干式弱磁场气流悬浮磁选机的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁选是在不均匀磁场中利用矿物之间的磁性差异而使不同矿物实现分离的一种选矿方法。由于磁选具有流程简单、经济、有效等特点,而被广泛应用于黑色金属矿石的选别:有色和稀有金属矿石的精选:重介质选矿中介质的回收:从非金属矿物原料中除去含铁杂质,保护破碎机和其它设备;从冶炼生产的钢渣中回收废钢以及从生产和生活污水中除去污染物等领域。磁选设备按照选分介质可分为干式磁选机和湿式磁选机。后者是目前应用最广泛的磁选设备。
     针对我国矿石具有“贫、细、杂”的特点,许多矿区地处干旱缺水或严寒地区,以及水资源日益短缺、环境保护越来越受到重视的情况,研制符合我国实情,能够选别细粒矿石、尽可能减轻对水资源污染破坏的新型干式磁选设备具有十分显著的经济社会意义。
     干式弱磁场气流悬浮磁选机是针对细粒入选物料,在下部给矿的方式下,使其在气流作用下进入分选空间,在矿粒处于松散状态下,因受力和运动轨迹不同而达到分选目的。设备主要由给矿系统、供风系统、管道系统、分选系统、动力及调节系统和排矿系统所组成。
     本文研究了悬浮于气流中的细粒矿石受力和运动的情况;分析了在垂直及弯曲管道中细粒矿石的运动状态;研究了磁性颗粒和非磁性矿粒(或弱磁性矿粒)在弱磁场作用下的受力情况,分析得出了其不同的运动轨迹;研制出了干式弱磁场气流悬浮磁选机的设备装置,并利用该设备进行了矿物试验,取得了较好的分选效果。从试验结果来看,干式弱磁场气流悬浮磁选机作为一种新的干式选别设备能够在矿物分选领域得到广泛的应用。
     1.在磁选过程中,矿粒主要受到磁力和机械力的作用,磁性不同的矿粒因受到不同的磁场力作用,沿着不同的路径运动。磁性矿粒和非磁性矿粒(或弱磁性矿粒)的运动路径由作用在这些矿粒上的磁力和所有机械力的比值来决定。
     2.钕铁硼永磁材料因磁性能高,机械性能良好,不含战略金属钴、镍,相对价格较低,而被广泛使用。本研究将其与价格更低廉的铁氧体进行合理配置,得到了磁场性能明显改善、能够满足选别要求的磁系。
     3.悬浮于气流中的细粒矿石所受到的力有气流对矿粒的曳引阻力、矿粒所受的重力、浮力、压力梯度力、Magnus效应升力、Saffman升力、虚假质量力、Basset力、接触点的力,在弯曲管道中还受到离心力作用。
     4.本文分析研究了入选矿粒在选别过程中三个阶段的受力情况。第一个为矿粒在气流中垂直运动的阶段,第二个为矿粒刚进入磁场有效范围的阶段,第三个为矿粒在磁场中的分选阶段。
     5.悬浮于气流中的细粒矿物因矿石本身的粒度、质量、形状、密度、体积的不同,矿粒间相互摩擦作用以及气流场中速度梯度的变化等因素影响,其运动轨迹各不相同,从而为分选提供了条件。
     6.本文对入选矿粒在设备中的运动进行了数值分析。推导出在无外加磁场作用下,悬浮于气流中的矿粒群在垂直管道中的运动轨迹方程,分析了单颗粒矿物在弯管内运动的受力情况,得到了颗粒由下往上至稳定段所需时间和上升距离的关系;研究了颗粒群在悬浮状态下由水平管道向垂直上升管道过渡的弯管部分,其速度随时间和距离的变化关系,得到了关系方程:研究了非磁性矿粒由水平管道向垂直管道运动时其颗粒群速度随时间、距离的变化关系。运用牛顿第二定律,在Lagrangian坐标系中建立起了颗粒在选别过程中的运动轨迹方程式。
     7.本文根据原理分析研制出了干式弱磁场气流悬浮磁选机,并对该设备的磁系材料选择、磁系磁场特性、磨矿设备的选择、管道的设计、分选区域的设计、转筒转速调节设备的选用及出矿系统的设计进行了分析,最终确定了各组成系统的设备及结构参数。
     8.本文利用研制的干式磁选设备进行了矿物分选实验。通过对入选物料粒度组成,供风系统风压、给矿量、磁选区域结构与分选效果的关系研究,确定了选别的最佳条件,并在最佳选别条件下对矿物进行了分选试验。
     9.本文利用干式弱磁场气流悬浮磁选机所进行的矿物试验与湿式筒式磁选试验进行了对比,得出了在入选物料粒级范围、给矿量、磁场强度等条件基本一致的情况下,悬浮磁选所得的精矿品位比湿式磁选低1.91%,精矿回收率高0.61%的结论。分析悬浮干式磁选与湿式磁选在选别上略有差异的原因,一是湿式磁选是以水作为分选介质,因此在湿式分选过程中入选物料在水流和磁性交替的磁系产生的变化磁场中进行磁翻滚运动,使得部分脉石矿物被清除出来,从而提高了精矿产品质量:而在悬浮干式磁选中虽然磁系也是极性交替使吸附矿粒群产生磁翻动,但气流的“清除”作用要低于水流的“清除”作用。二是在湿式磁选中非磁性矿物(或弱磁性矿物)是在水流和自身重力的作用下沉入槽体底部,然后排出,再次被夹带的几率较小;悬浮磁选过程中的非磁性矿物(或弱磁性矿物)在气流作用下向上运动,其自身重力方向向下,在湍流的作用下再次被夹带的几率较大,从而造成精矿指标的下降。
Magnetic separation is one of mineral processing methods,which uses magnetic difference between different minerals in homogeneous to separate.Magnetic separation is easy to run,economical and effective,so was widely used in ferrous metal ore separation,non-ferrous and rare metal ore separation,medium recovery in heavy medium separation,remove iron impurities from non-metallic mineral to protect crusher and other equipment,scrap steel recovery from steel slag and remove pollutants form sewage of production and livelihood.Magnetic separator can be divided into dry and wet magnetic separator according to election media.The latter is the most extensive application of magnetic separator.
     Domestic ores are "poor,small,complex",many mines located in drought or cold areas,water resources shortage and more attention to environmental protection. In these conditions,develop a new type dry magnetic separator which in line with actual situation,can separate fine ore,minimize pollution damage to he water has economic and social significance.
     Dry weak magnetic field air suspension magnetic separator selected minerals for fine.In the way of feed ore in lower part and particles enter sorting room under the air, fine be separated because of force and move trails in dispersed state.The equipment composed by feeding,wind,plumb,separation,power and mining systems.
     This paper studied the force and motion state of fine suspended in air,analyzed the movement of fine in vertical and curved pipe,studied the force of magnetic and non-magnetic(or weakly magnetic)particles in magnetic field and got their trajectory. This paper developed the dry weak magnetic field air suspension magnetic separator, and used the device made mineral test.Test showed that the efficiency was good. According to the results,dry weak magnetic field air suspension magnetic separator as a new dry separator can be widely used in mineral separation.
     1.In the magnetic processing,the role mineral subjected was magnetic and mechanical,different magnetic particles along different paths due to different magnetic role.The movement trails of magnetic and non-magnetic(or weakly magnetic)particles was determined by the ratio of magnetic and all mechanical role on particles.
     2.NdFeB permanent magnetic materials was widely used because of high magnetic properties,good mechanical properties,lower prices,no strategic metal such as cobalt,nickel.This study made a reasonable distribution of NdFeB and ferrite, achieved a magnetic line which improved the magnetic properties significantly and meet sorting requires.
     3.The force of fine mineral suspended in the air suffered including dray resistance of air on the particles,gravity,buoyancy,pressure gradient force,Magnus effect lift,Saffman lift,quality of the false,Basset force,point of contact,and particles in the pipeline also suffered the centrifugal force.
     4.This paper studied the force state of particles in the separation.First stage was particles vertical moved in the air,second stage was particles entered in magnetic field initially,third stage was particles separated in magnetic field.
     5.Particles in suspended state made different movement trails because of their different size,quality,shape,density,volume,mutual friction role of mineral particles and changes of velocity gradient,so as to provide the conditions of separation.
     6.In this paper,the numerical analysis of particles movement in the equipment was made.This paper derived the trajectory equation of mineral group suspended in the air at vertical pipe in the absence of external magnetic field.Analyzed the force state of single particle move in the elbow,got the relationship of time and distance from the bottom-up to the stability.Studied the relationship of speed changes with the time and distance of the particles in the suspended state of from the level to vertical rise pipe,got the relationship equation.Studied the particles speed relation with the time and distance of non-magnetic ore tablets in the state of from level to vertical pipe. Established trajectory equation in the Lagrangian coordinates of particles in the processing using Newton's second law.
     7.This paper developed the suspension magnetic separator according to the principles,and analyzed the magnetic material selection,the magnetic properties of magnetic field,the selection of grinding equipment,the design of plumb and separation interval,the selection of equipment of rotor speed control and the design of mine system,and finally identified the components of the equipment and system structure parameters.
     8.In this paper,made the mineral separation experiments used the dry magnetic separator.Through studied the relationship of air pressure of air system,feed volume of mineral,magnetic separation regional structure and separation effect,determined the best conditions for the election,and in these conditions made a mineral separation test.
     9.This paper compared the mineral test results of suspension dry magnetic separator and wet drum separator,and made a conclusion.In the same conditions such as particles size range,the feed volume of ore and magnetic field strength,the suspension dry magnetic separate compared to wet magnetic separate,concentrate grade is lower 1.91%and concentrate recovery is higher 0.61%.It had two reasons for the test differences of suspended dry magnetic separate and wet magnetic separate. Firstly,water is wet magnetic separation medium,in the wet processing,the particles made a magnetic roller sports under the changed magnetic field of water and magnetic lines of magnetic turn,these made part of gangue minerals was cleared out,so enhanced the concentrate product quality.In suspended dry magnetic,the particles also made a magnetic roller sports under the magnetic lines of magnetic turn,but airstream's "elimination" is below to the water's "elimination".Secondly,in the wet magnetic separation,non-magnetic(or weakly magnetic)minerals under the influence of water and their own gravity into the bottom of the groove,and then drained,so less risk of being entrained again.In the suspension dry magnetic processing,the non-magnetic(or weakly magnetic)minerals was upward in the airflow,downward direction of its gravity,the more risk of being entrained again in effect of turbulence, so the concentrate indicators declined.
引文
[1]吴世清,巫竹盛等.我国磁选设备的现状及发展方向[J].金属矿山(增刊),2004.10:47,50
    [2]江撒慧.一种新型稀土永磁强磁选机[J].国外金属矿选矿,1996,(10):27-31
    [3]李彪译.稀土磁选设备及应用进展[J].国外选矿快报,1997.(16):1-6
    [4]赵昱东.永硅硅选机的发展历程[J].浙江冶金,1998,(1):27-32
    [5]衣德强.立环脉动高梯度磁选机在梅山铁矿的应用[J].冶金矿山设计与建设,1999,(1):35-39
    [6]彭会清.YDQC-500Ⅱ型湿式永磁带式强磁选机研制[J].有色金属(选矿部分),1997,(4):34-36
    [7]斯沃波达等.磁选法的最新进展.国外金属矿选矿,2003,(12):15
    [8]王常任.磁电选矿[M].北京:冶金工业出版社,1986:3,3-6,6-8,37-40,41-42,44,47-48,51,53,55,57-58,60-61,62,65-78,79,80
    [9]#12
    [10]赵锦朴.干式永磁强磁选机的研制及应用.中国非金属矿工业导刊,2003,(4):73-77
    [11]Marston,P.G.,Nolan,J.J.,and Lontai,L.M.,"Magnetic separator Me-hod,U.S,Patent 3,627,678,Dec.14,1971
    [12]Oder,R.R.and price,C,R… "Brightness Beneficiation of kaolin CI-ys by Magnetic Treatment TAPPL,Vol.56,No 10 0ct.1973.
    [13]Almasi,G.S.and Shumate,P.W.,eds.,19?5 Inter.Mag.Conferece.IEE Transactions on Magnetics,Vol.M agnetic,Vol.mag-11,No 5,sept,1975
    [14]Oder,R.R.andprice.C.R.,"Brightness Beneficiation o fkaolin Clys by Magnetic Treatment" TAPPL,Vol.56.No 10.0et.1973
    [15]Almasi.G.S.and Shumate,P.W..eds.,1975 Inter.Mag.Conferece.IEE Transactions on Magnetics.Vol.Magnetic.Vol.mag 11.No5.sept.1975
    [16]周平,郭绍安.国外高梯度磁选的发展.《昆明工学院学报》,1994(5)
    [17]陈剑,李晓波.高梯度磁选机的发展现状及应用.矿业工程,2005,8(4):24
    [18]Too Co,Parker M R,Gerber R,et al.Optimization of matrix in HGMS.J PhysDaplphys,1986,19:11-14.
    [19]熊大和.新一代强磁选设备-SLon立环脉动高梯度磁选机[J].有色金属,Vol.52,No.4,2000(11)
    [20]韩伟.永磁滚筒式磁选机的分析和设计[D].2005:16
    [21]赵通林.新型磁选设备的小型试验研究.鞍山钢铁学院学报,1996(3):4-5
    [22]刘秉裕.磁选柱的研制和应用.金属矿山,1995(7):33-37
    [23]刘秉裕.磁选柱在磁铁矿选矿各领域的应用.金属矿山增刊,2000:215-216
    [24]袁志涛郑龙熙.脉冲振动磁场磁选柱的研制与试验.金属矿山.2001,(3):36-38
    [25]梁殿印.我国选矿设备现状及发展方向的探讨.全国黄金矿山先进技术设备研讨会.南宁,2001,3
    [26]梁殿印,吴建明等.矿物加工设备新进展.金属矿山(增刊),2003,(10):26-34
    [27]刘永振.新型磁选机及应用.第七届全国矿产资源综合利用学术会议论文集,福州,2004,10
    [28]董恩海等.BKC粗选筒式提高选厂粗选效果的研究.有色金属(选矿部分),2004,(5):40-43
    [29]周岳远等.CRIMM稀土永磁辊式强磁选机分选褐铁矿的生产实践.矿冶工程,2002,(2):62-64
    [30]曹志良等.300mm×1000mm筒式永磁强磁选机的研制.金属矿山,2000,(3):51-53
    [31]彭甲平.铁矿石质量评价.湖南冶金,2000,(3):30-32
    [32]毛益平.我国高品质铁精矿研究现状及发展前景.金属矿山(增刊),2002(9):9-14
    [33]周巧珍等.ERIEZ磁选机及其选型,选煤技术,2000,(4):37-39
    [34]汤玉和.SSS-Ⅱ型湿式双频脉冲双立环高梯度磁选机.金属矿山,2004,(3):37-39
    [35]刘永振.永磁立环高梯度磁选机的研究试验报告.2005,5.
    [36]J.h.p.Waton,L.Bolt.High temperature superconductors for high magnetic separation.Processing of the Ⅺ international Mineral Processing Congress,2000,A7 105-113
    [37]J.IANMCELLI,et al.Magnetic Separation of Kaolin Clay using a high temperature superconducting magnet system,IEEE Transactions on applied superconductivity 1997(7),1061-1064
    [38]G.Gillet,et.al.Advances in cryomagnetic separation process:Industrial Minerals and Waste Effluent.Processing of the Ⅶinternational Mineral Processing Congress,2000,A7 27-35
    [39]HEINRICH GERHARD.W(CA).Magnetic separation-flotation centrifuge.Patent number:CA 2317963,(Publication date:2002-02-28)
    [40]樊绍良,黎燕华.我国铁矿石选矿技术进展.2004年全国选矿新技术及其发展方向学术研讨与技术交流会,博鳌,2004
    [41]孙炳泉.我国高质量铁精矿选矿技术新进展及发展趋势.2004年全国选矿新技术及其发展方向学术研讨与技术交流会,博鳌,2004
    [42]冯旭滨.国外矿用磁选设备的现状与分析.选媒技术,1999,2(1):45
    [43]盛放,吴芬明,李书会.磁选设备和固液分离设备的使用现状与发展前景.金属矿山,2005,(3):6
    [44]H.R.马诺切赫里.电选法应用实践评述(1).国外金属矿选矿,2002,10-15
    [45]Jae-Kwan Kim,Hee-Chan Cho,Sung-Chul Kim,ELECTROSTATIC HENEFICIATION OF FLY ASH USING AN EJECTOR-TRIBOCHARGER,JOURNAL ENVIRONMENTAL SCIENCE AND HEALTH,PART A,2000,35(3):357-377
    [46]非金属矿工业手册编委会,非金属矿工业手册(下册),北京:冶金工业出版社,1992
    [47]胡荣译,超细微细粒的几何特征,见:中国微细粒学会第三届全国微细粒制备与处理学术会议论文集,1992
    [48]井伊谷钢,增田弘昭.粉粒体自动化,日刊工业新闻社,昭和50年
    [49]曾凡,胡永平,杨毅等,矿物加工颗粒学,徐州:中国矿业大学出版社,2001
    [50]张斌,林月琼译,选矿过程的细粒回收问题,国外金属矿选矿,1993,9:5-23
    [51]韦大伟,1986-1987年国内外微细粒分选进展述评,有色矿业,1989,Ⅰ:24-26
    [52]杨九流,罗家坷,王淀佐.微细粒矿物的分选技术.国外金属矿选矿,1995,5:5-11
    [53]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992
    [54]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2000
    [55]Leaper M C,Kingman S W,Seville J P K.Application of permanent dry high intensity magnetic for the processing of spent FCC catalyst [J].Magnetic and Electrical Separation,2002,11(3)141-153
    [56]Koca H,Koea S,Kockar O M.Technical note upgrading of Kutahya region lignites by mild pyrolysis and high intensity dry magnetic pafation [J].Minerals Engineering,2000,13(6):657-661
    [57]Cicek B,Bilgesu A Y,Senelt M A,et al.Desulphurization of coals by flash pyrolysis followed by magnetic separation[J].Fuel Processing Technology,1996,46(2):133-142
    [58]Oder R R.Price C R.Brightness Bendleiatian of Kaolin Clays[J].Tech Assoc Pulp Paper Ind.1973.56:75-78
    [59]Watson J H P.矿物工业超导磁选现状[J].国外金属矿选矿,1995(12):17-23
    [60]Watson J H P.Satus of superconducting magnetic separation in the minerals industry[J].Minerals processing,1994,7(5-6):737-746
    [61]Nakajima H,Kaneko H,Oizumi M,et al.Separation characteristics of open gradient magnetic separation using high-temperature superconducting magnet[J].Physica C:Sulperconduetivity,2003(392-396):1214-1218
    [62]Botsh M,Sehonert K.Continuous high intensity magnetic separation with a rotating spiral[C].Proceeding of X Ⅸ international processing congress 1995(2):185-188
    [63]Prakash S,Das B,Mdumty JK,et al.The recovery fine minerals from quartz and corundum mixtures using selective magnetie coating[J].Int J Miner Processing,1999,57(2)87-103
    [64]Song S,Lu S,Lopez-Valdivieso A.Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron Ores[J].Minerals engineering,2002,15(6):415-422
    [65]Arol A I,Aydogan A.Recovery enhancement of magnetite fines in magnetic separation[J].Colloids and Surfaces A:Physicochemical and Engrneering A,2004,232(2-3):151-154
    [66]Mitsuhashi K,Yoshizaki R,Okada H,et al.Purification of endocrine disrupter-polluted water using high temperature superconducting HGMS [J].Physical Separation in Science and Engineering,2003,12(4):205-213
    [67]Kovovin V M.Modified thermodynamic approach for calculation of ponderomtive force on a body in ferrofluid[J].Journal of Magnetism Magnetic Materials,1990,89(1-2):201-206
    [68]Iusan V,Buioca C D,Hadgia S.Magnetic fluid of low viscosity[J].Journal of Magnetism and Magnetic Materials.1999,201(1):38-40
    [69]斯沃波达J.物料处理中电磁选技术的进展[J].国外金属矿矿,2002(3):10-15.
    [70]Slobodan R,Dragan M,Milorad G.Mineral processing of a converter slag and its use in iron ore sintering[J].Magnetic and Electrical Separatian,1996,7(4):201-211
    [71]Hoberg H.Applications of mineral processing in waste treatment and scap recycling[C].Prcessing of Ⅹ Ⅷ international mineral processing congress.1993(1):27-37
    [72]戴慧新,张宗华,细粒钛铁矿选矿新工艺研究,国外金属矿选矿,1998,5:22-24
    [73]安振连,章新喜,陈清如.微细粒煤摩擦电选的试验研究.煤炭科学技术,1998,6:24-26
    [74]van Ackern,Frank,Krasemann,Lutz,Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes,Thin Solid Films,1998,49(4):327-329
    [75]R.茨库,魏明安译.一种用于微细粒分选的新型静电分选机.国外金属矿选矿,2001,1:40-22
    [76]H.R.Manouchehri,K.Hanumantha Rao,Changing potential for the electrical beneficiation of minerals by chemical pretreatment,Minerals & Metallurgical Processing 1999,16(3):14-22
    [77]Yanar,D.K.,Kwetkus,B.A.Electrostatic separation of polymer powders,Journal of Electrostatics.1995,35(3):257-266
    [78]Wang Y.H,Somasundaran P.Fine Particles Processing,1980,2:1112-1128
    [79]Green E.W.,Duke J.B.,Trans.AIME,1922,223:389-395
    [80]Hu Weibai,Wang Dianzuo,Qu Guanzhou,J.Cen.-south.Inst.Min.Metall.,1987,18(4):408-414
    [81]A.Luga,R.Morar,A.Samuila,L.Dascalescu.Electrostatic separation of metals and plastics from granular industrial wastes,IEE Proceedings-A:Science Measurement and Technology 2001.148(2):47-54
    [82]Warren L.J.,Chem.Tech.,March,1981,11:180-185
    [83]Warren L.J.,Trans.IMM,Sect.C,1975,84:99-104
    [84]Tan Zhongheng,Wu Zhendong,Mineral Prcessing and Extractive Metallurgy,Ed.By Jones M.J.,Gill P,IMM,1984
    [85]Gates E.H.,Min.Engng.,1957,12:1368-1372
    [86]胡熙庚,黄和尉,毛矩凡等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991
    [87]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987
    [88]宋少先.疏水絮凝理论与分选工艺[M].北京:煤炭工业出版社,1993
    [89]韩德刚,高盘良,化学动力学基础[M].北京:北京大学出版社.1987
    [90]幸伟中.磁种分选.中国选矿科技情报网,1987
    [91]长野郁南.浮选[M].1977,63:17-21
    [92]C.Gutierrez,Influence of Previous Aeration in Water or Heating in Air of Hemenite on Its Flotation with Oleic Acid,Mineral Processing,1976,3(3):247-256
    [93]Iuga,Alexandra,Morar,Roman.Electrostatic separation of brass from industrial wastes.IEEETransactions on Industry Applications,1999,35(3):537-542
    [94]Matsushita,Yasushi,Mori,Norihiro,Sometani,Taro,Electrostatic separation of plastics by friction mixer with rotary blades,Electrical Engineering in Japan(English translation of Denki Gakkai Ronbunshi),1999,127(3):33-40
    [95]Yang,X.J.,Gu,Z.M.,Fane,A.G.,Multicomponent separations by a combined extraction/electrostatic pseudo- liquid membrane(Ⅰ):separation of Al,La,Sm,and Y,Hydrometallurgy.1998,49(3):275-288
    [96]Wu Z D.Extractive Metallurgy.Hydrometallurgy,1998,49(3):275-288
    [97]Metzler,P.,Weiss,P.,Buettner.,H.Ebert,F.,Electrostatic enhancement of dust separation in a nozzle scrubber,Journal of Electrostatics,1997,42(1-2):123-141
    [98]冯定五,孙仲元等.钾长石粉料干式高梯度磁选试验研究[J].非金属矿,1995,(4):22-24
    [99]刘向民,陈剑.新型SLon-1000干式振动高梯度磁选机研制[J].非金属矿,2006,11(6):32-34
    [100]熊大和,刘建平.SLon脉动与振动高梯度磁选机新进展.金属矿山,2006(7):4-7
    [101]B·B·契热夫斯基等.悬浮状态下小粒物料的干式磁选法的研究[J].国外金属矿选矿,2006,(9):12-14
    [102]曹明礼,袁楚雄.高岭土精选及深加工的进展[J].国外金属矿选矿,1996(5):11-13
    [103]Zagirnyak M.Nasar S A Analysis of magnetic systems of electromagnet ic pulley separators[J].IEEE Transactions on Magnetics.1989,25(3):2790
    [104]徐建民,徐建成.圆柱形多极磁选机磁场分布和场强梯度的解析计算.有色金属,2001,11(4):66-69
    [105]孙仲元.磁选理论[M]长抄:中南工业大学出版社.1987:68,199
    [106]王常任.孙仲元,郑龙熙.磁选设备磁系设计基础[M].北京:冶金工业出版社.1990:139
    [107]刘树贻.磁电选矿学[M].长抄:中南工业大学出版社.1994:79
    [108]张宗华.选矿电磁学[M].北京:冶金工业出版社.1993:213
    [109]蒋朝澜.磁选理论及工艺[M]北京:冶金工业出版社.1994:88,128
    [110]盛放,茆邦群,刘兵.永磁筒式磁选机磁场特性研究.矿业快报,2005,5(5):19-20
    [111]赵凯华.陈熙谋.电磁学(下册)[M].北京:人民教育出版社.1979:135
    [112]格·列·伦兹,列·埃·艾尔斯哥尔兹.复变函数与运算散积初步[M].熊振翔,杨应辰.丘玉圈译.北京:人民教育出版社,1960:168
    [113]徐建民.由复势函散求场强梯度的公式[J].科学通报,1982,27(15):958
    [114]徐建民.由复势函数求场强梯度的公式的证明[A].矿冶科学与工程新进展(上册)[M].北京:冶金工业出版社,1996:757
    [115]任福尧.应用复分折[M].上海:复旦大学出版社,1993:29
    [116]徐建民,周二星,杨守业.齿板型聚磁介质磁场的计算[J].有色金属,1983,35(3):30
    [117]徐建民.窄长磁NS极相间排列的椽塑磷板磁场的计算[J].有色金属,1998.50(1):24
    [118]MARLENE MARINESCU,NICOLAE MARINESCU,K.-H.UNKELBACH,HANS-GEORG SCHNABEL.New Permanent Magnetic Separator with NdFeB Meets Theoretical Pralictirnos.IEEE TRANSACTIONS ON MAGNETICS,VOL.25,NO.3,MAY 1989
    [119]EFFICIENCY OF A SUPERCONDUCTING OGMS SEPARATOR T.JANOWSKI,S.KOZAK Institute of Electrotechnics IEEE TRANSACTIONS ON MAGNETICS,VOL.26, NO.5,MAY I990
    [120]ASKO kankaanp(aa).High-intensity permanent magnetic separators.World Mining,1981(5):62
    [121]ASKO kankaanp(aa).Recent advances in magnetic separation.World Mining.1982(10):98
    [122]J Kopp Permanent magnetic disk separator.IEEE TRans.Mag.1984,20(5):1204
    [123]BoR,Arvidson.New high-intensity roll separator using permanents CI M BUII.1985(7):88
    [124]M Marinescu et al.New Permanent magnetic separator with Nd-Fe-B meets theoretical predictions.IEEE Trans.Mag 1989 25(3):2732
    [125]H D.Wasmutb and K H Unkelbach.Recent developments in magnetic separation of feebly magnetic minerals.Min Engr.1991(4):825
    [126]A Russell Magnetic separation:an ever more exacting science.Ind Miner,1992(3)
    [127]H D Wasmuth et al.Peimos-a new medium intensity drum type Permanent magnetic separator with special structure of Nd-Fe-B magnets.Les Techniques 1992(12):68
    [128]周寿增,董清飞.超强永磁体-稀土铁系永磁材料[M].冶金工业出版社.1999:20-80
    [129]罗阳.第三代稀土永磁NdFeB[M].磁性材料与器件行业协会.1986
    [130]罗阳.NdFeB的今天和明天[M].第11届国际稀土永磁会议纪要.1990
    [131]冯泉,张宪伟,李志杰.高性能永磁材料在磁选设备中的应用.新材料产业,2006,(10):81-84
    [132]M.Marinescu et al.New Permanent magnetic separator with Nd-Fe-B meets theoretical predictions.IEEET raps.On Mag.1989 25(3):27-32
    [133]王常任,孙仲元,郑龙熙.磁选设备磁系设计基础[M].冶金工业出版社.1990
    [134]张国旺.超细粉碎设备及其应用[M].冶金工业出版社.2005
    [135]郑水林.超细粉碎工艺设计与设备手册[M].中国建材工业出版社.2002:5-6
    [136]Guifang Zhang,The Research of the Force Acting on Very Small Coal Particles and the Trajectories Suspended in the Air Flows and the High Voltage Electrion Field,In:DRY SEPARATION SCIENCE AND TECHNOLOGY,Xuzhou,2001
    [137]岑可法,樊建人,煤粉颗粒在气流中的受力分析及其运动轨迹的研究,浙江大学学报,1987,21(6):1-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700