与饲料工业,1998,(4):15-16.
    [31]Bakker-Arkema, F.W., Schisler, I. P. Counterflow cooling of grain. American Society of Agricultural Engineers[C].1984. paper number 84-3523
    [32]Chen Chiachung. Obtaining the isosteric sorption heat directly by sorption isotherm equations[J]. Journal of Food Engineering,2006(74):178-183.
    [1]Morey R.V, Li H.1984. Thin-layer equations effects on deep-bed drying prediction[J]. Transactions of ASAE 27(6):1924-1928
    [2]Biagi J. Domingos.1987. Modeling of the feed pellet cooling process [D], Ph.D. thesis, Michigan State University.
    [3]Wang Lijun, Sun Da-Wen. Recent developments in numerical modeling of heating and cooling processes in the food industry-a review[J]. Trends in Food Science & Technology,2003,14:408-423
    [4]Srivastava V K, John J. Deep bed grain drying modeling [J]. Energy Conversion and Management, 2002,43:1689-1708
    [5]Sun D -W, Hu Z. CFD simulation of coupled heat and mass transfer through porous foods during vacuum cooling processes [J]. International Journal of Refrigeration,2003,26:19-27
    [6]闻新周露,王丹力,熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2000:220
    [7]葛哲学孙志强编著.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [8]Maier D.E.. The counterflow cooling of feed pellets [D]. MS. Dissertation. Michigan State University, 1988.
    [9]曹康,金征宇编著.现代饲料加工技术[M],上海科技文献出版社,2003:413-429
    [10]过世东著.水产饲料生产学[M],北京:中国农业出版社,2004:139-140
    [11]Advantech KW5550KW Users' Manual[A], Advantech,2008. 北京
    [12]中国鸭业论坛,2009[N]
    [13]TF100S热式气体质量流量计说明书[A], Sailsors Instrument,北京
    [14]ASAE Standard, S448 DEC98. Thin-Layer Drying of Grains and Crops[S]. ASAE,1998, Michigan, U.S.A.
    [14]SPSS Inc., IBM Corporation, Route 100,Somers, NY 10589
    [15]Carroll N., Mohtar R., Segerlind L.J.1996. Predicting the cooling time for irregular shaped food products[J]. Journal of Food Processing Engineering,19,385-401
    [15]Hutchinson D., Otthen L. Thin-layer air drying of soybeans and white beans[J]. Journal of Food Technology,18,507-522.
    [16]Togrul I.T., Pehlivan D. Modeling of thin layer drying of some fruits under open-air sun drying processs. Journal of Food Engineering.2004(65):413-425
    [17]Hii C.L., C.L. Law, M. Cloke. Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering,2009(90):191-198
    [18]吴有炜著.试验设计与数据处理[M].苏州:苏州大学出版社,2002,239-284
    [19]丛爽编著.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998
    [20]The Mathworks Inc.,2009. www.mathworks.com. Natick, Massachusetts, USA
    [21]Stamatios J. B., Vassilios G. Belessiotis. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs[J]. Journal of Food Engineering, 2004(65):449-458
    [22]杨柳,杨明皓,刘嫣红.利用边缘电场的电容式谷物水分传感器的研究[J].中国农业大学学报2007,12(2):58-61
    [23]FP-21C Flush Mounted On-Line Moisture Sensor and Manual[A], AgriChem, Inc.,15760 Lincoln St NE, Ham Lake, MN 55304
    [24]张永林,刘文生.饲料加工过程中微波在线水分控制系统[J].饲料工业,2004,25(4):1-3
    [1]杭州美盛红外光电技术有限公司,杭州天目山路313号
    [2]Idah machinery Co., Ltd. Twin screw extruder EP-156D[A]. Taiwan, China.
    [3]过世东著.水产饲料生产学[M],北京:中国农业出版社,2004:139-140
    [4]谢景新.热电偶串并联在工程检测中的应用[J].福建建设科技,2008(5):66-67
    [5]林云鉴,杨昌高,蒋蕴珍,谢正军,沈海卿.逆流式冷却器冷却效果与颗粒质量的研究[J].饲料工业.2004(9):8-10
    [6]SPSS Inc., IBM Corporation, Route 100,Somers, NY 10589
    [7]Maier D.E., Bakker-Arkema F.W. The counterflow cooling of feed pellets[J]. Journal of Agricultural Egineering Research.1992(53):305-319
    [8]张旭华.颗粒饲料冷却过程计算机数值模拟.华中农业大学2004届硕士研究生学位论文
    [9]Biagi J.D. Modeling of the feed-pellet cooling process [D]. Unpublished Ph.D. thesis. Michigan State University, East Lansing, Michigan, USA.,1989.
    [10]李玉忠.微波水分测量技术发展历史及微波水分计制造业现状[J].分析仪器,2006(3):9-52
    [11]丹尼·s·莫什,亚历山大·格林瓦尔德.利用微波相位和衰减确定含水量[P],马尔科姆有限公司,以色列特拉维夫。专利公开号:CN1282421
    [12]李占元.粮食水分的测量和电子水分仪测量不确定度的评定[J].化学分析计量,2004,13(6):29-30
    [13]TEWS Elektronik GmbH & Co. KG. Measuring the Moisture in Foods and Feedstuffs:Fast and accurate measuring to save you time and money[N]. Sperberhorst 10.22459 Hamburg. Germany
    [14]Srivastava V. K., John J. Deep bed grain drying modeling [J]. Energy Conversion and Management, 2002,43:1689-1708
    [15]彭小飞,宗力等.颗粒饲料热特性参数的研究[D].华中农业大学硕士学位论文.2004
    [16]McMullen J., Fasina O.O., Wood C.W., Feng Y. Storage and handling characteristics of pellet from poultry litter[J]. Applied Engineering in Agriculture.2005,21(4):645-651
    [17]Colley Z., Fasina O.O., Bransby D., Lee YY. Moisture effect on the physical characteristics of switchgrass pellets[J]. Transactions of ASABE,2005,49(6):1845-1851
    [18]Fasina O.O. Physical properties of peanut hull pellets[C]. An ASABE meeting presentation at 2007 ASABE Annual International Meeting, Minneapolis Convention Center, MN,17-20 June,2007. ASABE paper number 076161. St. Joseph, MI:ASABE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700